

MIRABILIS DESIGN INC.

Advanced Modeling
Guide

VisualSim Documentation

20160616 Page 2 of 364 Simulators
 Mirabilis Design, Inc.

©2003-2016 Mirabilis Design Inc. All rights reserved.

The information contained herein is subject to change without notice. While every
reasonable effort was made to ensure the completeness and correctness of this
document, Mirabilis Design Inc. makes no warranty of any kind with regard to this
material, including but not limited to any implied warranties. Mirabilis Design Inc.
shall not be liable for errors or omissions contained herein or for any damages
relating to the use of this material.

VisualSim and VisualSim Architect are registered trademark of Mirabilis Design
Inc.

Java and all Java-related titles are trademarks or registered trademarks of Sun
Microsystems in the United States and other countries. All other brand or product
names may be trademarks of their respective holders.
This document is protected by US and International copyright laws. No part of
this document may be reproduced in any manner without prior written consent of
Mirabilis Design Inc.

Mirabilis Design Inc.
1159 Sonora Ct, Suite 116
Sunnyvale, CA 94086

20160616 Page 3 of 364 Simulators
 Mirabilis Design, Inc.

Table of Contents
Table of Contents .. 3

Chapter 1: Simulators ... 14

1 Discrete-Event Simulator .. 15

1.1 Introduction ... 15
1.1.1 Model Time .. 15
1.1.2 Simultaneous events ... 15
1.1.3 Iteration .. 17
1.1.4 Getting a Model Started .. 17
1.1.5 Pure Events at the Current Time .. 17
1.1.6 Stopping Execution .. 18

1.2 Writing DE Blocks ... 18
1.2.1 General Guidelines .. 18
1.2.2 Examples Simplified Delay Block.. 19
1.2.3 Thread Blocks .. 22

1.3 Composing DE with Other Simulators ... 24
1.3.1 DE inside another Simulator ... 24
1.3.2 Another Simulator inside DE ... 26

2 CT Simulator .. 27

2.1 Introduction ... 27
2.1.1 System Specification ... 28
2.1.2 Time ... 30

2.2 Solving ODEs numerically ... 30
2.2.1 Basic Notations .. 31
2.2.2 Fixed-Point Behavior ... 31
2.2.3 ODE Solvers Implemented .. 32
2.2.4 Breakpoint ODE Solvers ... 33

2.3 Signal Types .. 33

2.4 CT Blocks ... 35
2.4.1 CT Block Interfaces ... 35

2.5 CT Simulators .. 36
2.5.1 ODE Solvers .. 36
2.5.2 CT Simulator Parameters .. 36
2.5.3 CTMultiSolverDirector ... 37
2.5.4 CTMixedSignalDirector ... 38
2.5.5 CTEmbeddedSimulator ... 38

2.6 Interacting with Other Simulators... 38

20160616 Page 4 of 364 Simulators
 Mirabilis Design, Inc.

2.7 Mixed-Signal Execution ... 39
2.7.1 Hybrid System Execution .. 40

2.8 Appendix F: Brief Mathematical Background 41

3 Untimed Digital or Synchronous Data Flow Simulator 42

3.1 Purpose of the Simulator ... 42

3.2 Using SDF .. 42
3.2.1 Deadlock .. 42
3.2.2 Consistency of data rates .. 43
3.2.3 How many iterations? .. 44
3.2.4 Granularity ... 44

3.3 Properties of the SDF simulator ... 45
3.3.1 Scheduling ... 46
3.3.2 Hierarchical Scheduling ... 47
3.3.3 Hierarchically Heterogeneous Models .. 48

4 FSM Simulator ... 49

4.1 Introduction ... 49

4.2 Building FSMs in ModelBuilder .. 49
4.2.1 Alternate Mark Inversion Coder .. 49

4.3 The Implementation of FSMActor ... 51
4.3.1 Guard Expressions .. 51
4.3.2 Actions ... 52

4.4 FSM-Hierarchical ... 53
4.4.1 A Schmidt Trigger Example .. 53
4.4.2 Applications.. 55

Chapter 2 Modeling Libraries ... 56

Introduction to Resources .. 56

Active Resources .. 56

Event Queue Blocks .. 57

Timed Queue Resource Blocks.. 57
Server_N_Priority ... 58

System Resource blocks(a.k.a Scheduler Blocks) 58

Channel Blocks .. 60

Queues (a.k.a Smart_Resource)... 61

Server (a.k.a Smart_Timed_Resource) ... 62

Passive or Quantity-Shared Resource Blocks 63

20160616 Page 5 of 364 Simulators
 Mirabilis Design, Inc.

Virtual Connection Blocks .. 64

Architecture Modeling Toolkit .. 66

Cache ... 68
Block Description .. 68
Block Usage.. 68
Functionality.. 68
Computations ... 69
State Plots .. 69
Statistics.. 69
Configuration of Parameters .. 70

Memory .. 71
Block Description .. 71
Block Usage.. 71
Functionality.. 71
Computations ... 72
State Plots .. 72
Configuration of Parameters .. 73

Processor Block ... 75
Description .. 75
Block Usage.. 75
Configuration of Parameters .. 80
Instruction Stack ... 83
Linear State Machine ... 83
Processing Flow ... 85
More on Processor Flow .. 86

Instruction_Set ... 88
Description .. 88

Architecture Setup ... 91
Description .. 91
Configuration of Parameters .. 92
Routing_Table .. 94

Processor Model Features .. 104

Cache and Memory Overview ... 108
Cache Thread ... 109
Cache Misses ... 109
Cache Instrs, Reads, Writes .. 110
DRAM Memory ... 110
DRAM Processing .. 110
External Bus ... 110
Cache Summary ... 110

Bus, Switch and Controller Toolkit .. 112

20160616 Page 6 of 364 Simulators
 Mirabilis Design, Inc.

Bus Arbiter .. 112
Block Description .. 112
Block Usage.. 112
Functionality.. 112
Statistics.. 114
State Plots .. 114
Configuration of Parameters .. 115

Bus Interface ... 116
Block Description .. 116
Block Usage.. 116
Functionality.. 116
Configuration of Parameters .. 117

DMA_Controller .. 117
Block Description .. 117
Functionality.. 118
Routing Functionality .. 120
Example of DMA in a Model .. 121
Statistics.. 121
Parameters ... 122

Request Acknowledge Node/ Asynchronous Bus 123
Introduction ... 123
Block Configure Parameters .. 125
Data Structure: Processor_DS... 126
Acknowledge Port to Data-In Port Block Commands 127
Routing Table ... 129
Bus Statistics .. 129

Power Modeling Toolkit .. 132

Introduction... 132

How it works ... 133

Block Level Parameters .. 133

Block Ports.. 134

Block Methods .. 134

Power Utilities... 136
Traffic Profile Parameters .. 139
Power Finite State Machine: Active, Standby, Suspend, Off States 140
Resources Modal FSMs Parameters ... 142
Execution Parameters .. 144
Power Generator Parameters .. 148
Reports Processing .. 149

Bus and Interface Standards .. 150

20160616 Page 7 of 364 Simulators
 Mirabilis Design, Inc.

1 AMBA Buses.. 150

1.1 AMBA AHB ... 150
1.1.1 Sample Model .. 150
1.1.2 Setup .. 150
1.1.3 Model Parameters ... 150
1.1.4 Initialize the Processing Data Structure .. 150
1.1.5 A Typical AMBA Bus System Architecture 151
1.1.6 AMBA Bus Features supported: ... 152
1.1.7 Typical AMBA System components and the Mapping to VisualSim
 152
1.1.8 Routing Table .. 152
1.1.9 Routing Table for the Sample Model .. 153
1.1.10 Bus Statistics ... 153
1.1.11 Statistics of the Sample Model .. 153
1.1.12 Validation comparing with AMBA Spec .. 154

1.2 AMBA APB Bus ... 163

1.3 AMBA AXI ... 164
1.3.1 Setup .. 164
1.3.2 Sample Model .. 165
1.3.3 Setup .. 165
1.3.4 Model Parameters, Data Structure Fields and Ports.................... 165
1.3.5 Data Structure Field ... 167
1.3.6 Explanation .. 167
1.3.7 Master and Slave Queue Depths .. 169
1.3.8 Read and Write Request Channels .. 170
1.3.9 Arbitration ... 170
1.3.10 Throttle Mechanism and Throttle block... 170
1.3.11 Adding additional Master and Slave port 172
1.3.12 AXI Bus Description ... 173
1.3.13 Flow Diagram ... 175
1.3.14 Bus Statistics ... 177
1.3.15 Latency Flow .. 178
1.3.16 Operational View of the Model .. 179

2 PCI Family of Buses .. 181

2.1 PCI and PCI-X Bus .. 181
2.1.1 Sample Model .. 181
2.1.2 Setup .. 181
2.1.3 Model Parameters ... 181
2.1.4 Initialize the Processing Data Structure .. 182
2.1.5 A typical PCI, PCI-X system .. 183
2.1.6 Routing Table .. 184
2.1.7 Bus Statistics ... 184
2.1.8 Statistics Validation comparing with PCI Specification 185

20160616 Page 8 of 364 Simulators
 Mirabilis Design, Inc.

2.1.9 Operational View of the Model .. 186
2.1.10 Preemption while stepping in progress ... 189

2.2 PCI-Express ... 190
2.2.1 Sample Model .. 190
2.2.2 Setup .. 190
2.2.3 Model Parameters, Data Structure Fields and Ports.................... 191
2.2.4 Traffic Queue Depths .. 193
2.2.5 PCIe Bus Description .. 193
2.2.6 Bus Statistics ... 194
2.2.7 Latency Flow .. 195
2.2.8 Operational View of the Model .. 196

3 CoreConnect Bus .. 198
3.1.1 Introduction .. 198
3.1.2 Setup .. 198
3.1.3 Model Parameters ... 198
3.1.4 Data Structure: Processor_DS .. 199
3.1.5 Timing Diagrams.. 200
3.1.6 Routing Table .. 209
3.1.7 Bus Statistics ... 210
3.1.8 Operational View of the Model .. 212

4 Switched Ethernet ... 214
4.1.1 Introduction .. 214
4.1.2 Model Description .. 214
4.1.3 Sample Model .. 214
4.1.4 Setup .. 215
4.1.5 Initialize the Processing Data Structure .. 215
4.1.6 A Typical Ethernet Model .. 215
4.1.7 FULL DUPLEX OPERATION .. 216
4.1.8 Operational View of the Model .. 216

5 SpaceWire .. 218
5.1.1 Introduction .. 218
5.1.2 Model Setup ... 218
5.1.3 Model Parameter ... 219
5.1.4 SpaceWire Node.. 220
5.1.5 SpaceWire Link .. 221
5.1.6 SpaceWire Router ... 222
5.1.7 SpaceWire Description .. 223
5.1.8 Statistics ... 225

6 Rapid IO ... 227

6.1 Introduction ... 227

6.2 Rapid IO Blockset ... 227

20160616 Page 9 of 364 Simulators
 Mirabilis Design, Inc.

6.3 RIO_Node Block Configuration Parameters 228

6.4 Connecting the RIO_Node Block in a model 229
6.4.1 RIO_Node Block added to a Model .. 229

6.5 Serial Switch Block Configuration Parameters 233

6.6 Connecting the Serial_Switch Block in a model 234
6.6.1 Serial_Switch Block added to a Model .. 235

6.7 Data Structure: Processor_DS ... 235

7 Ethernet Audio Video Bridging .. 237

7.1 Library .. 237

7.2 Tutorial System ... 239

8 Fibre Channel .. 240

8.1 Introduction to Fibre Channel ... 240
• Point-to-point (FC-P2P). ... 240
• Arbitrated loop (FC-AL). .. 240
• Switched fabric (FC-SW). ... 240

8.2 About VisualSim Fibre Channel Library Package 240

8.3 Library Blocks ... 241

8.4 FC_N_Port .. 241
8.4.1 Flow Diagram ... 241
8.4.2 Data Structure Fields ... 241
8.4.3 Parameters .. 242

8.5 Fibre Channel Switch ... 242
8.5.1 Flow Diagram ... 243
8.5.2 Flow Control ... 243
8.5.3 Data Structure Fields ... 243
8.5.4 Parameters .. 243

8.6 FC_Link .. 244
8.6.1 Parameters .. 244

8.7 FC_Config .. 244
8.7.1 Parameters .. 244

8.8 Tutorial ... 245
8.8.1 Basic Rules .. 246
8.8.2 Construction Steps .. 246

9 TTEthernet ... 253

9.1 Introduction ... 253

9.2 About TTEthernet Library .. 253

20160616 Page 10 of 364 Simulators
 Mirabilis Design, Inc.

9.3 Synchronization .. 255

9.4 System Level Model.. 255

9.5 Model Parameters ... 256

9.6 TTEthernet Node ... 257

9.7 TTE Bridge ... 257

9.8 TTE Config ... 258

9.9 TTE_Setup .. 258

9.10 TTE_Stats ... 259

9.11 TTE_Traffic ... 259

9.12 Tutorial ... 260
9.12.1 Basic Rules .. 261
9.12.2 Construction Steps .. 261

9.13 Advanced Tutorial ... 270
9.13.1 TTEthernet model with 8 Source Nodes 270
9.13.2 TTEthernet Model with 8 nodes and 3 Destination Nodes........... 271
9.13.3 TTEthernet Model with 8 Nodes, 2 Bridges and 3 Destination
Nodes 271

10 IEEE1394/Firewire ... 273

10.1 Introduction ... 273

10.2 About FireWire .. 273

10.3 About FireWire Library ... 273

10.4 Model Parameters ... 274

10.5 Assumptions.. 274

10.6 FireWire Node .. 274
10.6.1 Flow Diagram for Isochronous Transfers 275
10.6.2 Flow Diagram for Asynchronous Transfers 276
10.6.3 Block Details .. 276
10.6.4 Block Parameters .. 278

10.7 FireWire Link.. 278
10.7.1 Block Parameters .. 278

10.8 FireWire Config ... 279
10.8.1 Block Parameters .. 279

10.9 Reports ... 279

10.10 Example .. 279
10.10.1 Basic Rules .. 280
10.10.2 Construction Steps... 280

20160616 Page 11 of 364 Simulators
 Mirabilis Design, Inc.

10.11 Understanding Common Errors .. 285

Application and Algorithm Library ... 286

1 Networking .. 286

2 Wireless and Sensor Network System 289

Introduction... 289

Installation and Quick Start .. 289

Modeling Wireless Networks .. 289
Running a Pre-Built Model ... 289
Changing Parameters .. 290

Structure of a Pre-Built Model .. 291
Visual Representations (Icons) .. 291
Channels ... 293
Wireless Hierarchical Blocks .. 294

Controlling the Execution ... 295

Building a New Model .. 296

Using the Plot Blocks .. 305

Modeling Capabilities .. 305

Channel Models .. 306

Wireless Node Models ... 306

Examples of Modeling Capabilities ... 307
Packet Structure ... 307
Packet Losses .. 307
Battery Power ... 307
Power Loss ... 307
Collisions .. 307
Transmit Antenna Gain .. 309

Algorithmic .. 314

I Analog .. 314

Event Generator ... 314

Waveform generators .. 314

Control-Analog Functions .. 314

II Control Systems .. 316

Event Generator ... 316

Waveform generators .. 316

20160616 Page 12 of 364 Simulators
 Mirabilis Design, Inc.

Control-Analog Functions .. 316

II Petri Net ... 317

III Image Processing ... 317

Basic .. 317

Advanced (Using Java Advanced Imaging) ... 318

Media Interfaces (Using Java Media Framework) 318

IV Signal Processing ... 319

Sources ... 319

Audio .. 319

Communications .. 319

Statistical ... 320

Filtering.. 320

Spectrum ... 321

VisualSim Custom Development .. 322

1 Custom-Coded Blocks using Java....................................... 322

1.1 Overview... 322

1.2 Anatomy of an Block .. 322
1.2.1 Ports ... 323
1.2.2 Port Rates and Dependencies between Ports 329
1.2.3 Parameters .. 330
1.2.4 Constructors... 331
1.2.5 Cloning ... 331

1.3 Action Methods ... 333
1.3.1 Initialization .. 333
1.3.2 Prefire ... 334
1.3.3 Fire ... 335
1.3.4 Postfire ... 336
1.3.5 Wrapup... 338

1.4 Coupled Port and Parameter ... 339

1.5 Iterate Method .. 341

1.6 Time .. 341

1.7 Icons ... 342
1.7.1 New method ... 343
1.7.2 Old Method .. 343

1.8 Code Format .. 344

20160616 Page 13 of 364 Simulators
 Mirabilis Design, Inc.

1.8.1 Indentation ... 345
1.8.2 Spaces ... 346
1.8.3 Comments .. 346
1.8.4 Names .. 346
1.8.5 Exceptions ... 347
1.8.6 Javadoc .. 347
1.8.7 Code Organization ... 349

1.9 Java Block Template .. 349

1.10 Debugging .. 350

2 Adding a Block to ModelBuilder Library List 355

2.1 Edit Ramp2.java and change:.. 355

2.2 Library Palette Addition ... 355

2.3 Testing Addition .. 356

2.4 Adding a new palette .. 356

2.5 Hints on Adding Blocks ... 357
2.5.1 Icon Display ... 357
2.5.2 Parameter Pull-Down .. 357

3 Creating Applets ... 358

3.1 Introduction ... 358
3.1.1 HTML Files Containing Applets... 358

3.2 Java Script for embedding the VisualSim Model 359
3.2.1 Using JavaScript in files .. 363

4 Templates .. 364

20160616 Page 14 of 364 Simulators
 Mirabilis Design, Inc.

Chapter 1: Simulators

The simulators implement various models of computation. Most of these models of computation
can be viewed as a framework for component-based design, where the framework defines the
interaction mechanism between the components. VisualSim consists of four major simulators-

 Continuous Time
 Synchronous Data Flow
 Discrete Event
 Finite State Machine

The first three simulators implement their own scheduling between blocks and do not rely on
threads. These usually results in a highly efficient execution. The FSM simulator is in a category
by itself, since the components are not producers and consumers of data, but rather are states

090515 Page 15 of 364 Simulators-Digital
 Mirabilis Design, Inc.

1 Discrete-Event Simulator
1.1 Introduction

The discrete-event (DE) simulator supports time-oriented modeling such as queuing systems,
communication networks, and digital hardware. In this simulator, blocks communicate by sending
events, where an event is a data value (a token) and a time stamp. A DE scheduler ensures that
events are processed chronologically according to this time stamp by firing those blocks whose
available input
events are the oldest (having the earliest time stamp of all pending events).
A key strength in the VisualSim implementation is that simultaneous events (those with identical
time stamps) are handled systematically and deterministically. Another key strength is that the
global event queue uses an efficient structure that minimizes the overhead associated with
maintaining a sorted list with a large number of events.

1.1.1 Model Time
In the DE model of computation, time is global, in the sense that all blocks share the same global
time. The current time of the model is often called the model time or simulation time to avoid
confusion with current real time. As in most VisualSim Simulators, blocks communicate by
sending tokens through ports. Ports can be input ports, output ports, or both. Tokens are sent by
an output port and received by all input ports connected to the output port through relations.
When a token is sent from an output port, it is packaged as an event and stored in a global event
queue. By default, the time stamp of an output is the model time, although specialized DE blocks
can produce events with future time stamps. Blocks may also request that they be fired now, or
at some time in the future, by calling the fireAt-CurrentTime(), fireAt(), or fireAtRelativeTime(),
methods of the Simulator. Each of these places a pure event (one with a time stamp, but no data)
on the event queue. A pure event can be thought of as setting an alarm clock to be awakened in
the future. Sources (blocks with no inputs) are thus able to be fired despite having no inputs to
trigger a firing. Moreover, blocks that introduce delay (outputs have larger time stamps than the
inputs) can use this mechanism to schedule a firing in the future to produce an
output. The fireAtCurrentTime() method provides a mechanism for achieving a zero delay by
atomically getting the current model time and queuing an event with that time stamp. This permits
I/O blocks to have themselves fired in real-time whenever data arrives at a physical I/ O port.
In the global event queue, events are sorted based on their time stamps. An event is removed
from the global event queue when the model time reaches its time stamp, and if it has a data
token, then that token is put into the destination input port.
At any point in the execution of a model, the events stored in the global event queue have time
stamps greater than or equal to the model time. The DE Simulator is responsible for advancing
(i.e. incrementing) the model time when all events with time stamps equal to the current model
time have been processed (i.e. the global event queue only contains events with time stamps
strictly greater than the current time). The current time is advanced to the smallest time stamp of
all events in the global event queue.

1.1.2 Simultaneous events
An important aspect of a DE simulator is the prioritizing of simultaneous events. This gives the
simulator a dataflow-like behavior for events with identical time stamps. It is done by assigning a
depth to each block and a micro step to each phase of execution within a given time stamp. Each
depth is a non-negative integer, uniquely assigned; i.e. no two blocks are assigned the same
depth.
The depth of a block determines the priority of events destined to that block, relative to other
events with the same time stamp and the same micro step. The highest priority events are those
destined to blocks with the lowest depth.

090515 Page 16 of 364 Simulators-Digital
 Mirabilis Design, Inc.

Consider the simple topology shown in Figure 1. Assume that block Y is not a delay block,
meaning that its output events have the same time stamp and micro step as its input events (this
is suggested by the dotted arrow). Suppose that block X produces an event with time stamp. That
event is avail-able at ports B and D, so the scheduler could choose to fire blocks Y or Z. Which
should it fire? Intuition tells us it should fire the upstream one first, Y, because that firing may
produce another event with time stamp at port D (which is presumably a multiport). It seems
logical that if block Z is going to get
one event on each input channel with the same time stamp, then it should see those events in the
same firing. Thus, if there are simultaneous events at B and D, then the one at B will have higher
priority.
The depths are determined by a topological sort of a directed acyclic graph (DAG) of the blocks.
The DAG of blocks follows the topology of the graph, except when there are declared delays.
Once the DAG is constructed, it is sorted topologically. This simply means that an ordering of
blocks is assigned

Figure 1 If there are simultaneous events at B and D, then the one at B will have higher
priority because it may trigger another simultaneous event at D.

such that an upstream block in the DAG is earlier in the ordering than a downstream block. The
depth of a block is defined to be its position in this topological sort, starting with zero. For
example, in Figure 1, X will have depth 0, Y will have depth 1, and Z will have depth 2.
In general, a DAG has several correct topological sorts. The topological sort is not unique,
meaning that the depths assigned to blocks are somewhat arbitrary. But an upstream block will
always have a lower depth than a downstream block, unless there is an intervening delay block.
Thus, given simultaneous input events with the same micro step, an upstream block will always
fire before a downstream block. Such a strategy ensures that the execution is deterministic,
assuming the blocks only communicate via events. In other words, even though there are several
possible choices that a scheduler could
make for an ordering of firings, all choices that respect the priorities yield the same results.
There are situations where constructing a DAG following the topology is not possible. Consider
the topology shown in Figure 2. It is evident from the Figure that the topology is not acyclic.
Indeed, Figure 2 depicts a zero-delay loop where topological sort cannot be done. The Simulator
will refuse to run the model, and will terminate with an error message.
The TimedDelay block in DE is a simulator-specific block that asserts a delay relationship
between its input and output. Thus, if we insert a TimedDelay block in the loop, as shown in
Figure 3, then constructing the DAG becomes once again possible. The TimedDelay block breaks
the precedence.
Note in particular that the TimedDelay block breaks the precedence even if its delay parameter is
set to zero. Thus, the DE simulator is perfectly capable of modeling feedback loops with zero time
delay, but the model builder has to specify the order in which events should be processed by
placing a Timed-Delay block with a zero value for its parameter. When modeling multiple zero-
delay feedback paths, simultaneity of the fed back signals is modeled by having the same
number of TimedDelay blocks in each feedback path.

090515 Page 17 of 364 Simulators-Digital
 Mirabilis Design, Inc.

1.1.3 Iteration
At each iteration, after advancing the current time, the Simulator chooses all events in the global
event queue that have the smallest time stamps, micro step, and depth (tested in that order). The
chosen events are then removed from the global event queue and their data tokens are inserted
into the appropriate

Figure 2 Example of a directed zero-delay loop.

Figure 3 A Delay block can be used to break a zero-delay loop

input ports of the destination block. Then, the Simulator iterates the destination block; i.e. it
invokes prefire(), fire(), and postfire(). All of these events are destined to the same block, since
the depth is unique for each block.
A firing may produce additional events at the current model time (the block reacts
instantaneously, or has zero delay). There also may be other events with time stamp equal to the
current model time still pending on the event queue. The DE Simulator repeats the above
procedure until there are no more events with time stamp equal to the current time. This
concludes a single iteration of the model. Iteration processes all events on the event queue with
the smallest time stamp.

1.1.4 Getting a Model Started
Before one of the iterations described above can be run, there have to be initial events in the
global event queue. Blocks may produce initial pure events or regular output events in their
initialize() method. Thus, to get a model started, at least one block must produce events. All the
blocks described in the Block Libraries chapter that produce pure events can be used in DE. We
can define the start time to be the smallest time stamp of these initial events.

1.1.5 Pure Events at the Current Time
A block calls fireAt() to schedule a pure event. The pure event is a request to the scheduler to fire
the block sometime in the future. However, the block may choose to call fireAt() with the time
argument equal to the current time. In fact, the preferred method for simulator-polymorphic
source blocks to get started is to have code like the following in their initialize() method:

Director director = getDirector();
director. fireAt(this, director. getCurrentTime());

090515 Page 18 of 364 Simulators-Digital
 Mirabilis Design, Inc.

This will schedule a pure event on the event queue with micro step zero and depth equal to that
of the calling block.
A block may also call fireAt() with the current time in its fire() method. This is a request to be
refired later in the current iteration. This is managed by queuing a pure event with micro step one
greater than the current micro step. In fact, this is the only situation in which the micro step is
incremented beyond zero.

A pure event at the current time can also be scheduled by code like the following:
Director director = getDirector();
director. fireAtCurrentTime(this);

This code is equivalent to the previous example when used within standard block methods like
initialize() and fire(). This is because the Simulator never advances model time while a block is
being initialized or fired. However, when methods such as I/ O callbacks queue events at the
current time, they need to use the latter code. This is because the Simulator runs in a separate
thread from the callback and, in the former code, will occasionally advance the model time
between the call to getCurrentTime() and the call to fireAt().

1.1.6 Stopping Execution
Execution stops when one of these conditions becomes true:

 The current time reaches the stop time, set by calling the setStopTime() method of the
DE Simulator.

 The global event queue becomes empty and the stopWhenQueueIsEmpty parameter of
the Simulator is true.

Events at the stop time are processed before stopping the model execution. The execution ends
by calling the wrapup() method of all blocks. Wrapup() is called even when execution has been
stopped due to an exception. Therefore, throwing an exception in the wrapup() method of a block
is not recommended as this exception will mask the original exception, making the source of the
original exception difficult to locate.
It is also possible to explicitly invoke iterate() method of the manager for some fixed number of
iterations. Recall that an iteration processes all events with a given time stamp, so this will run the
model through a specified number of discrete time steps.
Note that a block can prevent execution from stopping properly if it blocks in its fire() method. A
block which blocks in fire() should have a stopFire() method which, when called, notifies the fire()
method to cease blocking and return.

1.2 Writing DE Blocks

It is very common in DE modeling to include custom-built blocks. For the most part, writing
blocks for the DE simulator is no different than writing blocks for any other simulator. Some
blocks, however, need to exercise particular control over time stamps and block priorities. Such
blocks use instances of DEIOPort rather than TypedIOPort.
The first section below gives general guidelines for writing DE blocks and simulator-polymorphic
blocks that work in DE. The second section explains in detail the priorities, and in particular, how
to write blocks that declares delays. The final section discusses blocks that operate as a Java
thread.

1.2.1 General Guidelines
The points to keep in mind are:

 When a block fires, not all ports have tokens, and some ports may have more than one
token. The time stamps of the events that contained these tokens are no longer explicitly
available. The current model time is assumed to be the time stamp of the events.

 If the block leaves unconsumed tokens on its input ports, then it will be iterated again
before model time is advanced. This ensures that the current model time is in fact the
time stamp of the input events. However, occasionally, a block will want to leave

090515 Page 19 of 364 Simulators-Digital
 Mirabilis Design, Inc.

unconsumed tokens on its input ports, and not be fired again until there is some other
new event to be processed. To get this behavior, it should return false from prefire(). This
indicates to the DE Simulator that it does not wish to be iterated.

 If the block returns false from postfire(), then the Simulator will not fire that block again.
Events that are destined for that block are discarded.

 When a block produces an output token, the time stamp for the output event is taken to
be the current model time. If the block wishes to produce an event at a future model time,
one way to accomplish this is to call the Simulator's fireAt() method to schedule a future
firing, and then to produce the token at that time. A second way to accomplish this is to
use instances of DEIOPort and use the overloaded send() or broadcast() methods that
take a time delay argument.

 If an block contains a callback method or a private thread, and this callback or thread
wishes to produce an event now or at a future model time, then a reliable way to achieve
this is to call either the fireAt-CurrentTime() method or the fireAtRelativeTime() method.
These methods may safely be called asynchronously, yielding real-time liveness. By
contrast, fireAt() must be called from within a standard block method.

 The DEIOPort class can produce events in the future, but there is an important subtlety
with using these methods. Once an event has been produced, it cannot be retracted. In
particular, even if the block which produced the event (or the destination block of the
event) is deleted before model time reaches that of the future event, the event will be
delivered to the destination. If you use fireAt(), fireAtCurrentTime(), or
fireAtRelativeTime() instead to generate delayed events, then if the block is deleted (or
returns false from postfire()) before the future event, then the future event will not be
produced.

 By convention in VisualSim, blocks update their state only in the postfire() method. In DE,
the fire() method is only invoked once per iteration, so there is no particular reason to
stick to this convention.

Nonetheless, Mirabilis Design recommends that this methodology is adopted to make the
custom-block useful in other simulators. The simplest way to ensure this is to follow the following
pattern. For each state variable, such as a private variable named _count,

private int _count;
Create a shadow variable

private int _countShadow;
Then write the methods as follows:

 public void fire() {
_countShadow = _count;
... perform some computation that may modify _countShadow ...
}
public boolean postfire() {
_count = _countShadow;
return super. postfire();
}

This ensures that the state is updated only in postfire().
In a similar fashion, delayed outputs (produced by either mechanism) should be produced only in
the postfire() method, since delayed outputs are persistent states. Thus, fireAt() should be called
in postfire() only, as should the overloaded send() and broadcast() of DEIOPort.

1.2.2 Examples Simplified Delay Block.
An example of a simulator-specific block for DE is shown in Figure 4. This block delays input
events by some amount specified by a parameter. The simulator-specific features of the block are
shown in bold. They are:

 It uses DEIOPort rather than TypedIOPort.

090515 Page 20 of 364 Simulators-Digital
 Mirabilis Design, Inc.

 It has the statement:
input. delayTo(output);

This statement declares to the Simulator that this block implements a delay from input to
output. The block uses this to break the precedence’s when constructing the DAG to find
priorities.

 It uses an overloaded send() method, which takes a delay argument, to produce the
output. Notice that the output is produced in the postfire() method, since by convention in
VisualSim , persistent state is not updated in the fire() method, but rather is updated in
the postfire() method.

Server Block: The Server block in the DE library uses a rich set of behavioral properties of the DE
simulator. A server is a process that takes some amount of time to serve "customers."
While it is serving a customer, other arriving customers have to wait. This block can have a fixed
service time (set via the parameter serviceTime, or a variable service time, provided via the input
port newServiceTime). A typical use would be to supply random numbers to the newServiceTime
port to generate random service times. These times can be provided at the same time as arriving
customers to get an effect where each customer experiences a different, randomly selected
service time.
The compacted code is shown in Figure 5. This block extends DETransformer, which has two
public members, input and output, both instances of DEIOPort. The constructor makes use of the
delayTo() method of these ports to indicate that the block introduces delay between its inputs and
its output.
The block keeps track of the time at which it will next be free in the private variable
_nextTimeFree. This is initialized to minus infinity to indicate that whenever the model begins
executing, the server is free. The prefire() method determines whether the server is free by
comparing this private variable against the current model time. If it is free, then this method
returns true, indicating to the scheduler that it can proceed with firing the block. If the server is not
free, then the prefire() method checks to see whether there is a pending input, and if there is,
requests a firing when the block will become free. It then returns false, indicating to the scheduler
that it does not wish to be fired at this time. Note that the prefire() method uses the methods
getCurrentTime() and fireAt() of DEActor, which are simply convenient interfaces to methods of
the same name in the Simulator.
The fire() method is invoked only if the server is free. It first checks to see whether the
newServiceTime port is connected to anything, and if it is, whether it has a token. If it does, the
token is read and used to update the serviceTime parameter. No more than one token is read,
even if there are more in the input port, in case one token is being provided per pending
customer.
The fire() method then continues by reading an input token, if there is one, and updating
_nextTimeFree. The input token that is read is stored temporarily in the private variable
_currentInput.
The postfire() method then produces this token on the output port, with an appropriate delay. This
is done in the postfire() method rather than the fire() method in keeping with the policy in
VisualSim that persistent state is not updated in the fire() method. Since the output is produced
with a future time stamp, then it is persistent state.
Note that when the block will not get input tokens that are available in the fire() method, it is
essential

package VisualSim.Simulators.de.lib.test;
import VisualSim.actor.TypedAtomicActor;
import VisualSim.Simulators.de.kernel.DEIOPort;
import VisualSim.data.DoubleToken;
import VisualSim.data.Token;
import VisualSim.data.expr.Parameter;
import VisualSim.actor.TypedCompositeActor;
import VisualSim.kernel.util.IllegalActionException;

090515 Page 21 of 364 Simulators-Digital
 Mirabilis Design, Inc.

import VisualSim.kernel.util.NameDuplicationException;
import VisualSim.kernel.util.Workspace;
public class SimpleDelay extends TypedAtomicActor {
public SimpleDelay(TypedCompositeActor container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
input = new DEIOPort(this, "input", true, false);
output = new DEIOPort(this, "output", false, true);
delay = new Parameter(this, "delay", new DoubleToken(1.0));
delay.setTypeEquals(DoubleToken.class);
input.delayTo(output);
}
public Parameter delay;
public DEIOPort input;
public DEIOPort output;
private Token _currentInput;
public void fire() throws IllegalActionException {
_currentInput = input.get(0);
}
public boolean postfire() throws IllegalActionException {
output.send(0, _currentInput,
((DoubleToken) delay.getToken()).doubleValue());
return super.postfire();
}
}

Figure 4 A simulator-specific blocks in DE

package VisualSim.Simulators.de.lib;
import statements ...
public class Server extends DETransformer {
public DEIOPort newServiceTime;
public Parameter serviceTime;
private Token _currentInput;
private double _nextTimeFree = Double.NEGATIVE_ INFINITY;
public Server(TypedCompositeActor container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
serviceTime = new Parameter(this, "serviceTime", new
DoubleToken(1.0));
serviceTime.setTypeEquals(BaseType.DOUBLE);
newServiceTime = new DEIOPort(this, "newServiceTime", true,
false);
newServiceTime.setTypeEquals(BaseType.Double);
output.setTypeAtLeast(input);
input.delayTo(output);
newServiceTime.delayTo(output);
}
...attributeChanged(), clone() methods ...
public void initialize() throws IllegalActionException {
super.initialize();
nextTimeFree = Double.NEGATIVE INFINITY;
}

090515 Page 22 of 364 Simulators-Digital
 Mirabilis Design, Inc.

public boolean prefire() throws IllegalActionException {
DEDirector director = (DEDirector) getDirector(); DEDirector dir
= (DEDirector) getDirector();
if (director.getCurrentTime() >= _nextTimeFree) {
return true;
} else {
// Schedule a firing if there is a pending token so it can be
served.
if (input.hasToken(0)) {
director.fireAt(this,_ nextTimeFree);
}
return false;
}
}
public void fire() throws IllegalActionException {
if (newServiceTime.getWidth() > 0 && newServiceTime.hasToken(0))
{
DoubleToken time = (DoubleToken)(newServiceTime.get(0));
serviceTime.setToken(time);
}
if (input.getWidth()>0 && input.hasToken(0)) {
_currentInput = input.get(0);
double delay = ((DoubleToken)
serviceTime.getToken()).doubleValue();
_nextTimeFree = ((DEDirector) getDirector()).getCurrentTime() +
delay;
} else {
_currentInput = null;
}
}
public boolean postfire() throws IllegalActionException {
if (_ currentInput != null) {
double delay = ((DoubleToken)
serviceTime.getToken()).doubleValue();
output.send(0, _currentInput, delay);
}
return super.postfire();
}
}

Figure 5 Code for the Server block
that prefire() return false. Otherwise, the DE scheduler will keep firing the block until the inputs
are all consumed, which will never happen if the block is not consuming inputs!
Like the SimpleDelay block in Figure 4, this one produces outputs with future time stamps, using
the overloaded send() method of DEIOPort that takes a delay argument. There is a subtlety
associated with this design. If the model mutates during execution, and the Server block is
deleted, it cannot retract events that it has already sent to the output. Those events will be seen
by the destination block, even if by that time neither the server nor the destinations are in the
topology! This could lead to some unexpected results, but hopefully, if the destination block is no
longer connected to anything, then it will not do much with the token.

1.2.3 Thread Blocks
In some cases, it is useful to describe a block as a thread that waits for input tokens on its input
ports. The thread suspends while waiting for input tokens and is resumed when some or all of its
input ports have input tokens. While this description is functionally equivalent to the standard

090515 Page 23 of 364 Simulators-Digital
 Mirabilis Design, Inc.

description explained above, it leverages on the Java multi-threading infrastructure to save the
state information.
Consider the code for the ABRecognizer block shown in Figure 6. The two code listings
implement two blocks with equivalent behavior. The left one implements it as a threaded block,
while the right one implements it as a standard block. We will from now on refer to the left one as
the threaded description and the right one as the standard description. In both descriptions, the
block has two input ports, inportA and inportB, and one output port, outport. The
behavior is as follows. Produce an output event at outport as soon as events at inportA and
inportB occur in that particular order, and repeat this behavior.
Note that the standard description needs a state variable state, unlike the case in the threaded
description. In general the threaded description encodes the state information in the position of
the code, while the standard description encodes it explicitly using state variables. While it is true
that the

Figure 6 Code listings for two style of writing the ABRecognizer block
context switching overhead associated with multi-threading application reduces the performance,
we argue that the simplicity and clarity of writing blocks in the threaded fashion is well worth the
cost in some applications.
To write a block in the threaded fashion, one simply derives from the DEThreadActor class and
implements the run() method. In many cases, the content of the run() method is enclosed in the
infinite 'while(true)' loop since many useful threaded blocks do not terminate.
The waitForNewInputs() method is overloaded and has two flavors, one that takes no arguments
and another that takes an IOPort array as argument. The first suspends the thread until there is at
least one input token in at least one of the input ports, while the second suspends until there is at
least one input token in any one of the specified input ports, ignoring all other tokens.
In the current implementation, both versions of waitForNewInputs() clear all input ports before the
thread suspends. This guarantees that when the thread resumes, all tokens available are new, in
the sense that they were not available before the waitForNewInput() method call. The
implementation also guarantees that between calls to the waitForNewInputs() method, the rest of
the DE model is suspended. This is equivalent to saying that the section of code between calls to
the waitForNewInput() method is a critical section. One immediate implication is that the result of
the method calls that check the configuration of the model (e.g. hasToken() to check the receiver)
will not be invalidated during execution in the critical section. It also means that this should not be
viewed as a way to get parallel execution in DE.

090515 Page 24 of 364 Simulators-Digital
 Mirabilis Design, Inc.

It is important to note that the implementation serializes the execution of threads, meaning that at
any given time there is only one thread running. When a threaded block is running (i.e. executing
inside its run() method), all other threaded blocks and the Simulator are suspended. It will keep
running until a waitForNewInputs() statement is reached, where the flow of execution will be
transferred back to the
Simulator. Note that the Simulator thread executes all non-threaded blocks. This serialization is
needed because the DE simulator has a notion of global time, which makes parallelism much
more difficult to achieve.
The serialization is accomplished by the use of monitor in the DEThreadActor class. Basically, the
fire() method of the DEThreadActor class suspends the calling thread (i.e. the Simulator thread)
until the threaded block suspends itself (by calling waitForNewInputs()). One key point of this
implementation is that the threaded blocks appear just like an ordinary DE block to the DE
Simulator. The DEThreadActor base class encapsulates the threaded execution and provides the
regular interfaces to the DE Simulator. Therefore the threaded description can be used whenever
an ordinary block can, which is everywhere.
The code in Figure 7 implements the run method of a slightly more elaborate block with the
following behavior:
Emit an output O as soon as two inputs A and B have occurred. Reset this behavior each time
the input R occurs.
The DE Simulator supports parallel execution in the form of blocks containing private threads and
callbacks.

1.3 Composing DE with Other Simulators

One of the major concepts in VisualSim is modeling heterogeneous systems through the use of
hierarchical heterogeneity. Blocks on the same level of hierarchy obey the same set of semantics
rules. Inside some of these blocks may be another simulator with a different model of
computation. This mechanism is supported through the use of opaque composite blocks. An
example is shown in Figure 8.
The outermost simulator is DE and it contains seven blocks, two of them are opaque and
composite. The opaque composite blocks contain subsystems, which in this case are in the DE
and CT Simulators.

1.3.1 DE inside another Simulator
The DE subsystem completes one iteration whenever the opaque composite block is fired by the

090515 Page 25 of 364 Simulators-Digital
 Mirabilis Design, Inc.

Figure 7 The run() method of the ABRO block

outer simulator. One of the complications in mixing Simulators is in the synchronization of time.
Denote the current time of the DE subsystem by tinner and the current time of the outer simulator
by touter. An iteration of the DE subsystem is similar to an iteration of a top-level DE model, except
that prior to the iteration tokens are transferred from the ports of the opaque composite blocks
into the ports of the contained DE subsystem, and after the end of the iteration, the Simulator
requests a refire at the smallest time stamp in the event queue of the DE subsystem. This
presumes that the DE subsystem knows at what time stamp, it or one of its contained blocks, will
wish to be refired. Currently the DE simulator can handle such asynchronous events only if it is
not inside another simulator.
The transfer of tokens from the ports of the opaque composite block into the ports of the
contained DE subsystem blocks is done in the transferInputs() method of the DE Simulator. This
method is extended from its default implementation in the Director class. The implementation in
the DESimulator class advances the current time of the DE subsystem to the current time of the
outer simulator, then calls
super. transferInputs(). It is done in order to correctly associate tokens seen at the input ports of
the opaque composite block with events at the current time of the outer simulator, touter, and put
these events into the global event queue. This mechanism is, in fact, how the DE subsystem
synchronize its current time, t inner , with the current time of the outer simulator, touter.(Recall that

090515 Page 26 of 364 Simulators-Digital
 Mirabilis Design, Inc.

the DE Simulator advances time by looking at the smallest time stamp in the event queue of the
DE subsystem). Specifically, before the advancement of the current time of the DE subsystem
tinner is less than or equal to the touter, and after the advancement t inner is equal to the touter.
Requesting a refiring is done in the postfire() method of the (inner) DE Simulator by calling the
fireAt() method of the executive (outer) Simulator. Its purpose is to ensure that events in the DE
sub-

Figure 8 An example of heterogeneous and hierarchical composition. The CT subsystem
and DE subsystem are inside an outermost DE system.
system are processed on time with respect to the current time of the outer simulator, touter.
Note that if the DE subsystem is fired due to the outer simulator processing a refire request, then
there may not be any tokens in the input port of the opaque composite block at the beginning of
the DE subsystem iteration. In that case, no new events with time stamps equal to touter will be put
into the global event queue. Interestingly, in this case, the time synchronization will still work
because tinner will be advanced to the smallest time stamp in the global event queue which, in turn,
has to equal touter because we always request a refire according to that time stamp.

1.3.2 Another Simulator inside DE
Due to its nature, any opaque composite block inside DE is opaque and therefore, as far as the
DE Simulator is concerned, behaves exactly like a simulator polymorphic block. Recall that
simulator polymorphic blocks are treated as functions with zero delay in computation time. To
produce events in the future, simulator polymorphic blocks request a refire from the DE Simulator
and then produce the events when it is refired.

090515 Page 27 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

2 CT Simulator
2.1 Introduction

The continuous-time (CT) simulator in VisualSim aims to help the design and simulation of
systems that can be modeled using ordinary differential equations (ODEs). ODEs are often used
to model analog circuits, plant dynamics in control systems, lumped-parameter mechanical
systems, lumped-parameter heat flows and many other physical systems.
Let's start with an example. Consider a second order differential system,

The equations could be a model for an analog circuit as shown in Figure 9 (a), where z is the
voltage

Figure 9 Possible implementations of the system equations.

of node 3, and

Or it could be a lumped-parameter spring-mass mechanical model for the system shown in Figure
9(b), where z is the position of the mass, m is the mass, k is the spring constant, b is the damping
parameter, and c = 1.
In general, an ODE-based continuous-time system has the following form:

090515 Page 28 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

where, a real number, is continuous time. At any time t, , an n-
tuple of real numbers, is the state of the system; is the m-dimensional input of the

system; is the l-dimensional output of the system; is the derivative of with
respect to time , i.e.

Equations (3), (4) and (5) are called the system dynamics, the output map, and the initial
condition of the system, respectively. For example, in the mechanical system above, if we define
a vector

then system (1) can be written in form of (3)-(5), like

The solution, x(t), of the set of the ODE (3)-(5) is a continuous function of time, also called a
wave-form, which satisfies the equation (3) and initial condition of (5). The output of the system is
then defined as a function of x(t) and u(t), which satisfies (4). The precise solution of a set of
ODEs is usually impossible to be found using digital computers. Numerical solutions are
approximations of the precise solution. A numerical solution of ODEs is usually done by
integrating the right-hand side of (3) on a discrete set of time points. Using digital computers to
simulate continuous-time systems has been studied for more than three decades. One of the
most well-known tools is Spice. The CT simulator differs from Spice-like continuous-time
simulators in two ways — the system specification is somewhat different, and it is designed to
interact with other models of computation.

2.1.1 System Specification
There are usually two ways to specify a continuous-time system, the conservation-law model and
the signal-flow model. The conservation-law models, like the nodal analysis in circuit simulation
and bond graphs in mechanical models, define systems by their physical components, which
specify relations of cross and through variables, and conservation laws are used to compile the
component relations into global system equations. For example, in circuit simulation, the cross
variables are voltages, the through variables are currents, and the conservation laws are
Kirchhoff's laws. This model directly reflects the physical components of a system, thus is easy to
construct from a potential implementation. The actual mathematical representation of the system
is hidden. In signal-flow models, entities in a system are maps that define the mathematical
relation between their input and output signals. Entities communicate by passing signals. This

090515 Page 29 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

kind of models directly reflects the mathematical relations among signals, and is more convenient
for specifying systems that do not have an explicit physical implementation yet.
In the CT simulator of VisualSim, the signal-flow model is chosen as the interaction semantics.
The conservation-law semantics may be used within an entity to define its I/O relation. There are
four major reasons for this decision:

1. The signal-flow model is more abstract. VisualSim focuses on system-level design and
behavior simulation. It is usually the case that, at this stage of a design, users are
working with abstract mathematical models of a system, and the implementation details
are unknown or not cared about.

2. The signal flow model is more flexible and extensible, in the sense that it is easy to
embed components that are designed using other models. For example, a discrete
controller can be modeled as a component that internally follows a discrete event model
of computation but exposes a continuous-time interface.

3. The signal flow model is consistent with other models of computation in VisualSim. Most
models of computation in VisualSim use message-passing as the interaction semantics.
Choosing the signal-flow model for CT makes it consistent with other simulators, so the
interaction of heterogeneous systems is easy to study and implement. This also allows
simulator polymorphic blocks to be used in the CT simulator.

4. The signal flow model is compatible with the conservation law model. For physical
systems that are based on conservation laws, it is usually possible to wrap them into an
entity in the signal flow model. The inputs of the entity are the excitations, like the current
on ideal current sources, and the outputs are the variables that the rest of the system
may be interested in.

The signal flow block diagram of the system (3)-(5) is shown in Figure 10. The system dynamics
(3) is built using integrators with feedback. In this Figure, u, , x, and y, are continuous signals
flowing from one block to the next. Notice that this diagram is only conceptual, most models may
involve multiple integrators1. Time is shared by all components, so it is not considered as an
input. At any fixed time t, if the "snapshot" values x(t) and u(t) are given, then and y(t) can be
found by evaluating f and g, which can be achieved by firing the respective blocks. The
"snapshot" of all the signals at t called the behavior of the system at time.
The signal-flow model for the example system (1) is shown in Figure 11. For comparison
purpose, the conservation-law model (modified nodal analysis) of the system shown in Figure
9(a) is shown in (9).

By doing some math, we can see that (9) and (8) are in fact equivalent. Equation (9) can be
easily assembled from the circuit, but it is more complicated than (8). Notice that in (9) is the
derivative operator, which is replaced by an integration algorithm at each time step, and the
system equations reduce to a set of algebraic equations. Spice software is known to have a very
good simulation engine for models in form of (9).

1 VisualSim does not support vectorization in the CT simulator yet.

090515 Page 30 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

Figure 10 A conceptual block diagram for continuous time systems.

Figure 11 The block diagram for the example system.

2.1.2 Time
One distinct characterization of the CT model is the continuity of time. This implies that a
continuous-time system have a behavior at any time instance. The simulation engine of the CT
model should be able to compute the behavior of the system at any time point, although it may
march discretely in time. In order to achieve an accurate simulation, time should be carefully
discretized. The discretization of time, which appears as integration step sizes, may be
determined by time points of interest (e. g. discontinuities), by the numerical error of integration,
and by the convergence in solving algebraic equations. Time is also global, which means that all
components in the system share the same notion of time.

2.2 Solving ODEs numerically

We outline some basic terminologies on numerical ODE solving techniques that are used in this
chapter. This is not a summary of numerical ODE solving theory. For a detailed treatment for
ODEs and their numerical solutions, please refer to books on numerical solutions for ODEs. Not
all ODEs have a solution, and some ODEs have more than one solution. In such situations, we
say that the solution is not well defined. This is usually a result of errors in the system modeling.
We restrict our discussion to systems that have unique solutions. Theorem 1 in Appendix A states
the conditions for the existence and uniqueness of solutions of ODEs. Roughly speaking, we
denote by D a set in which contains at most a finite number of points per unit interval, and let
u be piecewise-continuous on . Then, for any fixed u(t), if f is also piecewise-continuous
on , and f satisfies the Lipschitz condition, then the ODE (3) with the initial condition (5)
has a unique solution. The solution is called the state trajectory of the system. The key to
simulating a continuous-time system numerically is to find an accurate numerical approximation
of the state trajectory.

090515 Page 31 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

2.2.1 Basic Notations

Usually, only the solution on a finite time interval is needed. A simulation of the system is
performed on discrete time points in this interval. We denote by

where

the set of the discrete time points of interest. To explicitly illustrate the discretization of time and
the difference between the precise solution and the numerical solution, we use the following
notation in the rest of the chapter:

 tn: he n-th time point, to explicitly show the discretization of time. However, t is specified,
if the index n is not important.

 X[ti, tj]:the precise (continuous) state trajectory from time ti to tj;
 X(tn) he precise solution of (3) at time tn;

 : the numerical solution of (3) at time tn;
 hn=tn-tn-1: step size of numerical integration. We also write h if the index n in the sequence

is not important. For accuracy reason, h may not be uniform.

 : the 2-normed difference between the precise solution and the
numerical solution at step n is called the (global) error at step n; the difference, when we

assume are precise, is called the local error at step n. Local errors are
usually easy to estimate and the estimation can be used for controlling the accuracy of
numerical solutions.

A general way of numerically simulating a continuous-time system is to compute the state and the
output of the system in an increasing order of tn. Such algorithms are called the time-marching
algorithms, and, we only consider these algorithms. There are variety of time marching algorithms

that differ on how is computed given . The choice of algorithms is application
dependent, and usually reflects the speed, accuracy, and numerical stability trade-offs.

2.2.2 Fixed-Point Behavior
Numerical ODE solving algorithms approximate the derivative operator in (3) using the history
and the current knowledge on the state trajectory. That is, at time tn, the derivative of x is

approximated by a function of , i.e.

Plugging (3) in this, we get

Depending on whether explicitly appears in (13), the algorithms are called explicit integration
algorithms or implicit integration algorithms. That is, we end up solving a set of algebraic
equations in one of the two forms:

or,

where FE and FI are derived from the time tn, the input u(tn), the function f, and the history of x and

. Solving (14) or (15) at a particular time is called an iteration of the CT simulation at tn.

090515 Page 32 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

Equation (14) can be solved simply by a function evaluation and an assignment. But the solution
of (15) is the fixed point of FI, which may not exist, may not be unique, or may not be able to be
found. The contraction mapping theorem [13] shows the existence and uniqueness of the fixed-
point solution, and provides one way to find it. Given the map FI that is a local contraction map
(generally true for small enough step sizes) and let an initial guess σo be in the contraction radius,
then a unique fixed point exists and can be found by iteratively computing:

Solving both (14) and (15) should be thought of as finding the fixed-point behavior of the system
at a particular time. This means both functions FE and FI should be smooth w. r. t. time, during a
single iteration of the simulation. This further implies that the topology of the system, all the
parameters, and all the internal states that the firing functions depend on should be kept
unchanged. We require that simulator polymorphic blocks to update internal states only in the
postfire()method exactly for this reason.

2.2.3 ODE Solvers Implemented
The following solvers have been implemented in the CT simulator.
1. Forward Euler solver:

2. Backward Euler solver:

3. 2(3)-order Explicit Runge-Kutta solver

with error control:

if |LTE| < ErrorTolerance, , otherwise, fail. If this step is successful, the next
integration step size is predicted by:

4. Trapezoidal Rule solver:

Among these solvers, 1) and 3) are explicit; 2) and 4) are implicit. Also, 1) and 2) do not perform

090515 Page 33 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

step size control, so are called fixed-step-size solvers; 3) and 4) change step sizes according to
error estimation, so are called variable-step-size solvers. Variable-step-size solvers adapt the
step sizes according to changes of the system flow, thus are "smarter" than fixed-step-size
solvers.
The existence and uniqueness of the solution of an ODE (Theorem 1 in Appendix A) allows the
right-hand side of (3) to be discontinuous at a countable number of discrete points D, which are
called the breakpoints (also called the discontinuous points in some literature). These breakpoints
may be caused by the discontinuity of input signal u, or by the intrinsic flow of f. In theory, the
solutions at these points are not well defined. But the left and right limits are. So, instead of
solving the ODE at those points, we would actually try to find the left and right limits.
One impact of breakpoints on ODE solvers is that history solutions are useless when
approximating the derivative of x after the breakpoints. The solver should resolve the new initial
conditions and start the solving process as if it is at a starting point. So, the discretization of time
should step exactly on breakpoints for the left limit, and start at the breakpoint again after finding
the right limit. A breakpoint may be known beforehand, in which case it is called a predictable
breakpoint. For example, a square wave source block knows its next flip time. This information
can be used to control the discretization of time. A breakpoint can also be unpredictable, which
means it is unknown until the time it occurs. For example, a block that varies its functionality
when the input signal crosses a threshold can only report a "missed" breakpoint after an
integration step is finished. How to handle break-points correctly is a big challenge for integrating
continuous-time models with discrete models like DE and FSM.

2.2.4 Breakpoint ODE Solvers
Breakpoints in the CT simulator are handled by adjusting integration steps. We use a table to
handle predictable breakpoints, and use the step size control mechanism to handle unpredictable
breakpoints. Since the history information is useless at breakpoints, special ODE solvers are
designed to restart the numerical integration process. In particular, we have implemented the
following breakpoint ODE solvers.

1. DerivativeResolver: It calculates the derivative of the current state, i.e. . This is
simply done by evaluation the right-hand side of (3). At breakpoints, this solver is used for
the first step to generate history information for explicit methods or one step methods.

2. ImpulseBESolver:

The two time points and have the same time value. This solver is used for breakpoints at
which a Dirac impulse signal appears.

Notice that none of these solvers advance time. They can only be used at breakpoints.

2.3 Signal Types

The CT simulator of VisualSim supports continuous time mixed-signal modeling. As a
consequence, there could be two types of signals in a CT model: continuous signals and discrete
events. Note that for both types of signals, time is continuous. These two types of signals directly
affect the behavior of a receiver that contains them. A continuous CTReceiver contains a sample
of a continuous signal at the current time. Reading a token from that receiver will not consume
the token. A discrete CTReceiver may or may not contain a discrete event. Reading from a

090515 Page 34 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

discrete CTReceiver with an event will consume the event, so that events are processed exactly
once2. Reading from an empty discrete CTReceiver is not allowed.
Note that some blocks can be used to compute on both continuous and discrete signals. For
example, an adder can add two continuous signals, as well as two sets of discrete events.
Whether a particular link among blocks is continuous or discrete is resolved by a signal type
system. The signal type system understands signal types on specific blocks (indicated by the
interfaces they implement or the parameters specified on their ports), and try to resolve signal
types on the ports of simulator polymorphic blocks.
The signal type system in the CT simulator works on a simple lattice of signal types, shown in
Figure 12. A type lower in the lattice is more specific than a type higher in the lattice. A CT model
is well-defined and executable, if and only if all ports are resolved to either CONTINUOUS or
DISCRETE. Some blocks have their signal types fixed. For example, an Integrator has a
CONTINUOUS input and a CONTINUOUS output; a PeriodicSampler has a CONTINUOUS
input and a DISCRETE output; a TriggeredSampler has one CONTINUOUS input (the input),
one DISCRETE
input (the trigger), and a DISCRETE output; and a ZeroOrderHold has a DISCRETE input and
a CONTINUOUS output. For simulator polymorphic blocks that implement the SequenceActor
interface, i.e. they operate solely on sequences of tokens, their inputs and outputs are treated as
DISCRETE. For other simulator polymorphic blocks that can operate on both continuous and
discrete signals, the signal type on their ports are initially UNRESOLVED. The signal type system
will resolve and check signal types of ports according to the following two rules:
♦ If a port p is connected to another port q with a more specific type, then the type of p is

resolved to that of the port q. If p is CONTINUOUS but q is DISCRETE, then both of them are
resolved to NOT-A-TYPE.

Figure 12 A signal type lattices

2 This distinction of receivers is also called state and event semantics in some literatures

090515 Page 35 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

♦ Unless otherwise specified, the types of the input ports and output ports of a block are the
same.

At the end of the signal-type resolution, if any port is of type UNRESOLVED or NOT-A-TYPE,
then the topology of the system is illegal, and the execution is denied. The signal type of a port
can also be forced by adding an parameter "signalType" to the port.
The signal type system will recognize this parameter and resolve other types accordingly. To add
this parameter, right click on the port, select Configure, add a parameter with the name
signalType and the value of a string of either "CONTINUOUS" or "DISCRETE", noting the
quotation marks.
Signal types may be trickier at the boundaries of composite blocks than within a CT model.
Because of the information hiding, it may not be obvious which port of another level of hierarchy
is continuous and which port is discrete. In the CT simulator, we follow these rules to resolve
signal types for composite ports:
♦ A TypedCompositeActor within a CT model is always treated as entirely discrete. Within

a CT model, for any opaque composite block that may contain continuous dynamics at a
deeper level, use the CTCompositeActor (listed in the block library as "continuous time
composite block" in Control list) or the modal model composite block.

♦ For a CTCompositeActor or a modal model within a CT model, all its ports are treated as
continuous by default. To allow a discrete event going through the composite block boundary,
manually set the signal type of that port by adding the signalType parameter.

♦ For a TypedCompositeActor containing a CT model, all the ports of the
TypedCompositeActor are treated as discrete, and the CT Simulator to use is the
CTMixedSignalSimulator (listed as CTSimulator in the simulators library).

♦ For a CTCompositeActor or a modal model containing a CT model, all the signal types of
the ports of the container are treated as continuous, and can be set by adding the signalType
parameter. The CTSimulator to use in this situation is the CTEmbeddedSimulator.

2.4 CT Blocks

A CT system can be built up using blocks in the VisualSim Control library list and simulator
polymorphic blocks that have continuous behaviors (i.e. all blocks that do not implement the
SequenceActor interface). The key block in CT is the integrator. It serves the unique role of wiring
up ODEs. Other blocks in a CT system are usually stateless. A general understanding is that, in a
pure continuous-time model, all the information — the state of the system— is stored in the
integrators.

2.4.1 CT Block Interfaces
In order to schedule the execution of blocks in a CT model and to support the interaction between
CT and other Simulators (which are usually discrete), we provide the following interfaces:
♦ CTDynamicActor. Dynamic blocks are blocks that contains continuous dynamics in their I/ O

path. An integrator is a dynamic block, and so are all blocks that have integration relations
from their inputs to their outputs.

♦ CTEventGenerator. Event generators are blocks that convert continuous time input signals to
discrete output signals.

♦ CTStatefulActor. Stateful blocks are blocks that have internal states. The reason to classify
this kind of block is to support rollback, which may happen when a CT model is embedded in
a discrete event model.

♦ CTStepSizeControlActor. Step size control blocks influence the integration step size by telling
the Simulator whether the current step is accurate. The accuracy is in the sense of both
tolerable numerical errors and absence of unpredictable breakpoints. It may also provide

090515 Page 36 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

information about refining a step size for an inaccurate step and suggesting the next step size
for an accurate step.

♦ CTWaveformGenerator. Waveform generators are blocks that convert discrete input signals
to continuous-time output signals.

Strictly speaking, event generators and waveform generators do not belong to any simulator, but
the CT simulator is design to handle them intrinsically. When building systems, CT parts can
always provide discrete interface to other Simulators.
Neither a loop of dynamic blocks nor a loop of non-dynamic blocks is allowed in a CT model.
They introduce problems about the order that blocks be executed. A loop of dynamic blocks can
be easily broken by a Scale block with scale 1. A loop of non-dynamic blocks builds an algebraic
equation.

2.5 CT Simulators

There are three CT Simulators CTMultiSolverDirector, CTMixedSignalDirector, and
CTEmbeddedDirector. The first one can only serve as a top-level Simulator, a
CTMixedSignalDirector can be used both at the top-level and inside a composite block, and a
CTEmbeddedDirector can only be contained in a CTCompositeActor. In terms of mixing models
of computation, all the Simulators can execute composite blocks that implement other models of
computation, as long as the composite blocks are properly connected. Only
CTMixedSignalDirector and CTEmbeddedDirector can be contained
by other Simulators. The outside simulator of a composite block with CTMixedSignalDirector can
be the Discrete-Event simulator. The outside simulator of a composite block with
CTEmbeddedDirector must also be CT or FSM, if the outside simulator of the FSM model is CT.

2.5.1 ODE Solvers
 There are six ODE solvers implemented in the Continuous package. Some of them are specific
for handling breakpoints. These solvers are ForwardEulerSolver, BackwardEulerSolver,
ExplicitRK23Solver, TrapezoidalRuleSolver, DerivativeResolver, and ImpulseBESolver. They
implement the ODE solving algorithms in the ODE Solver section.

2.5.2 CT Simulator Parameters
The CTSimulator base class maintains a set of parameters which controls the execution. These
parameters, shared by all CT Simulators, are listed in Table 1. Individual Simulators may have
their own (additional) parameters, which will be discussed in the appropriate sections.

090515 Page 37 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

Table 1 CTSimulator Parameters

2.5.3 CTMultiSolverDirector
A CTMultiSolverDirector has two ODE solvers — one for ordinary use and one specifically for
breakpoints. Thus, besides the parameters in the CTSimulator base class; this class adds two
more parameters as shown in Table 2.

Table 2 Additional Parameters for CTMultiSolverDirector

A CTMultiSolverDirector can direct a model that has composite blocks implementing other
models of computation. Simulation iteration is done in two phases: the continuous phase and the
discrete phase. Let the current iteration be n. In the continuous phase, the differential equations
are integrated from time tn-1 to tn. After that, in the discrete phase, all (discrete) events which

090515 Page 38 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

happen at are processed.
The step size control mechanism will assure that no events will happen between tn-1 and tn.

2.5.4 CTMixedSignalDirector
This simulator is designed to contain CT in an event-based system, like DE. When a CT
subsystem is contained in the DE simulator, the CT subsystem should run ahead of the global
time, and be ready for rollback. This Simulator implements this optimistic execution.
Since the outside simulator is event-based, each time the embedded CT subsystem is fired, the
input data are events. In order to convert the events to continuous signals, breakpoints have to be
introduced. So this Simulator extends CTMultiSolverDirector, which always has two ODE solvers.
There is one more parameter used by this Simulator — the runAheadLength, as shown in Table
3.

Table 3 Additional Parameter for CTMixedSignalDirector
When the CT subsystem is fired, the CTMixedSignalDirector will get the current time and the next
iteration time from the outer simulator, and take the min as the fire end time, where l is
the value of the parameter maxRunAheadLength. The execution lasts as long as the fire end time
is not reached or an output event is not detected.
This Simulator supports rollback; that is when the state of the continuous subsystem is confirmed
(by knowing that no events with a time earlier than the CT current time will be present), the state
of the system is marked. If an optimistic execution is known to be wrong, the state of the CT
subsystem will roll back to the latest marked state.

2.5.5 CTEmbeddedSimulator
This Simulator is used when a CT subsystem is embedded in another continuous time system,
either directly or through a hierarchy of finite state machines, like in the hybrid system scenario.
This Simulator can pass step size control information up to its executive Simulator. To achieve
this, the Simulator must be contained in a CTCompositeActor, which implements the
CTStepSizeControlActor interface and can pass the step size control information from the inner
simulator to the outer simulator.
This Simulator extends CTMultiSolverDirector, with no additional parameters. A major difference
between this Simulator and the CTMixedSignalDirector is that this Simulator does not support
rollback. In fact, when a CT subsystem is embedded in a continuous-time environment, rollback is
not necessary.

2.6 Interacting with Other Simulators

The CT simulator can interact with other Simulators in VisualSim. In particular, we consider
interaction among the CT simulator, the discrete event (DE) simulator and the finite state machine
(FSM) simulator. Following circuit design communities, we call a composition of CT and DE a
mixed-signal model; following control and computation communities, we call a composition of CT
and FSM a hybrid system model.
There are two ways to put CT and DE models together, depending on the containment relation. In
either case, event generators and waveform generators are used to convert the two types of
signals. Figure 14 shows a DE component wrapped by an event generator and a waveform
generator. From the input/ output point of view, it is a continuous time component. Figure 15
shows a CT subsystem wrapped by a waveform generator and an event generator. From the
input/ output point of view, it is a discrete event component. Notice that event generators and

090515 Page 39 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

waveform generators always stay in the CT
simulator.
A hierarchical composition of FSM and CT is shown in Figure 13. A CT component, by adopting
the event generation technique, can have both continuous and discrete signals as its output. The
FSM can use predicates on these signals, as well as its own

Figure 13 Hybrid system modeling

Figure 14 Embedding a DE component in a CT system

Figure 15 Embedding a CT component in a DE system
input signals, to build trigger conditions. The actions associated with transitions are usually
setting parameters in the destination state, including the initial conditions of integrators.

2.7 Mixed-Signal Execution

DE inside CT.
Since time advances monotonically in CT and events are generated chronologically, the DE
component receives input events monotonically in time. In addition, a composition of causal DE
components is causal, so the time stamps of the output events from a DE component are always
greater than or equal to the global time. From the view point of the CT system, the events
produced by a DE component are predictable breakpoints.
Note that in the CT model, finding the numerical solution of the ODE at a particular time is

090515 Page 40 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

semantically an instantaneous behavior. During this process, the behavior of all components,
including those implemented in a DE model, should keep unchanged. This implies that the DE
components should not be executed during one integration step of CT, but only between two
successive CT integration steps.
CT inside DE.
When a CT component is contained in a DE system, the CT component is required to be causal,
like all other components in the DE system. Let the CT component have local time t, when it
receives an input event with time stamp τ. Since time is continuous in the CT model, it will
execute from its local time t, and may generate events at any time greater or equal to t. Thus we
need
t≥τ (29)
to ensure causality. This means that the local time of the CT component should always be greater
than or equal to the global time whenever it is executed.
This ahead-of-time execution implies that the CT component should be able to remember its past
states and be ready to rollback if the input event time is smaller than its current local time. The
state it needs to remember is the state of the component after it has processed an input event.
Consequently, the CT component should not emit detected events to the outside DE system
before the global time reaches the event time. Instead, it should send a pure event to the DE
system at the event time, and wait until it is safe to emit it.

2.7.1 Hybrid System Execution
Although FSM is an untimed model, its composition with a timed model requires it to transfer the
notion of time from its external model to its internal model. During continuous evolution, the
system is simulated as a CT system where the FSM is replaced by the continuous component
refining the current FSM state. After each time point of CT simulation, the triggers on the
transitions starting from the current FSM state are evaluated. If a trigger is enabled, the FSM
makes the corresponding transition. The continuous dynamics of the destination state is initialized
by the actions on the transition. The simulation continues with the transition time treated as a
breakpoint.

090515 Page 41 of 364 Simulators-Continuous Time
 Mirabilis Design, Inc.

2.8 Appendix F: Brief Mathematical Background

Theorem 1 [Existence and uniqueness of the solution of an ODE] Consider the initial value
ODE problem

If f satisfies the conditions:
♦ [Continuity Condition] Let D be the set of possible discontinuity points; it may be empty. For

each fixed and , the function in (30) is continuous. And , the left-
hand and right-hand limit and are finite.

♦ [Lipschitz Condition] There is a piecewise continuous bounded function , where
 is the set of non-negative real numbers, such that

Then, for each initial condition there exists a unique continuous function

 such that,

and

This function is called the solution through (t0,x0) of the ODE (30).

Theorem 2. [Contraction Mapping Theorem.] If is a local contraction map at x with
contraction radius ε, then there exists a unique fixed point of F within the ball ε centered at x.

I. e. there exists a unique , such that .
And , the sequence

converges to σ.

090515 Page 42 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

3 Untimed Digital or Synchronous Data Flow Simulator
3.1 Purpose of the Simulator

The synchronous dataflow (SDF) simulator is useful for modeling simple dataflow systems
without complicated flow of control, such as signal processing systems. Under the SDF simulator,
the execution order of blocks is statically determined prior to execution. This results in execution
with minimal over-head, as well as bounded memory usage and a guarantee that deadlock will
never occur. This simulator is specialized, and may not always be suitable.

3.2 Using SDF

There are four main issues that must be addressed when using the SDF simulator:
♦ Deadlock
♦ Consistency of data rates
♦ The value of the iterations parameter
♦ The granularity of execution
This section will present a short description of these issues. For a more complete description, see
section on “Properties of SDF Simulator”.

3.2.1 Deadlock
Consider the SDF model shown in Figure 16. This block has a feedback loop from the output of
the AddSubtract block back to its own input. Attempting to run the model results in the exception
shown at the right in the Figure. The Simulator is unable to schedule the model because the input
of the AddSubtract block depends on data from its own output. In general, feedback loops can
result in such conditions.
The fix for such deadlock conditions is to use the SampleDelay block, shown highlighted in Figure
17. This block injects into the feedback loop an initial token, the value of which is given by the
initial Outputs parameter of the block. In the Figure, this parameter has the value {0}. This is an
array with a single token, an integer with value 0. A double delay with initial values 0 and 1 can be
specified using a two element array, such as {0, 1}.
It is important to note that it is occasionally necessary to add a delay that is not in a feedback loop
to match the delay of an in input with the delay around a feedback loop. It can sometimes be
tricky to see exactly where such delays should be placed without fully considering the flow of the
initial tokens described above.

Figure 16 An SDF model that deadlocks

090515 Page 43 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 17 The model of Figure 17. 1 corrected with an instance of SampleDelay in the
feedback loop

3.2.2 Consistency of data rates
Consider the SDF model shown in Figure 18. The model is attempting to plot a sinewave and its
downsampled counterpart. However, there is an error because the number of tokens on each
channel of the input port of the plotter can never be made the same. The DownSample block
declares that it consumes 2 tokens using the tokenConsumptionRate parameter of its input port.
Its output port similarly declares that it produces only one token, so there will only be half as
many tokens being plotted from the DownSample block as from the Sinewave.
The fixed model is shown in Figure 19, which uses two separate plotters. When the model is
executed, the plotter on the bottom will fire twice as often as the plotter on the top, since must
consume twice as many tokens. Notice that the problem appears because one of the blocks (in
this case, the DownSample block) produces or consumes more than one token on one of its
ports. One easy way to
ensure rate consistency is to use blocks that only produce and consume one token at a time. This
special case is known as homogeneous SDF. Note that blocks like the Sequence plotter which do
not specify
rate parameters are assumed to be homogeneous. For more specific information about the rate
parameters and how they are used for scheduling, see Properties of the SDF Simulator-
Scheduling.

090515 Page 44 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 18 An SDF model with inconsistent rates.

Figure 19 Figure 18 modified to have consistent rates.

3.2.3 How many iterations?
Another issue when using the SDF simulator concerns the value of the iterations parameter of the
SDF Simulator. In homogeneous models one token is usually produced for every iteration.
However, when token rates other than one are used, more than one interesting output value may
be created for each iteration. For example, consider Figure 20 which contains a model that plots
the Fast Fourier Transform of the input signal. The important point to realize about this model is
that the FFT block declares that it consumes 256 tokens from its input port and produces 256
tokens from its output port, corresponding to an order 8 FFT. This means that only one iteration is
required to produce all 256 values of the FFT. Contrast this with the model in Figure 21. This
model plots the individual values of the signal. Here 256 iterations are necessary to see the entire
input signal, since only one output value is plotted in each iteration.

3.2.4 Granularity
The granularity of execution of an SDF model is determined by the schedule as produced. As
mentioned in the previous section, this schedule may involve a small or large number of firings of
each block, depending on the data rates of the blocks. Generally, the smallest possible valid
schedule, corresponding to the smallest granularity of execution, is the most interesting.

090515 Page 45 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

However, there some instances when this is not the case. In such cases the vectorizationFactor
parameter of the SDF Simulator

Figure 20 A model that plots the Fast Fourier Transform of a signal. A single iteration
must be executed to plot all 256 values of the FFT, since the FFT block produces and
consumes 256 tokens each firing.

Figure 21 A model that plots the values of a signal. 256 iterations must be executed to plot
the entire signal.
can be used to scale up the granularity of the schedule. A vectorizationFactor of 2 implies that
each block is fired twice as many times as normal in the schedule.
One example when this might be useful is the modeling of block data processing. For instance,
we might want to build a model of a signal processing system that filters blocks of 40 samples at
a timeusing an FIR filter. Such an block could be written in Java, or it could be built as a
hierarchical SDF model, using a single sample FIR filter, as shown in Figure 22. The
vectorizationFactor parameter of the Simulator is set to 40. Here, each firing of the SDF model
corresponds to 40 firings of the single sample FIR filter.
Another useful time to increase the level of granularity is to allow vectorized execution of blocks.
Some blocks override the iterate() method to allow optimized execution of several consecutive
firings.
Increasing the granularity of an SDF model can provide more opportunities for the SDF Simulator
to perform this optimization, especially in models that do not have fine-grained feedback.

3.3 Properties of the SDF simulator

SDF is an untimed model of computation. All blocks under SDF consume input tokens, perform
their computation and produce outputs in one atomic operation. If an SDF model is embedded
within a timed model, then the SDF model will behave as a zero-delay block.
In addition, SDF is a statically scheduled simulator. The firing of a composite block corresponds
to a single iteration of the contained model. SDF iteration consists of one execution of the pre-
calculated SDF schedule. The schedule is calculated so that the number of tokens on each
relation is the same at the end of each iteration as at the beginning. Thus, an infinite number of
iterations can be executed, without deadlock or infinite accumulation of tokens on each relation.
Execution in SDF is extremely efficient because of the scheduled execution. However, in order to
execute so efficiently, some extra information must be given to the scheduler. Most importantly,

090515 Page 46 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

the data rates on each port must be declared prior to execution. The data rate represents the
number of tokens produced or consumed on a port during every firing3. In addition, explicit data
delays must be added to feedback loops to prevent deadlock. At the beginning of execution, and
any time these data rates change, the schedule must be recomputed. If this happens often, then
the advantages of scheduled
execution can quickly be lost.

Figure 22 A model that implements a block FIR filter. The vectorizationFactor parameter of
the Simulator is set to the size of the block.

3.3.1 Scheduling
The first step in constructing the schedule is to solve the balance equations. These equations
determine the number of times each block will fire during iteration. For example, consider the
model in Figure 23. This model implies the following system of equations, where ProductionRate
and ConsumptionRate are declared properties of each port, and Firings is a property of each
block that will be solved for:

Firings(A) × ProductionRate(A1) = Firings(B) × ConsumptionRate(B1)
Firings(A) × ProductionRate(A2) = Firings(C) × ConsumptionRate(C1)
Firings(C) × ProductionRate(C2) = Firings(B) × ConsumptionRate(B2)

These equations express constraints that the number of tokens created on a relation during
iteration is equal to the number of tokens consumed. These equations usually have an infinite
number of linearly dependent solutions, and the least positive integer solution for Firings is
chosen as the firing vector, or the repetitions vector.
The second step in constructing an SDF schedule is dataflow analysis. Dataflow analysis orders
the firing of blocks, based on the relations between them. Since each relation represents the flow
of data, the block producing data must fire before the consuming block. Converting these data
dependencies to a sequential list of properly scheduled blocks is equivalent to topologically
sorting the SDF Block Diagram, if the graph is acyclic4. Dataflow graphs with cycles cause
somewhat of a problem, since such graphs cannot be topologically sorted. In order to determine
which block of the loop to fire first, a data
delay must be explicitly inserted somewhere in the cycle. This delay is represented by an initial
token created by one of the output ports in the cycle during initialization of the model. The
presence of the delay allows the scheduler to break the dependency cycle and determine which
block in the cycle to fire first. In VisualSim, the initial token (or tokens) can be sent from any port,
as long as the port declares an initProduction property. However, because this is such a common
operation in SDF, the Delay block is provided that can be inserted in a feedback look to break the

3 This is known as multirate SDF, where arbitrary rates are allowed. Not to be confused with
homogeneous SDF, where the data rates are fixed to be one.
4 Note that the topological sort does not correspond to a unique total ordering over the blocks.
Furthermore, especially in multirate models it may be possible to interleave the firings of blocks
that fire more than once. This can result in many possible schedules that represent different
performance trade-offs. We anticipate that future schedulers will be implemented to take
advantage of these tradeoffs.

090515 Page 47 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

cycle. Cyclic graphs not properly annotated with delays cannot be executed under SDF. An
example of a cyclic graph properly annotated with a delay is shown in Figure 24.
In some cases, a non-zero solution to the balance equations does not exist. Such models are
said to

Figure 23 An example SDF model.

be inconsistent, and cannot be executed under SDF. Inconsistent graphs inevitably result in
either deadlock or unbounded memory usage for any schedule. As such, inconsistent graphs are
usually bugs in the design of a model. Examples of consistent and inconsistent graphs are shown
in Figure 25.

3.3.2 Hierarchical Scheduling
So far, we have assumed that the SDF graph is not hierarchical. The simplest way to schedule a
hierarchical SDF model is flatten the model to remove the hierarchy, and then schedule the
model as

Figure 24 A consistent cyclic graph, properly annotated with delays. A one token delay is
represented by a black circle. Block C is responsible for setting the tokenInitProduction
parameter on its output port, and creating the two tokens during initialization. This Block
Diagram can be executed using the schedule A, A, B, C, C.

090515 Page 48 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 25 Two models, with each port annotated with the appropriate rate properties. The
model on the top is consistent, and can be executed using the schedule A, A, C, B, B. The
model on the bottom is inconsistent because tokens will accumulate between ports C2
and B2.
usual. This technique allows the most efficient schedule to be constructed for a model, and
avoids certain composing problems when creating hierarchical models. In VisualSim, a model
created using a transparent composite block to define the hierarchy is scheduled in exactly this
way. VisualSim also supports a stronger version of hierarchy, in the form of opaque composite
blocks. In this case, the hierarchical block appears to be no different from the outside than an
atomic block with no hierarchy. The SDF simulator does not have any information about the
contained model, other than the rate parameters that may be specified on the ports of the
composite block. The SDF simulator is designed
so that it automatically sets the rates of external ports when the schedule is computed. Most other
Simulators are designed (conveniently enough) so that their models are compatible with default
rate properties assumed by the SDF simulator.

3.3.3 Hierarchically Heterogeneous Models

An SDF model can generally be embedded in any other simulator. However, SDF models are
unlike most other hierarchical models in that they often require multiple inputs to be present.
When building one SDF model inside another SDF model, this is ensured by the containing SDF
model because of the way the data rate parameters are set as described in the previous section.
For most other Simulators, the SDF Simulator will check how many tokens are available on its
input ports and will refuse firing (by returning false in prefire()) until enough data is present for an
entire iteration to complete.

090515 Page 49 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

4 FSM Simulator
4.1 Introduction

Finite state machines (FSMs) have been used extensively in designing sequential control logic.
There are two major reasons behind their use. First, FSMs are a very intuitive way to capture
control logic and make it easier to communicate a design. Second, FSMs have been the subject
of a long history of research work. Many formal analysis and verification methods have been
developed for them.
In their simple flat form, FSM models have a key weakness: the number of states in an FSM
model can get quite large even for a moderately complex system. Such models quickly become
chaotic and incomprehensible when one tries to model a system having many concurrent
activities. The problem can be solved by introducing hierarchical organization into FSM models
and using them in combination with concurrency models. David Harel first used this approach
when he introduced the Statecharts formalism. The Statecharts formalism extends the
conventional FSM model in three aspects: hierarchical decomposition of states, concurrent
composition of FSMs in a synchronous-reactive fashion, and a broadcast communication
mechanism between concurrent components. While how these extensions fit together was not
completely specified, Harel's work stimulated a lot of interest in the approach.
Consequently, there is a proliferation of variants of the Statecharts formalism, each proposing a
different way to make the extensions fit into a monolithic model. Unfortunately, in all these
variants FSM is combined with a particular concurrency model. The applicability of the resulting
models is often limited.
Based on the VisualSim philosophy of hierarchical composition of heterogeneous models of
computation, the *charts5 formalism allows embedding hierarchical FSMs within a variety of
concurrency models. If tight synchronization is possible and desirable, then FSMs can be
composed by the synchronous-reactive model. If the system has a global notion of time and
components communicate by time-stamped events, then FSMs can be composed by the
discrete-event model. The rest of this chapter focuses on how the FSM simulator in VisualSim
supports the *charts formalism.

4.2 Building FSMs in ModelBuilder

An FSM model is contained by an instance of FSM-Controller block, located in the FSM directory.
The FSM model reacts to inputs to the FSM block by making state transitions. Actions such as
sending tokens to the output ports of the FSM block can be associated with state transitions. In
this section, we show how to construct and run a model with an FSM block in ModelBuilder.

4.2.1 Alternate Mark Inversion Coder
Alternate Mark Inversion (AMI) is a simple digital transmission technique that encodes a bit
stream on a signal line as shown below:

The 0 bits are transmitted with voltage zero. The 1 bits are transmitted alternately with positive
and negative voltages. On average, the resulting waveform will have no DC component.

5 Pronounced "starcharts." The star represents a wildcard that can be interpreted as matching
multiple concurrency models.

090515 Page 50 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

We can model an AMI coder with a two-state FSM shown in Figure 27. To construct a VisualSim
model containing this coder, follow these steps:

1. Start ModelBuilder; open a Block Diagram editor by selecting File -> New -> Block
Diagram Editor.

2. From utilities in the palette on the left, drag an FSM block to the Block Diagram. Rename
the FSM block AMICoder.

3. Right click on AMICoder, select Configure Ports. Add an input port with name in and an
output port with name out to AMICoder.

4. Right click on AMICoder, select Look Inside. This will open an FSM editor for AMICoder.
Note that the ports of AMICoder are placed at the upper left corner of the Block Diagram
panel.

5. From the palette on the left, drag a state to the Block Diagram, rename it Positive. Drag
another state to the Block Diagram, rename it Negative.

6. Control-drag from the Positive state to the Negative state to create a transition.
7. Double click on the transition. This will bring up the dialog box shown in Figure 26 for

editing the parameters of the transition.
8. Set guardExpression to in == 1, and outputActions to out = 1.
9. Create a transition from the Positive state back to itself with guard expression in== 0

and output action out =0.
10. Create a transition from the Negative state back to itself with guard expression in== 0 and

output action out =0.

Figure 26 The dialog box for editing parameters of a transition.

11. Create a transition from the Negative state to the Positive state with guard expression in
== 1 and output action out =-1.

12. Right click on the background of the Block Diagram panel. Select Edit Parameters from
the context menu. This will bring up the dialog box for editing parameters of AMICoder.
Set initialStateName to Positive.

13. The construction of AMICoder is complete. It will look like what is shown in Figure 27.
14. Return to the Block Diagram Editor opened in step 1.
15. Drag a Pulse block (from block library, basic/sources), a SequencePlotter (from model

library, display), and an SDF Simulator (from Simulator library) to the Block Diagram.
16. Connect the blocks as shown in Figure 28.
17. Edit parameters of the Pulse block: set indexes to {0, 1, 2, 3, 4, 5}; set values

to {0, 1, 1, 1, 0, 1}.

090515 Page 51 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 27 ModelBuilder FSM editor showing the AMICoder.

18. The model construction is complete.
19. Select View -> Run Window from the menu. Set Simulator iterations to 6 and execute

the model. For a better display of the result, open the set plot format dialog box, unselect
connect and use various marks.

4.3 The Implementation of FSMActor

The FSMActor class extends the CompositeEntity class and implements the TypedActor
interface. An FSM block contains states and transitions. The State class is a subclass of
ComponentEntity. A State has two ports: incomingPort, which links to incoming transitions to the
state, and outgoingPort, which links to transitions going out from the state. The Transition class is
a subclass of ComponentRelation. A transition links to exactly two ports: the outgoing port of its
source state, and the incoming port of its destination state.

4.3.1 Guard Expressions
The guard of a transition is specified by its guardExpression string attribute. Guard expressions
are parsed and evaluated using the VisualSim expression language (see the Expressions chapter
for details). Guard expressions should evaluate to a boolean value. A transition is enabled if its
guard expression evaluates to true. Parameters of the FSM block and input variables (defined
below) can be used in guard expressions.
Input variables represent the status and input value for each input port of the FSM block. If the
input port is a single port, two variables are used: a status variable named portName_
isPresent, and a value variable named portName. If the input port is a multiport of width n, 2n
variables are used, two for each channel: a status variable named portName_ channelIndex_
isPresent, and a value variable named portName_ channelIndex. The status variables will
have boolean value true if there is a token at the corresponding input, or false otherwise. The
value variables have the same type as the corresponding input, and contain the token received
from the input, or null if there is no token. All input variables are contained by the FSM block.
In the following examples (and the examples in the next section), we assume that the FSM block
has two input ports: a single port in1 and a multiport in2 of width 2; an output port out that is a
multi-port of width 2; and a parameter param.
♦ Guard expression: in2_ 0 + in2_ 1 > 10. If the inputs from the two channels of port

in2 have a total greater than 10, the transition is enabled. Note that if one or both channels of
port in2 do not have a token when this expression is evaluated, an exception will be thrown.

090515 Page 52 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 28 An SDF model with the AMICoder.

♦ Guard expression: in1_ isPresent && in1 > param. If there is input from port in1
and the value of the input is greater than param, the transition is enabled.

4.3.2 Actions
A transition can have a set of actions that produce output tokens or set parameters of the FSM
block. To make FSM blocks simulator polymorphic, especially for them to be operational in
Simulators having fixed-point semantics, two kinds of actions are defined: choice actions and
commit actions. Choice actions do not modify the extended state 1 of the FSM block. They are
executed when the FSM block is fired and the containing transition is enabled. Commit actions
may modify the extended state of the FSM block. They are executed in postfire() if the containing
transition was enabled in the last firing of the FSM block. Two marker interfaces are defined in the
FSM kernel package:
♦ ChoiceAction, which is implemented by all choice action classes, and CommitAction,

implemented by all commit action classes.
A transition has an outputActions attribute which is an instance of OutputActionsAttribute. The
OutputActionsAttribute class allows the user to specify a list of semicolon separated output
actions of the form destination = expression. The expression can use parameters of the
FSM block and input variables. The destination is either a port name, in which case the result
token from evaluating the expression is broadcast to all channels of the port, or of the form
portName(channelIndex), in which case the result token is sent to the specified channel.
Output actions are choice actions.
♦ outputActions: out = in1_ isPresent ? in1 : 0. Broadcast the input from port in1,

or 0 if there is no input from in1, to the two channels of out.
♦ outputActions: out(0) = param; out(1) = param + 1. Send the value of param

to the first channel of out, and the value of param plus 1 to the second channel.

A transition has a setActions attribute which is an instance of CommitActionsAttribute. The
CommitActionsAttribute class allows the user to specify a list of semicolon separated commit
actions of the form destination = expression. The expression can use parameters of the
FSM block and input variables. The destination is a parameter name.
♦ setActions: param = param + (in1_ isPresent ? in1 : 0). The input values from

port in1 are accumulated in param.
It is worth noting that parameter values are persistent. If not properly initialized, the parameter t in
the above example will retain its accumulated value from previous model executions. A useful
approach is to build the FSM model such that the initial state has an outgoing transition with
guard expression true, and use the set actions of this transition for parameter initialization.

Execution

The methods that define the execution of an FSM block are implemented as follows:
♦ preinitialize(): create receivers and input variables for each input port; set current

state to the initial state as specified by the initialStateName attribute.

090515 Page 53 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

♦ initialize(): perform simulator-specific initialization by calling the initialize (Actor)
method of the Simulator. Note that in the example given in AMI Coder, the Simulator will be
the SDF Simulator.

♦ prefire(): always return true. An FSM block is always ready to fire.
♦ fire(): set the values of input variables; choose the enabled transition among the

outgoing transitions of the current state; execute the choice actions of the chosen transition.
♦ postfire(): execute the commit actions of the last chosen transition; change state to the

destination state of that transition.
Non-deterministic FSMs are currently not allowed. The fire() method checks whether there is
more than one enabled transition from the current state. An exception is thrown if there is. In the
case when there is no enabled transition, the FSM will stay in its current state.

Figure 29 A Hierarchical FSM example.

4.4 FSM-Hierarchical

The FSM simulator supports the *charts formalism with FSM-Hierarchical. The concept of FSM-
Hierarchical is illustrated in Figure 29. M is a FSM-Hierarchical with two operation modes. The
modes are represented by states of an FSM that controls mode switching. Each mode has a
refinement that specifies the behavior of the mode. In VisualSim, a FSM-Hierarchical 6 is
constructed in a typed composite block having the FSM Simulator as local Simulator. The
composite block contains a mode controller (an FSM block) and a set of blocks that model the
refinements. The FSM Simulator mediates the interaction with the outside simulator, and
coordinates the execution of the refinements with the mode controller.

4.4.1 A Schmidt Trigger Example
In this section, we will illustrate how to build a modal model in VisualSim with a simple Schmidt
trigger example. The output from the Schmidt trigger will move from -1.0 to 1.0 when its input
becomes greater than 0. 3, and will move back to -1.0 once its input becomes less than -0. 3.
♦ Open a ModelBuilder Block Diagram Editor. From utilities, drag a typed composite block to

the Editor, rename it SchmidtTrigger. Add an input port named in and an output port named
out to it.

♦ Look inside SchmidtTrigger. This will open a Block Diagram editor for it. In this Block Diagram
editor, drag an FSM block to the Block Diagram, rename it Controller. Drag a typed
composite block to the Block Diagram, rename it RefinementP. Drag another typed
composite block to the Block Diagram, rename it RefinementN.

♦ Add an input port named in to Controller. Add an output port named out for both RefinementP
and RefinementN.

6 The current software architecture that supports modal models is experimental. A new approach
based on higher order functions is in progress.

090515 Page 54 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

♦ Look inside Controller. This will open an FSM editor for it. In this FSM editor, construct a two-
state FSM as shown in Figure 30. Set the reset parameter of both transitions to true. Set
refinement name of state P to RefinementP. Set refinement name of state N to
RefinementN. Set initial state name of Controller to N.

Figure 30 The mode controller for SchmidtTrigger.

Back to the Block Diagram editor for SchmidtTrigger. Look inside RefinementP. Build a model for
it as shown in Figure 31. Set the value of Const to 1.0. Edit parameters of Pulse: set indexes
to {0, 1, 2, 3, 4}, and values to {-2.0, -1.6, -1.2, -0.8, -0.4}.
Back to the Block Diagram editor for SchmidtTrigger. Look inside RefinementN. Build a model for
it as shown in Figure 31. Set the value of Const to -1.0. Edit parameters of Pulse: set indexes
to {0, 1, 2, 3, 4}, and values to {2.0, 1.6, 1.2, 0.8, 0.4}.
Back to the Block Diagram editor for SchmidtTrigger. Drag an FSM Simulator to the Block
Diagram. Set its controller-Name to Controller. Connect the blocks as shown in Figure 32.
Back to the Block Diagram editor opened in step 1. Build the model as shown in Figure 33. The
model generates an input signal (a sinusoid plus Gaussian noise) for the SchmidtTrigger and
plots its output. Edit parameters of Ramp: set init to -PI/ 2, and step to PI/ 20. Edit
parameters of Gaussian: set standardDeviation to 0.2.
Run the model for 200 iterations. A sample result is shown in Figure 34.

Figure 31 Model for the refinements in SchmidtTrigger.

Figure 32 The SchmidtTrigger modal model.

090515 Page 55 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 33 The top-level model with the SchmidtTrigger.

Figure 34 Sample result of the model shown in Figure 33.

4.4.2 Applications
Hybrid System Modeling. An HSSimulator class that extends the FSMSimulator class is created
for modeling hybrid systems with FSMs and continuous-time (CT) models. An example and
Execution control is presented in the Continuous Time Simulator section.
Communication Protocol Modeling. Hierarchical FSMs are used to model protocol control logic.
The timing characteristics of the communication channel are captured by discrete-event (DE)
models. We have applied this approach to the alternating bit protocol.

090515 Page 56 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Chapter 2 Modeling Libraries

Introduction to Resources
Resources are blocks that are used to define the physical entities of a system. These can be
used Queue in an M/M/1 definition. Examples of these can be a Bank Teller, a conveyer belt or a
call center agent. In product setting, this can be RTOS Queue, RTOS scheduling, multiple virtual
machines for a middleware, processor, memories, peripherals, network nodes or wireless
channel. In a distributed system, a aircraft or a set of ammunition can be a resource.

There are two types of resources- Active which consumes time and passive which consumes
resources. A processor is an active resource while a parking lot with spaces for different types of
cars is a passive resource. A memory is a passive resource with a active controller and a active
time to get access to the passive content.

Active Resources
The Event Queue blocks, Timed Queue blocks, the advanced capabilities of the System
Resources (a.k.a Schedulers) and the extendable Channel blocks provide tiered resource
modeling options in the Block Diagram.

The Event and Timed Queues blocks consist of the blocks shown in Figure 1. The Scheduler
blocks are shown separately in Figure 2. One will notice that the Event and Timed Queues
blocks have a lot of inputs and outputs that are required for proper operation of these blocks.

Figure 35 VisualSim Resource Library

090515 Page 57 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Event Queue Blocks

The operation of the queue is straightforward. The Event Queue takes the input tokens and
stores it in a queue. When a token is received in ‘pop_input’ port, the token at the head of the
queue is sent on the output port.

All the Data Structure or numerical Token input enter and exit on the top input (upper-left) and
output ports (upper-right) respectively. Each block has a 'stats_input' on the lower left and a
'stats_output' on the lower right. Each queue block also has a 'reject_queue' port, just below the
output port on the upper right side. An incoming composite Data Structure can be rejected if the
queue length has been exceeded. In the case of the two priority queues, one can select a reject
mechanism that will reject the lowest priority Data Structure.

Each queue also has a queue length output port, above the 'stats_output' port on the lower right
side. Each time a queue input actions is initiated, then the queue length will be sent to the
'queue_length' output port. Each queue has an output port for obtaining copies of queue
elements, the middle output port named ‘copy_queue_n_output'.

Each queue has a 'pop_queue' input port that will send the next Data Structure in the queue,
including the 'queue_number_input' for multi-dimensional queues. There is also a
'copy_queue_n_input' for selecting a particular queue element. The two priority queues have a
priority input that must arrive for a new queue element.

The only asymmetrical item for these blocks is the 'set_queue_input' port, which allows one to
modify an existing queue element. This port only appears on the Queue-Priority_N Block.

To better understand the use of these Queues blocks, view the Queue Usage Page here. This
uses the Queue-Priority block. Pay special attention on the arrival of the data at the Queue input.
The required inputs must all exist before the Data Structure will enter the queue.

Timed Queue Resource Blocks

The Timed Queue Resource Blocks, namely Timed_Queue, Timed_Queue-N, Timed_Queue-
Priority, and Timed_Queue-Priority_N, are logically the combination of two fundamental
components: a queue and a server. The key difference between the event Queue blocks and
time-based Queue blocks is that the Timed pops the queued Data Structure out based on an
associated time value. The time value is entered along with the input token. When the token
reaches the front of the queue, it is delayed by the associated time value and then popped on the
output port.

If a new transaction cannot immediately move into a server, it is placed in a queue, where it waits
for a server to become available. The simplest block, Timed_Queue, can implement an M/M/1
queue by providing exponential inter-arrival time to the “time_input” port, for example. If the
internal queue is at the capacity set by the block level parameters, then the incoming Data
Structure will exit via the “FCFS_reject_output” port.

A typical modeling use for the basic Timed_Queue Block is to implement a bus queue, where the
“time_input” represents a value that combines the bus transaction size divided by the data rate of
the bus to generate seconds. If the Timed_Queue-Priority Block is used, then the underlying
bus can process the bus transactions with priorities.

A user defined Data Structure enters the Timed_Queue Blocks on one port, the server time on a
second port, the priority (optional) for the incoming Data Structure, and the specific queue

090515 Page 58 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

(optional) that the Data Structure is destined. The Timed_Queue Blocks has parameters to
change the type of internal queue (FIFO/LIFO), the length of the internal queue, and the
dimension of multiple queue blocks (denoted by “N”). There is also a “stats” input and output port
for each Resource Block to collect resource pertinent statistics internal to the block.

All the Data Structure or numerical Token input enter and exit on the top input (upper-left) and
output ports (upper-right) respectively. Each block has a 'stats_input' on the lower left and a
'stats_output' on the lower right. Each queue block also has a 'reject_queue' port, just above the
stats port on the lower right side. An incoming Data Structure is rejected if the queue length has
been exceeded.

Each queue also has a queue length output port, below the ds_output' port on the uper right
side. Each time a queue input actions is initiated, then the queue length will be sent to the
'queue_length' output port.

Unlike the Event_Queue-Priority_N Block, the Timed_Queue-Priority_N Block lacks the
capability to overwrite an element in the queue.

Server_N_Priority
There is a special block called the Server_N_Priority that has an additional dispatch queue in
front of the Servers within the block. The individual server queues have been fixed to 1 unit. This
is useful where a shared resource need to schedule the DS to an array of servers.

To better understand the use of these Timed_Queue blocks, view the Usage Page here. This
shows the use of all the Timed_Queue blocks. Pay special attention on the arrival of the data at
the input. The required inputs must all exist before the Data Structure will enter the queue.

System Resource blocks(a.k.a Scheduler Blocks)

System Resource Blocks model the execution of a general timing resource at an architectural
level. While the TimedQueue blocks are used at the queuing-level of abstraction, the System
Resource blocks are used at the architectural-level with more complex scheduling algorithms.
Complex scheduling algorithms that are not simply time-based and accept request from multiple
model points require the System Resource blocks. These blocks separate the behavior and
architectural aspects of a system, and provide a way for separate design groups to implement
different parts of a model, if needed.

The Mapper_Adv/ Mapper is used to make the request (behavior) to the System
Resource_Extended (a.k.a Scheduler_HW) and System_Resource (a.k.a Scheduler_SW)
that model the processing (architecture) side. The System Resource blocks, namely
SystemResource_Extended and System Resource blocks, perform a variety of scheduling
algorithms, including First-Come-First-Serve, First-Come-First-Serve plus pre-emption, Round
Robin, or User defined schedulers. In addition, the SystemResourcce Block can be arranged as
a hierarchical set of schedulers. The SystemResource_Extended Block supports detailed
external modeling of the task execution, whereas the software scheduler only executes internal to
the scheduler block itself. Scheduler execution is in terms of the ‘Task_Time’ field of the
incoming data structure, and the user can set this to be interpreted as either relative time or clock
cycles by a parameter entry of the SystemResource or System_Resource_Extended Blocks.

The Task data structures enter the SystemResource via a Mapper_Adv/ Mapper Block. The
Mapper_Adv/ Mapper Block can contain values in the parameter fields that effect scheduler
operation, or the names of data structure fields entering the Mapper_Adv/ Mapper_Basic Block.

090515 Page 59 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

The ability to use parameter entries or fields of incoming data structures provides for the concept
of static and dynamic mapping within the model topology.

The ‘Parent_Scheduler’ field of the Mapper_Adv/ Mapper Block determines the scheduler to be
used, whether SystemResource or SystemResource_Extended Blocks. This form of internal
mapping is akin to a virtual node concept, where any Mapper_Adv/ Mapper_Basic Block in the
model can address any scheduler in the model. Multiple Mapper_Adv/ Mapper blocks can make
requests to a single SystemResource block thus establishing multiple request points in the
behavior flow. The SystemResource and SystemResource_Extended do not require an input
trigger but are virtually mapped from the Mapper_Adv/ Mapper block that is in the behavior flow
through dynamic name matching of the 'Scheduler_Name' parameter.

After the Task_Time is complete within the SystemResource_Extended, the task is sent on the
output port for additional processing. When the task encounters a SystemResource_Done
(a.k.a Scheduler_Release) it immediately returns the task as complete this Scheduler and also
down the lower-level Schedulers/Mapper blocks. The task can flow out of the
SystemResource_Done and continue with additional logic. There can be multiple execution
sequences after the output port. Each can have a SystemResource_Done anywhere in the
flow.

Usage: The SystemResource is used to model software and hardware elements that do not
require 'refinement'. This block supports pre-emption and can be called hierarchically. The
SystemResource_Extended model the top-level architecture element that also requires
'refining'. This block does not support pre-emption. The SystemResource_Extended must
always be the top-level of the hierarchy and provides for an extension of the block for refinement
of the architecture element.

Practical Application: Consider the case where an application makes a request to a driver that
request a processing event on an RTOS. This would be modeled with the Mapper_Adv/ Mapper
(Behavior) sending a request to a top-level SystemResource (Driver), which would send the
request to a next-level SystemResource (RTOS) that would send it to the Top-level
SystemResource_Extended (CPU). The request will be sent up the flow and then back down
before being returned to the Task_Issue to be processed further.

Examples: In an automotive system, one might wish to inject intentional errors into the system to
see the effect of backup, or redundant, processors on overall system recovery response. Without
virtual connection scheduler mapping, this becomes a more complex task. VisualSim also
provides an internal addressing infrastructure than can be used in conjunction with the Scheduler
Resource Blocks. Other examples of systems that would need the scheduler blocks are Real
Time Operating Systems (RTOS), hardware interrupt processing or advanced switch fabric. Most
hardware and software elements such as CPU, BUS, Cache, Memory, ROTS and drivers can be
modeled using this group of blocks.

090515 Page 60 of 364 Simulators-Untimed or Synchronous Dataflow
 Mirabilis Design, Inc.

Figure 36 VisualSim Scheduler Library

Channel Blocks

The Channel blocks models fixed number of channels. The key difference between the Channel
and the Channel_Priority is the additional priority parameter that is used to determine the next
task to be scheduled on the channel. The Channel_N block has a separate queue for each of the
Channels while the other two blocks have a single input channel. The Channel blocks can be
used to model a multiple communication channel, DMA channel to memory, software task
sequence based on channel and the type of transaction, and virtual channels.

The Channel blocks provide the infrastructure to extend the ability of the Queue and
TimedQueue. Here the implementation details can be logic plus delay. The 'Channel_Release'
Block can model re-tranmissions through it's two inputs: 'accept_input' for no re-transmission and
'reject_input' that calls back the Channel block to retransmit a packet that is rejected due to noise
(communication channel) or buffer overflow (memory).

Figure 37 VisualSim Channel and Pipeline blocks

110603 Page 61 of 364 Resource Library
 Mirabilis Design, Inc.

Queues (a.k.a Smart_Resource)

Figure 38 Controller Library blocks

The “Queues” library combines a named “Queues” and a script block called Smart Controller.
This library is used to describe functional models of protocols, flow control algorithms, schedulers
and custom hardware components such as arbiters. The Resource is a multi-dimension event
queue that enqueue incoming data structures based on priority. The block has a name that is
used to track statistics information. The associated Controller determines the scheduling and
dequeuing of the data structures. The Controller can be associated with the Resource using the
Pop and Stats_in ports. The Controller block describes the algorithm using a C-like scripting
language. This language uses the full power of the RegEx; commands such as Goto, While and
if-else; and special instructions such as WAIT, TIMEQ and SEND. The Controller can be
triggered on the input port or self-triggered. Self-triggered simply means that the block tarts
execution at TNow=0.0. The script can get information about the Resource content using the
“getBlockStats” command with keywords “stats”, “length” and “copy”.

110603 Page 62 of 364 Resource Library
 Mirabilis Design, Inc.

The Controller script is similar to the Virtual Machine with some features including the ability to
create queues, schedulers, timed queues and virtual connections unavailable.

Server (a.k.a Smart_Timed_Resource)

This is a combination of a queue plus a server resource. This is a multi-dimension resource,
which means that multiple queue plus server resource can be defined using this single block.
The processing time is known in advance and provided along with the transaction to this block.
This can be used to replace a TimedQueue when we need to enhance the block with Power and
extract the queue depth information for activities such as flow control and credit policy. It is used
to model schedulers, processors and RTOS with scheduling slots arrangements.

110603 Page 63 of 364 Resource Library
 Mirabilis Design, Inc.

Passive or Quantity-Shared Resource Blocks

Figure 39 VisualSim Quantity-Shared Resource Library

The Quantity-Shared Resource Blocks, namely Resource_QS_Allocate,
Resource_QS_Allocate_Priority, and Resource_QS_Free, represent discrete elements that
are stored in a resource pool when not in use and are released as Data Structures when the
active Data Structure or resource completes operation. A Quantity-Shared resource completes
operation by entering the Resource_QS_Free Block, which internally signals the appropriate
allocation Resource Block that it has completed its process.

Resource units can represent items such as pages in cache, virtual circuits in a communication
channel, or available disk space. The resource units can be indistinguishable, as in a pool, or
distinguishable by providing a specific address for the request of units. Requests for addressed
resource units can be allocated using a first-fit or best-fit policy, settable as a block parameter.
For example, if one requested three cache lines using a first-fit policy, then the first address with
three, or more cache lines would be allocated to this request and processed, until the
Resource_QS_Free Block is executed.

The Resource_QS_Allocate, Resource_QS_Allocate_Priority, and Resource_QS_Free
Blocks constitute a different resource modeling capability. Instead of using time as the resource
allocation, as in the FCFS blocks, the Quantity Shared (QS) blocks allocate resources based on
requests for units from a central resource. Once the requested units are allocated, the model can
process the units granted, and when complete, free the resources back to the central resource.
Some common applications for the Quantity Shared resource blocks are the allocation of
memory, or channels in a networking model pages in cache, virtual circuits in a communication
channel, or available disk space. These blocks also can take into account the addresses of the
units requested, performing best fit, or first fit algorithm to mimic cache memory, for example.

To better understand the use of these Resource_QS blocks, view the Resource_QS Usage Page
here. This shows the usage of and their proposed/intended use models. This also covers what
are the required inputs and outputs.

110603 Page 64 of 364 Virtual Flow
 Mirabilis Design, Inc.

Virtual Connection Blocks
Virtual Connection blocks introduce a new dimension to architectural modeling by
simplifying model creation, and introducing a more powerful interconnects methodology
that complements spatial topologies. One can create model connections with uniquely named
blocks without port to port wires, either local or global, the same concept as local or global
memories. It is similar to bubble references in mechanical engineering drawings, except Tokens
are actually being sent through the modeling space. To better understand the use of Virtual
Connection blocks, view the Virtual Connection Usage Page here.

The basic virtual flow consists of OUT to IN Blocks. If there are multiple IN
Blocks with the same name, then a single OUT Block is virtually connected to all the
like-named IN Blocks. A more advanced virtual connection block is the DEMUX Block,
which can send to a number of destinations, based on the incoming composite
Data Structure field (integer or string). If a valid destination is not found with the DEMUX Block,
then it will drop the composite Data Structure. The MUX Block can accept OUT or DEMUX Block
DSs, if the name and type of connection (local, global) match.

Typically, one may wish to access a memory at the output of the IN Blocks for plotting,
statistics, or model functionality. Similarly, the IN Block is used to select a particular
field of the incoming Data Structure for plotting, statistics, or model functionality.

The OUT can also select a destination based on a memory or Data Structure field of type string.
This block is similar to the DEMUX Block, except that the destination decoding is one-to-one.

Virtual Connection communication between blocks provides better simulation performance than
port to port connections. In addition, virtual connection communications provide a dynamic
mapping capability within the modeling space, speeding system analysis.

Figure 40 VisualSim Virtual Connection blocks (Virtual Connections Library)

110603 Page 65 of 364 Virtual Flow
 Mirabilis Design, Inc.

Typically, one would not use the virtual connection blocks as shown in the figure. This is for
illustration purposes to demonstrate how they might interact. One can actually go from the OUT
and DEMUX blocks to IN and MUX blocks.

110603 Page 66 of 364 Architecture Library
 Mirabilis Design, Inc.

Architecture Modeling Toolkit
The VisualSim - Hardware Architecture Generator Toolkit generates transaction-level and cycle-
accurate models of complex, vendor-specific processor, DSP and application-specific processors.
Using this generator and the associated hardware architecture library, platform architecture can
be defined graphically without the need to write significant C code or create complex
spreadsheets of the instruction sets. These platform models can execute performance-aspects of
the software or a specification of the software. The virtual platform can be used to select
components, optimize component size and speed, and define arbitration algorithms. This virtual
platform can be saved as a library for use by processor architect, systems engineer and software
architect within an organization.
The following Figure shows the blocks in the Hardware Architecture Generator Toolkit:
Architecture_Setup, Instruction_Set, Processor, Bus_Controller, Bus_Port, Cache, DRAM, and
DeviceInterface (a.k.a I_O) blocks.

Figure 41 Hardware Architecture Library Blocks

Processor

o Pipeline
o External calls from pipeline for

advanced operation creation
o Registers

Cache

o Speed
o Size
o Hit-ratio
o Pre-fetch

110603 Page 67 of 364 Architecture Library
 Mirabilis Design, Inc.

o Separate Instruction and Data Cache
o L2 and L3
o Interrupt queue
o Priority
o Instruction Set- Integer, Vector,

Floating-Point, SIMD, Branch
o Pre-fetch
o Stalls
o Context switch
o Interrupt Service Routine (internal and

external from DMA, etc.)
o Hit-miss ratio
o Out of order execution
o Load Store Unit
o Branch Instruction
o Branch prediction
o Statistics - Throughput, utilization,

latency
o Processor width

o Buffer
o Line width
o Cache width

DRAM

o Speed
o Size
o Buffer
o Line width
o Memory width
o Access Time - Read, Refresh, Write,

Erase, Read/Write,
o Banks
o Refresh
o Controllers - SDR, DDR, DDR-2, DDR-

3, QDR, RDR, custom

Bus Controller/Bus Port

o Control message
o Data message
o Speed
o Buffer
o Word width
o Switch
o Arbitration

DeviceInterface (a.k.a I_O)

o External In/Out Port
o Bridge Functionality
o External Routing

Instruction Set

o List of instructions by Execution Units
o Cycle time by instructions
o Associate instructions by groups
o Setup uniform distribution for

instruction cycle time

Architecture Setup

o Routing
o Post processing
o Statistics aggregation
o Pipeline activity tracing

Table 4 Hardware Architecture Library Features
This technology radically reduces the time it now takes architects and engineers to create
electronic system level (ESL) models. With VisualSim Hardware Architecture Generation Library,
a user can create processor, instruction set, cache, memory, and bus models for specific
commercial processors and new custom processors. A number of examples are provided in the
example section. The VisualSim processor models more valuable, the processor models
incorporate the unique ability to separate the architecture and the behavior within the same
model. As an example, this allows an ad-hoc change in the number of bits or the number of taps
for a fixed-point FIR filter so performance can be evaluated for quality and performance in a
single model. This new technology approach enables architects and high-performance computing
system designers to validate their architecture selection in less than one week using simulation
and accurate application-specific transactions. This becomes even more important when leading
edge multi-processors or multi-core architectures are used. A software developer can validate
assumptions, thread distributions and best load scheduling techniques in a very short period of

110603 Page 68 of 364 Architecture Library
 Mirabilis Design, Inc.

time, even before the code development has commenced. The evaluation can be for performance
and power consumption.

Cache

Block Description
This is a hardware cache that determines whether a memory request is a read or writes
(instruction), has the requested data (hit), or must go to the next level of the memory hierarchy
(miss) to complete the request. The Cache does not make instruction/data distinction.

Block Usage
This is a dual ported Cache. It can be made to depict different cache configurations by
manipulating the Cache hit expression. A Cache hit expression is further defined in terms of
Cache_Size_Kbytes, Words_per_Cache_Line, A_Instruction (array length) and Unique_Task_ID
(assigned by the Processor).

Functionality
The cache processes cache ‘Read’, ‘Write’ and ’Prefetch’ instructions.

Figure 42 Cache Flow Diagram
The Cache picks up the ‘Read’ or ‘Write’ instruction and a cache hit or a miss is determined using
a cache-hit expression that depends on several parameters. The cache hit expression is
formulated using parameters like cache size, Words_per_cache_line, activity in the cache based
on task size and number of tasks etc.

From Bus Port

Hit or Miss

Memory level Return
to Source

Transaction

To Bus Port

Miss Hit

Next

Delay

110603 Page 69 of 364 Architecture Library
 Mirabilis Design, Inc.

The cache-hit expression thus determines a cache hit or a miss; and if it is a cache hit the token
is sent out on the bus port with the destination as the requested source. If a cache miss occurs
the next level of memory is looked up. The next level of memory if it is a DRAM, returns a token
with the destination as the requested source.

A Cache ‘Read’ request is processed and the data is returned to the source If the instruction is
Cache ‘Write’ then it is processed and the token is just dropped after a transaction delay to
indicate a cache write.

Cache Pre-fetch
If the number of cache transactions exceeds the words_per_cache_line a cache prefetch is
initiated. To simulate a prefetch the cache sends out a token to the next level of memory.

Computations
Hit/Miss Calculation
The Cache Hit expression parameter decides the ratio of hits or misses. This regular expression
is evaluated and if true then it resolves to a Cache hit and if false it resolves to a Cache Miss.

Cache latency
Cache delay time = Cache cycle time * number of words
Where number of words = bytes sent / width bytes and cache cycle time = 1.0E-06 / cache speed
in Mhz.

State Plots
The plot shows the cache IDLE and BUSY states (0, 1).

Statistics
Statistics collected are Cache utilization, throughput, transaction delay time, Hit Ratio and Pre-
fetch count. Cache utilization depends on sum of all the transaction delays occurring when the
cache is processing the request. Cache throughput depends on the sum of bytes sent/requested.

110603 Page 70 of 364 Architecture Library
 Mirabilis Design, Inc.

Configuration of Parameters

Figure 43 Cache Parameter Window

Architecture_Name
Name of the common architecture to which blocks in the model belong to, Type is String. There
can be different architectures existing; hence the unique Architecture name is defined with each
block.

Cache_Name
Name of the Cache, Type is String. The Cache name has to be unique within the same
architecture. Another architecture can exist with the same Cache name.

Cache_Address
Address of the cache, Type is integer or string.

Cache_Speed_Mhz
Speed of the Cache in Mega Hertz, Type is double. This is the rate at which the Cache operates.
The transaction delay times, Cache hit or miss ratio depends on this parameter.
Cache speed is used to calculate the Cache cycle time; Cache cycle time = 1.0E-06 / cache
speed in Mhz. The cache cycle time together with the number of words (chunks of data)
determines the cache transaction delay time.

Cache_Size_KBytes
Size of the cache in kilobytes, Type is double. Since this determines the storage capacity of the
cache, Cache hit or miss ratio depends on this parameter.

110603 Page 71 of 364 Architecture Library
 Mirabilis Design, Inc.

Width_Bytes
The Cache word width in bytes shown as a pull-down with values 2, 4, 8
The number of words (the chunk of data used for processing) depends upon the bytes sent
divided by the width bytes.

Words_per_Cache_Line
The total number of words that fit into one cache line, Type is integer.
The cache Pre-fetch is initiated based on the number of cache requests processed and the words
per cache line. If the cache request exceeds the words per cache line, then a cache pre-fetch
request is initiated.

FIFO_Buffers
The size of the Cache word buffer; i.e. the size of the input queue, Type is integer.

Hit_Expression
An expression formulated using the various parameters that impacts a cache hit, Type is String. It
could be as simple as a random number generated based on a condition. Example: “rand
(0.0,1.0) < 0.95” or could be advanced hit expression involving several parameters like
Cache_Size_Kbytes, Words_per_Cache_Line, A_Instruction (array length), Unique_Task_ID
(assigned by the Processor).

Miss_Memory_Name
Name of the next level of memory to access when there is a cache miss, Type is String.

Memory

Block Description
The VisualSim Statistical DRAM executes a memory request, read or write (instruction), and
returns the request to the source. In addition, the DRAM model supports memory banks, a new
design to improve system performance. DRAM has been selected as the name of the block, as
this block can model different dynamic random access memory technologies.

Block Usage
A simple DRAM with a single input and output port can be depicted. It can be made to depict
different DRAM technologies and designs including:

• Synchronous Dynamic (SDRAM)
• Double Data Rate (DDR, DDR-2, DDR-3)
• Quad Data Rate (QDR) SRAM
• Direct Rambus (DRDRAM)
• Video DRAM (VRAM)
• Synchronous Graphics RAM (SGRAM)
• Pseudo Static RAM (PSRAM)

Functionality

110603 Page 72 of 364 Architecture Library
 Mirabilis Design, Inc.

Figure 44 Memory Flow Diagram
All memory requests are queued and processed on First come first served basis.
Transactions arriving at the DRAM will either be a “Read” or “Write” request.
If the incoming command is a “Read”, after a transaction delay computed based on factors like
bytes sent, speed of memory, size of memory etc, sends out a token with a destination set to the
requested source for ex: the Processor block. If the incoming command is a “Write”, after a
transaction delay, drops the transaction or data structure. If the incoming command is a
“Read_Write”, then treats as a “Read” command.
A DRAM refresh event is scheduled periodically. When the DRAM is in refresh state it adds the
requests on to a queue, this is processed later when it comes back to working state.

Computations
DRAM Access Time
Access Time is the time taken since a request is made and when the data is made available from
the DRAM. Access time is defined in nano seconds. DRAM Access Time is defined by the user
for each operation like Read, Write or a Read-Write as an Access Time parameter.

DRAM latency
DRAM latency i.e. the total transaction delay time depends on both Access time and the memory
cycle time.

DRAM Access Cycles = Access Time/Memory cycle time

Total Delay Time or Latency = (Number of words + Access cycles –1) * Memory cycle time,
Where number of words = bytes sent / width bytes and memory cycle time = 1.0E-06 / Memory
speed in Mhz.

State Plots
The plot shows the DRAM IDLE and BUSY states (0, 1) when in working state.
The plot also shows the DRAM REFRESH states (0, 1) when in refresh state and back to working
state.

Return Request to
Source

From Bus Port

To Bus Port

Transaction
Delay

110603 Page 73 of 364 Architecture Library
 Mirabilis Design, Inc.

Configuration of Parameters

Figure 45 Memory Configuration Window

Architecture_Name
Name of the common architecture to which blocks in the model belong to, Type is String. There
can be different architectures existing; hence the unique Architecture name is defined with each
block.

Memory_Name
Name of the memory, Type is String. The memory name has to be unique within the same
architecture. Another architecture can exist with the same memory name.

Memory_Address
Address of the memory, Type is integer or string.

Memory_Speed_Mhz
Speed of the memory in Mega hertz, Type is double. This is the rate at which the memory
operates. Memory speed is used to calculate the memory cycle time; Memory cycle time = 1.0E-
06 / memory speed in Mhz. The memory cycle time together with the access time determines the
DRAM transaction delay time.

110603 Page 74 of 364 Architecture Library
 Mirabilis Design, Inc.

Memory_Size_MBytes
Size of the memory in megabytes, Type is double. This determines the storage capacity of the
memory.

Width_Bytes
The memory word width in bytes shown as a pull-down with values 2, 4, 8
The number of words (the chunk of data used for processing) depends upon the bytes sent
divided by the width bytes.

FIFO_Buffers
The size of the Cache word buffer; i.e. the size of the input queue, Type is integer.

Refresh_Rate_Cycles
This is the time between refresh. This value is an average of all the rows in the memory bank.
The refresh rate in memory cycles, Type is integer. This decides the rate at which a DRAM
refresh event is triggered during a simulation run.

Refresh _Cycles
The number of memory refresh cycles, Type is integer. This is the number of refresh events that
is triggered during a simulation run.

Access_Time
This is the time taken to process requests. The memory access time differs for each type of
request like ‘Read’, ‘Write’, ‘Read_write’ or ‘Erase’. Any number of commands can be added to
the list. The incoming Data Structure field called A_Command determines which Access Time
value should be used. The Access Time is the time taken to do the operation in nano-seconds on
one memory width within the memory cell. This does not include overhead such as transaction-
specific cycles or the controller time. Type is String.
Ex: “Read 90.0, Write 70.0, RdWr 80.0, Erase 60.0”

Controller_Time
This is a RegEx that calculates the latency for the controller. This will be applied to the first word
in a transaction request.

Memory_Type
The memory design can be chosen as SDR, DDR, DDR2, DDR3, QDR or RAMBUS.
Type is a pulldown.

110603 Page 75 of 364 Architecture Library
 Mirabilis Design, Inc.

Processor Block

Description
The VisualSim processor block approaches the capabilities of an ISS while still retaining the
graphical nature of VisualSim to model common processors. The processor block provide
parallel execution on different processor cores, or execution on different instruction streams
within a single processor core. An Instruction Set Simulators (ISSs) has detailed implementations
to the bit level of individual instructions, often called that can process processor specific
instructions, sometimes including bus, cache and RAM activity. A typical ISS instruction might
include:

Instruction Address
Instruction Mnemonic

Block Usage
A linear state machine engine forms the basis for processor model execution, whether an
instruction pipeline, or individual instruction stream. Instructions are processed, based on arrays
that execute in the processor model pipeline:

Processor Configuration

Execution Units (Cache, Integer Units, Floating Point Units)

Pipeline Execution

Instruction Cycles (integer or uniform random range of integers)

The length of the arrays can vary based on the processor instruction set, instruction variants,
instruction resources, and instruction conditions or constraints. The concept is to keep the
processor block as simple as possible for anyone familiar with a processor’s instruction set and
the internal resources used during execution. One can also group instructions based on cycle
count, external memory references, co-processor transactions, etc. for purposes of architectural
modeling. The Linear State Machine allows this flexibility in specifying either a complete
instruction set, or a “grouped” instruction set.

The VisualSim processor block could be initially constructed with a “grouped” instruction set, and
then later refined to a more detailed instruction set, as part of the design process, as required.
The VisualSim processor block is essentially a programmable processor in the sense that the
configuration and pipeline execution can be altered to fit most common processors, custom
ASICs, FPGAs, or other micro-controllers.

The Processor Block is a high performance, multi-instruction-per-cycle, superscalar processor for
executing mnemonic sequences of instructions, including key software loops. Or, the Processor
Block can represent a simpler ASIC or micro-controller, depending on how the parameters,
pipeline is setup. A user can configure the pipeline to match the number of pipeline stages,
execute internal or external to the pipeline, vary the cache pipeline pre-fetch width to first level
caches, and share the same cache among more than one Processor Block. A user can configure
N integer or M floating point execution units, based on instruction set groups setup in the
Instruction Set block. Out of order execution can be performed utilizing an Instruction Reorder
array that designates if one instruction is dependent on a prior instruction to execute, the default
being all instructions are dependent on the prior instruction.

110603 Page 76 of 364 Architecture Library
 Mirabilis Design, Inc.

In addition, the Processor Block performs a context switch for each new task, or thread, which
begins to execute. The user can specify the number of context switch cycles, during which the
Processor Block will perform a pre-fetch for the base cache memories, modeling the pre-fetching
of instruction (I1), data (D1) and registers. Each Processor task consists of a composite data
structure that contains the mnemonic instruction sequence array, instruction reorder array, and
internal routing with external bus, DMA, or memory.

P D E S

I1
D1

L2

INT_1 INT_2

Registers

FP_1

Registers

FP_2

Power
Manager

Instr Queue

Processor_Instruction_Set:MyInstructionSet
Processor_Registers: 32
Context_Switch_Cycles: 200
Processor_Speed_Mhz: Processor_Speed
Instruction_Queue_Length:6
Pipeline_Stages: 4

1_PREFETCH I_1 instr none ;
1_PREFETCH D_1 read none ;
2_DECODE I_1 wait none ;
3_EXECUTE D_1 wait none ;
3_EXECUTE INT exec none ;
4_STORE D_1 write none ;

INT_Execution_Units: 2
FP_Execution_Units: 0 P D E S

I1
D1

L2

INT_1 INT_2

Registers

FP_1

Registers

FP_2

Power
Manager

Instr Queue

Processor_Instruction_Set:MyInstructionSet
Processor_Registers: 32
Context_Switch_Cycles: 200
Processor_Speed_Mhz: Processor_Speed
Instruction_Queue_Length:6
Pipeline_Stages: 4

1_PREFETCH I_1 instr none ;
1_PREFETCH D_1 read none ;
2_DECODE I_1 wait none ;
3_EXECUTE D_1 wait none ;
3_EXECUTE INT exec none ;
4_STORE D_1 write none ;

INT_Execution_Units: 2
FP_Execution_Units: 0

Figure 46 Processor Block

Setup

The Processor Block requires certain Model Parameters and a specific Data Structure
(Processor_DS) for proper use, once the Processor Block has been dragged into a model
window. Each Processor Block used in a model must designate the Processor Name and
Architecture Name associated with the Architecture_Setup Block, which also needs to be
dragged into a model, if one does not exist.

110603 Page 77 of 364 Architecture Library
 Mirabilis Design, Inc.

Figure 47 Processor Block Configuration Parameters

The key Processor parameter settings:

• Architecture_Name: "Architecture_1"
• Processor_Name: “Processor_1”
• Processor_Setup: Condensed List of Processor Parameters
• Pipeline_Stages: Pipeline Script
• Processor_Bits: Pulldown Menu, 16 to 64 Bits

110603 Page 78 of 364 Architecture Library
 Mirabilis Design, Inc.

The Processor_Name must be unique with the Architecture_Name, which can be thought of as
the processor-platform domain. The Processor_Setup and Pipeline_Stages will be described in
more detail later. The Processor_Bits represent the execution width of the Processor Block.

Processor_DS

The Processor_DS was created as the best data structure to send through the Processor, as this
is the same data structure used by other Architectural Library busses and memories. The
following are specific data structure fields to be set prior to entering the Processor Block.

{A_Address = 100,
A_Branch = false,
A_Bytes = 8,
A_Bytes_Remaining = 4,
A_Bytes_Sent = 4,
A_Command = "Read",
A_Data = "MyData",
A_Destination = "Processor_1",
A_First_Word = true,
A_Hop = "Processor_1",
A_IDX = 0,
A_Instruction = {"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD",
"ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD", "ADD"}
,
A_Interrupt = false,
A_Pipeline = {0, 0, 0, 0, 0, 0}
,
A_Prefetch = false,
A_Priority = 0,
A_Proc_Return = -1,
A_Return = -1,
A_Source = "Src",
A_Status = "Status",
A_Task_Flag = false,
A_Task_ID = 1L,
A_Task_Name = "Name",
A_Time = 0.0,
A_Variables = 16}

A_Source may represent a port on the bus, or an RTOS name where the task or thread
originated. It is important that A_Hop and A_Destination match the Processor_Name, else the
Processor will reject the task.

110603 Page 79 of 364 Architecture Library
 Mirabilis Design, Inc.

Connecting to Architectural Blocks

The Processor Block has some default ports:

instr_in – Instruction In Port
instr_out – Instruction Out, or Complete, Port
bus_in – Bus In, typically from an architectural bus, Port
bus_out – Bus Out, typically to an architectural bus, Port
bus_in2 – Bus In 2, typically from an architectural bus, Port
bus_out2 – Bus Out 2, typically to an architectural bus, Port
reject – Reject Port

The reject port will reject incoming data structures if A_Destination, A_Hop fields do not match
the Processor_Name, or if the Instruction Queue is full. The Instruction Queue size can be set by
the parameter Instruction_Queue_Length in the Processor_Setup window. This queue is for task,
or thread, level data structures. The field A_Instruction defines the mnemonic instruction
sequence, where A_IDX, A_IDY define the pointers to the specific instruction, or instructions, if a
multi-instruction processor in the execute phase of the pipeline.

The user can also add ports to the Processor Block, such as bus_in3, bus_out3 using the right-
mouse click “Configure Ports”, add capability. In this fashion, the Processor can have many more
bus ports than the default configuration. The bus_in, bus_out ports can be connected directly to
the cache, or DRAM blocks, for example.

Processor Block added to a Model

The Processor Block is shown below; note the Architecture_Setup (Arch_Setup) and
Instruction_Set blocks supporting the Processor Block. In this example, the Processor Block is
connected to a Linear Bus Port, which in turn is connected to the cache and DRAM blocks,
forming a memory hierarchy from the Processor I_1, D_1, L_2 to Cache_1, SDRAM_1 via the
Linear Bus. Instructions are entering the instr_in port, and exiting when complete via the
instr_out port. A Traffic block is generating the task level data structures for the Processor in this
test model. The Architecture_Setup and Instruction_Set blocks are described in more detail in
other portions of the documentation, search for Architecture_Setup and Instruction_Set block
information.

It is recommended to run a very simple task through the Processor Block to verify that the
Architecture_Setup, Instruction_Set, and Processor Block parameters are in sync with each
other. The model below runs 500 ADD mnemonic instructions through the test model.

110603 Page 80 of 364 Architecture Library
 Mirabilis Design, Inc.

Figure 48 Typical Processor Model

Configuration of Parameters
The Processor_Setup text window includes the following default entries:

/* First row contains Column Names. */
Parameter_Name Parameter_Value ;
Processor_Instruction_Set: PPC_Instr ;
Number_of_Registers: 32 ;
Processor_Speed_Mhz: cpu_speed ;
Context_Switch_Cycles: 100 ;
Instruction_Queue_Length: 6 ;
Instructions_per_Cycle: 2 ;
Number_of_Pipeline_Stages: 4 ;
Number_of_INT_Execution_Units: 3 ;
Number_of_FP_Execution_Units: 1 ;
Memory_Database_Reference: none ;
Number_of_Cache_Execution_Units: 2 ;
I_1: {Processor_Name=Processor_1, Cache_Speed_Mhz=cache_speed,
Size_KBytes=16.0, Words_per_Cache_Access=2, Words_per_Cache_Line=16,
Cache_Miss_Name=SDRAM_1}
D_1: {Processor_Name=Processor_1, Cache_Speed_Mhz=cache_speed,
Size_KBytes=16.0, Words_per_Cache_Access=2, Words_per_Cache_Line=16,
Cache_Miss_Name=SDRAM_1}

The Processor supports individual instruction (I_1) and data (D_1) caches like the Harvard
architecture, or a single L_1 cache can also be configured. Each processor setup parameter is
described below:

Processor_Instruction_Set
This is the name of the Instruction_Set block referenced by this Processor Block, a string.

Processor_Registers
The number of registers in the processor, an integer. The model uses this value to compare
against the number of variables (A_Variables, see next) in determining if the data is in a register,
or the first level cache.

Context_Switch_Cycles

110603 Page 81 of 364 Architecture Library
 Mirabilis Design, Inc.

This is the time that the processor takes to switch to a new thread, or task, load the registers, and
issue a cache prefetch. Typically, this will be related to the Processor_Registers, three times is
the default.

Processor_Speed_Mhz
The processor speed in Mhz, coupled with the Processor_Bits determines the processor
throughput.

Instruction_Queue_Length
Length of the instruction input queue, if each A_Instruction is a string (individual instruction) or a
string array (task).

Instructions_Per_Cycle
Number of instructions per cycle in the pipeline execution stage, optional integer parameter.
This is an optional parameter.

Pipeline_Stages
Number of stages in the pipeline, should coinside with Pipeline_Stages text window line entries.
If the left hand side has the values 1_, 2_, 3_, 4_ (any number of rows), then there are 4
Pipeline_Stages. Processor block uses this information to create internal representation of the
pipeline in advance of the pipeline detail, type integer.

INT_Execution_Units
Number of internal integer execution units, can be any value 0 to N, type integer.

FP_Execution_Units
Number of internal floating point execution units, can be any value 0 to M, type integer.

Cache_Execution_Units
Number of internal cache execution units, can be any value 1 to P, type integer. This entry pre-
configures the next cache description detail.

Memory_Database_Reference
Memory_Database_Reference for DMA type of instructions, type string. This parameter defaults
to “None”. This is an optional parameter.

Cache Structure

The Processor Block can setup a variety of cache structures. A common one is instruction (I_1),
data (D_1) to on-chip level two (L_2) cache. These three on-chip caches would be described as
follows in the Processor_Setup text window:

Cache_Execution_Units 3

I_1 {Processor_Name=Processor_Name, Cache_Speed_Mhz=500.0, Size_KBytes=64.0,
 Words_per_Cache_Access=1, Words_per_Cache_Line=16, Cache_Miss_Name=L_2}
D_1 {Processor_Name=Processor_Name, Cache_Speed_Mhz=500.0, Size_KBytes=64.0,
 Words_per_Cache_Access=1, Words_per_Cache_Line=16, Cache_Miss_Name=L_2}
L_2 {Processor_Name=Processor_Name, Cache_Speed_Mhz=500.0, Size_KBytes=64.0,
 Words_per_Cache_Access=1,Words_per_Cache_Line=16,Cache_Miss_Name=Cache_1}

The Processor_Name is set to the current Processor. If this field names another Processor
Block, then it means the cache used by the current Processor is shared with the named

110603 Page 82 of 364 Architecture Library
 Mirabilis Design, Inc.

processor. The Cache_Speed_Mhz is typically the speed of the processor, or it could be a
multiple slower, such as 2X slower. The Size_KBytes sets the internal size of the cache. The
Words_Per_Cache_Access can be set to N words, depending on the number of instructions
executed in one cycle. If two instructions are executed per “exec” of the pipeline, then
Words_per_Cache_Access would typically be set to two. The Words_per_Cache_Line
determines how the Processor will perform pre-fetch from the baseline cache to the next level
cache. The Cache_Miss_Name, is the name of the internal, or external, memory that will be
accessed if a single miss occurs, note the Cache_Miss_Name in red.

Other possibilities for the cache structure may be to have the next level memory be off-chip, such
as L_3 cache (Cache_1) or SDRAM. Since each on-chip cache has a miss possibility, it must
point to a higher level memory that is either another cache, or SDRAM.

110603 Page 83 of 364 Architecture Library
 Mirabilis Design, Inc.

Instruction Stack
The instruction stack is a queue of pending instructions to be processed by the processor model,
organized as tasks sent by the RTOS or a behavioral element directly. Each task consists of an
array of sequential processor instructions needed for execution on the processor, represented as
instruction data structures containing:

A_Task_Name (string for task name, optional)
A_Task_ID (integer for task ID, optional)
A_Instruction (string or array of instructions for task)
A_Variables (number of variables associated with the task)
A_Source (string of source requestor, optional)
A_Hop (string of hop address, same as processor if instr_in)
A_Destination (string of destination, processor)
A_Priority (integer of task priority)

The instruction stack can also execute several tasks simultaneously, including accepting higher
priority tasks in the instruction stack queue.

Linear State Machine
The Linear State Machine is the basis for the statistical processor block and consists of a variable
length pipeline, up to N stages, that can accept task Data Structures as an input, and process
that instruction based on the Pipeline_Stages text setup. In the simplest form an instruction is a
sequence of events that involves:

Pre-fetching Instruction Information
Decoding Instruction Information
Executing Instruction, or parts of Instruction
Storing Completed Instruction results

This is a typical four stage pipeline execution sequence that can be modeled in the VisualSim
statistical processor block. Think of the Linear State Machine as a super scheduler that
coordinates internal flow of instructions, based on processor
speed (Mhz), bus widths (Bytes), etc. The Linear State Machine can also model instruction
stream processing, as an instruction specific pipeline, here is the default pipeline:

/* First row contains Column Names. */
Stage_Name Execute_Location Action Condition ;
1_PREFETCH I_1 instr none ;
1_PREFETCH D_1 read none ;
2_DECODE I_1 wait none ;
3_EXECUTE D_1 wait none ;
3_EXECUTE INT exec none ;
4_STORE D_1 write none ;

The only restriction on Stage_Names, is that they start with 1_, 2_, etc. depicting the pipeline
stage, the text after the numbering can be any text that describes the stage. If the above default
has 1_Prefetch_I1 and 1_Prefetch_D1 as stage names, the block will process this as the first
pipeline stage. The Execution_Location identifies the internal execution unit instruction group, or
external execution unit (requires Action = “task”). Valid actions include:

110603 Page 84 of 364 Architecture Library
 Mirabilis Design, Inc.

“none” for equivalent of pipeline decode
“instr” for cache instruction fetch
“read” for cache data fetch
“write” for cache write results to register/cache
“exec” for INT_1, INT_2, FP_1, FP_2 execution on internal execution unit
“wait” for compliment to cache “read”, or “exec” to integer, floating point unit
“task” for external execution, Execute_Location (name of external execution unit), while
 Condition contains name of Instruction group, both required.

The shorthand notation of the listen to architecture where an integer appears, is the first integer
represents the pipeline stage, and if a second integer appears ((3, 4)), it represents the pipeline
execution line number. For the pipeline execution used, here is the stage and line
representations:

Stage_Number Line# Stage_Name Execute_Location Action Condition ;
1 1 1_PREFETCH I_1 instr none ;
1 2 1_PREFETCH D_1 read none ;
2 3 2_DECODE I_1 wait none ;
3 4 3_EXECUTE D_1 wait none ;
3 5 3_EXECUTE INT exec none ;
4 6 4_STORE D_1 write none ;

The Processor Block can model 2 to N stage pipelines, simply by increasing the number of
stages in the pipeline script; note the number on the left-hand-side of the Stage_Name column.
Each stage of the pipeline can perform explicit actions. A classic four stage pipeline that pre-
fetches, decodes, executes, and stores results:

Stage_Name Execute_Location Action Condition ;
1_PREFETCH I_1 instr none ;
1_PREFETCH D_1 read none ;
2_DECODE I_1 wait none ;
3_EXECUTE D_1 wait none ;
3_EXECUTE INT exec none ;
4_STORE D_1 write none ;

 A processor with a longer 13 stage pipeline:

Stage_Name Execution_Location Action Condition ;
1_FETCH1 I_1 instr none ; /* Fetch */
2_FETCH2 D_1 read none ; /* Fetch */
3_DATA0 I_1 wait none ; /* Data */
4_DATA1 D_1 wait none ; /* Data */
5_DATA2 none exec none ; /* Data Pipeline */
6_DATA3 none exec none ; /* Data Pipeline */
7_DATA4 none exec none ; /* Data Pipeline */
8_EXEC0 ARM8 exec none ; /* Execute Instr */
9_EXEC1 none exec none ; /* Processing */
10_EXEC2 none exec none ; /* Processing */
11_EXEC3 none exec none ; /* Processing */
12_EXEC4 ARM8 wait none ; /* Wait Execute */
13_EXEC5 D_1 write none ; /* Store */

One will notice that there are similarities between the two pipelines. In both cases, there is a
Harvard cache architecture that separates the instruction (I_1) and data caches (D_1) on the
instruction/data pre-fetch and decode stages of the pipeline. One may elect to have a single

110603 Page 85 of 364 Architecture Library
 Mirabilis Design, Inc.

cache containing both instructions and data, simply be defining one first level cache. The 13
stage pipeline has some stages that execute (Action = “exec”) in the pipeline to retain the proper
timing, while the Execution_Location is “none”. These stages are not executing instructions, as
longer pipelines are using these extra stages for superscalar style setup for executing the
instruction, in this example Stage_Name = 8_EXEC_0. Similarly, stages 8 through 12 are
executing internal sequences to obtain the result in stage 12_EXEC4, for example. The last
stage, 13_EXEC5, stores results like the classic four stage pipeline.

Some processors will execute a variable number of pipeline stages to gain some local instruction
advantage, however, the change in the length of the pipeline for certain instructions may
introduce non-superscalar effects to the pre-fetch/store portions of the pipeline that may offset
certain instruction efficiencies. If the variable instruction execution is based on a strong baseline
pipeline execution to maintain superscalar properties, and the variable execution is an extension
of the pipeline to the execution unit, then variable pipeline cycles will be accommodated as
pipeline waits or stalls, resulting in more efficient overall operation. The Architecture Library
assumes a fixed pipeline execution length, as a result.

Processing Flow
Instructions enter the Instruction Stack and proceed through the pipeline. The last instruction in a
task triggers the next task for execution, emptying the Instruction Stack of the task that has just
completed.

Figure 49 Statistical Processor Block with Pipeline

Figure 1 illustrates a typical flow in the statistical processor block using an advanced pipeline for
a four stage pipeline and two instruction streams: integer and real. The integer and real
instruction streams resemble an instruction pipeline at a secondary level with essentially the
same capabilities. One could have sub-instruction streams for special instructions, such as
Altivec SIMD in the PowerPC, if needed. Registers contain pseudo data, and resources
(execution units) can perform operations based on the cycles defined in the Instruction_Set block.

Instruction Stack

Fetch Decode Execute Store

Instruction Pipeline

Cache
Read

Cache
Write

Get Calc

Real Stream

Get Calc

Integer Stream
Registers Resources

FP

INT

Instruction Stack

Fetch Decode Execute Store

Instruction Pipeline

Fetch Decode Execute Store

Instruction Pipeline

Cache
Read

Cache
Write

Get Calc

Real Stream

Get Calc

Real Stream

Get Calc

Integer Stream

Get Calc

Integer Stream
RegistersRegisters Resources

FP

INT

110603 Page 86 of 364 Architecture Library
 Mirabilis Design, Inc.

Execution of the Linear State Machine or processor pipeline can take into account a finite set of
operations:

No Action (Clock Delay)
Non-Blocking Call
Blocking Call

Each pipeline stage executes with available resources, else an “idle” cycle will be inserted for a
pipeline stage if the resource is busy. If a pipeline state is waiting for a resource to complete, and
the execution unit has not completed, then the pipeline will “stall” waiting for the result. These
pipeline execution mechanisms indirectly resolve availability and buffering restrictions. The
processor statistics provide buffering information for execution units based on the
tasks/instructions executed on the processor.

More on Processor Flow

Figure 50 Statistical Processor Block Instruction flow

The statistical processor flow in the model starts with a new task starting to execute in the
pipeline. Before the new task starts to execute instructions, the pipeline executes the
Context_Switch_Cycles set for the processor, while at the same time prefetching the first cache
lines for the lowest level caches, such as I_1 (instruction cache) and D_1 (data cache). In the
second stage of the pipeline, the Processor waits for the I_1 instruction and register/D_1 data,
and then decodes the instruction. In the third stage of the pipeline, the instruction is executed
either internally (“exec”) or externally (“task”). The last stage of the pipeline waits (“wait”) for the
finished instruction execution, and stores the result in either registers or cache, depending on the
number of variables the task contains.

Instruction
Start

Instruction
Queue

Instruction
Complete

Fetch
D

ecode
Execute

Store

Read

Registers

FPINT

Cache SDRAM

? ?

INT
Exec

Registers Cache SDRAM

? ?
Write

4 Stage
Pipeline

Instruction
Start

Instruction
Queue

Instruction
Complete

Fetch
D

ecode
Execute

Store
Fetch

D
ecode

Execute
Store

Read

RegistersRegisters

FPFPINTINT

CacheCache SDRAMSDRAM

? ?

INTINT
Exec

RegistersRegisters CacheCache SDRAMSDRAM

? ?
Write

4 Stage
Pipeline

110603 Page 87 of 364 Architecture Library
 Mirabilis Design, Inc.

The processor state plot diagram shows this at the beginning of the simulation:

Figure 51 Statistical Processor Block Startup Cache Prefetch

The light blue trace (DRAM Access: DA) in this figure show the initial cache pre-fetch starting at
the beginning of the context switch cycles for the processor for the I_1 (orange trace) and D_1
(dark green trace) first level caches. Both the I_1 and D_1 caches then go to the L_2 (brown
trace), which in turn goes to the external blue trace (Cache Access:CA). The external cache the
goes to the DRAM for the first cache pre-fetch for I_1 and D_1. The top light green trace (Bus
Controller: BC) and red trace (Bus Data: BD) show the external bus transactions.

The first cache pre-fetches arrive about the same time as the Processor begins to execute the
instructions, 500 ADD instructions in this example model. Internally, the I_1, D_1, and L_2
caches maintain dynamic pre-fetch counts of lines fetched, as compared to instruction task lines
executed, as the key determinant of cache hits or misses. If the cache cannot pre-fetch a cache
line in sufficient time for the pipeline instruction execution, based on the pre-fetch words versus
instructions executed, then the instruction will perform a miss sequence. In addition, on a cache
line crossing, assuming the pre-fetched instruction, data is available, the cache algorithm will
examine if the current tasks running in the cache have sufficient space, such that they have not
been swapped with other executing tasks.

110603 Page 88 of 364 Architecture Library
 Mirabilis Design, Inc.

Instruction_Set

Description
The Instruction_Set block can be used to create instruction references for the Processor using a
shorthand notation with indirect, user-defined naming references. Here is a PowerPC example of
how the Instruction_Set block can be configured:

/* Instruction Set or File Path. */
 Mnew Ra Rb Rc Rd Re ; /* Label */
 PPC IU BPU FPU VPU ;
 IU INT_1 INT_2 ;
 BPU INT_3 ;
 FPU FP_1 ;
 VPU FP_2 ;

begin INT_1 ; /* Group */
 IU_add 1 ;
 IU_shift 1 ;
 IU_rotate 1 ;
 IU_logical 1 ;
end INT_1 ;

begin INT_2 ; /* Group */
 IU_mux 6 ;
 IU_div 19 ;
end INT_2 ;

begin INT_3 ; /* Group */
 *b 1 ;
 l_s 1 ;
end INT_3 ;

begin FP_1 ; /* Group */
 FPU_s_add 3 ;
 FPU_s_mul 3 ;
 FPU_s_madd 3 ;
 FPU_s_div 17 ;
 FPU_d_add 3 ;
 FPU_d_mul 3 ;
 FPU_d_madd 3 ;
 FPU_d_div 31 ;
end FP_1 ;

begin FP_2 ; /* Group */
 vpu_sim_int 1 ;
 vpu_com_int 3 ;
 vpu_fp 4 ;
end FP_2 ;

Notice how the very first line after the column labels, which starts with “PPC” references internal
execution units that appear below in two stages:

 Mnew Ra Rb Rc Rd Re ; /* Label */
 PPC IU BPU FPU VPU ;
 IU INT_1 INT_2 ;
 BPU INT_3 ;
 FPU FP_1 ;

110603 Page 89 of 364 Architecture Library
 Mirabilis Design, Inc.

 VPU FP_2 ;

Since BPU, FPU, and VPU have direct execution unit references, they could have named them
directly. In this case, the first line could read “PPC IU INT_3 FP_1 FP_2”.

The IU (integer units) in the PPC line refers to INT_1 and INT_2 execution units, which are in turn
defined below this line as:

begin INT_1 ; /* Group */
 IU_add 1 ;
 IU_shift 1 ;
 IU_rotate 1 ;
 IU_logical 1 ;
end INT_1 ;

begin INT_2 ; /* Group */
 IU_mux 6 ;
 IU_div 19 ;
end INT_2 ;

The IU line defines two execution units that are available, based on the instructions they execute.
If the instructions are unique between INT_1 and INT_2, then the instruction being processed by
the pipeline will select the execution unit, based on the instruction uniqueness. If the instructions
are shared between INT_1 and INT_2, then the available processor will be selected, in essence
out of order execution based on who is currently available (not true in this example).

If the instructions are unique for all execution units, typically true for smaller processors, then the
first line can just list the execution units directly. As the above execution unit instruction lists
indicate, one can start with:

begin INT_1 ; /* Group */

and finish with:

end INT_1 ;

These keywords append INT_1 to each instruction in the group, so they actually appear
as “INT_1 IU_add 1” internal to the Instruction_Set block. One can use the Instruction_Set
block to create arrays that could be referenced by other blocks in the model (Instruction_Set
name is the memory reference, set to global), for example.

Each instruction can have a single integer to represent the execution time (IU_add and
IU_logical), or two values that allow the model to statistically select from a uniform random
distribution between the two values (IU_shift and IU_rotate):

 IU_add 1 ;
 IU_shift 1 8 ;
 IU_rotate 1 8 ;
 IU_logical 1 ;

110603 Page 90 of 364 Architecture Library
 Mirabilis Design, Inc.

Figure 52 Instruction_Set Parameter Settings

Instruction_Set_Name
This must match the Processor parameter Processor_Instruction_Set, or the model will throw an
exception indicating that it cannot find the instruction set. The memory type can be local or
global, depending on the individual processors actually accessing the same instructions, whether
in a single model window, or if processor blocks are inside hierarchical blocks accessing the
same instruction set. Local is the default.

Instruction_Set_Text
This is the listing for the instruction units, groups already discussed on prior pages.

110603 Page 91 of 364 Architecture Library
 Mirabilis Design, Inc.

Architecture Setup

Description
The architecture setup block configures the complete set of blocks linked to a single
Architecture_Name parameter found in most blocks. The Architecture_Setup has a
Field_Name_Mapping text window, Routing_Table text window, Number_of_Samples,
Statistics_to_Plot, Internal_Plot_Trace_Offset, and Listen_to_Architecture entries.

Architecture_Setup Parameter Settings

110603 Page 92 of 364 Architecture Library
 Mirabilis Design, Inc.

Configuration of Parameters
Field_Mapping

/* First row contains Column Names. */
External_Field_Name Internal_Field_Name ;

ID A_Address ;
A_Bytes A_Bytes ;
A_Data A_Data ;
A_IDX A_IDX ;
A_Instruction A_Instruction ;
A_Priority A_Priority ;
A_Source A_Source ;
A_Destination A_Destination ;
A_Task_ID A_Task_ID ;
A_Time A_Time ;

This Field_Name_Mapping allows one to map and existing Data Structure fields to architecture
specific fields for common variables, such as routing, address, instructions, priority, etc. There is
also a standard Processor_DS that one can use with these fields pre-defined. The
Processor_DS:

/*
 Processor Data Structure

Field Name Type Value Comment */

A_Address int 100 ; /* Starting Instruction, Bus Addr */
A_Branch boolean false ; /* Instruction Branch */
A_Bytes int 8 ; /* Bus Bytes */
A_Bytes_Remaining int 4 ; /* Bus Bytes Remaining */
A_Bytes_Sent int 4 ; /* Bus Bytes Sent */
A_Command String Read ; /* Routing Command */
A_Data String MyData ; /* User Data */
A_Instruction String ADD ; /* Instr (String, or ArrayToken) */
A_Interrupt boolean false ; /* Instruction Interrrupt */
A_Prefetch boolean false ; /* Instruction Prefetch Flag */
A_IDX int 0 ; /* Instruction Index */
A_Priority int 0 ; /* Instruction, Bus Priority */
A_Proc_Return int -1 ; /* Procesor Return ID */
A_Return int -1 ; /* Return ID */
A_Task_Name String Name ; /* Unique Task Name */
A_Task_ID long 1 ; /* Unique Task ID */
A_Source String Src ; /* Routing Source */
A_Hop String Hop ; /* Routing Hop */
A_Status String Status ; /* Routing Status */
A_Destination String Dest ; /* Routing Destination */
A_Time double 0.0 ; /* Internal Timestamp */
A_Variables int 16 ; /* Number of Software Variables */

Usage of Data Structure fields in the Model

A_Address
Holds the bus address, maintained internally and not shown to the user

A_Branch
Instruction Branch, used by the processor

A_Bytes
Total Bus Bytes of a transaction

A_Bytes_Remaining
Bus Bytes Remaining after a transaction through the bus is made

110603 Page 93 of 364 Architecture Library
 Mirabilis Design, Inc.

A_Bytes_Sent
Bus Bytes sent in a transaction through the bus

A_Command
Holds the Request made by the Master, destined for a slave device

A_Data
User Data

A_Instruction
Processor Instruction

A_Interrupt
Processor Instruction Interrupt either true or false.

A_Prefetch
Processor Instruction Prefetch Flag either true or false

A_IDX
Processor Instruction Index

A_Priority
Bus Priority of the Processor Instruction

A_Proc_Return
Processor Return ID

A_Return
Return ID

A_Task_Name
Unique Processor Task Name

A_Task_ID
Unique Processor Task ID

A_Source
Source that generates a request

A_Hop
Hop port name for routing a request

A_Status
Routing Status manipulated internally the Bus Controller

A_Destination
Routing Destination, destination where the request has to be sent

A_Time
Internal Timestamp

A_Variables
Number of Software Variables

Data Structure Example
{A_Address = 16,
A_Branch = false,
A_Bytes = 8,
A_Bytes_Remaining = 4,
A_Bytes_Sent = 4,
A_Command = "Write",
A_Data = "MyData",
A_Destination = "Processor_1",
A_Hop = "Processor_1",
A_IDX = 0,
A_Instruction = "ADD",
A_Interrupt = false,

110603 Page 94 of 364 Architecture Library
 Mirabilis Design, Inc.

A_Pipeline = {0, 0, 0, 0, 0, 0},
A_Prefetch = false,
A_Priority = 0,
A_Proc_Return = -1,
A_Return = -1,
A_Source = "RTOS",
A_Status = "Status",
A_Task_ID = 1L,
A_Task_Name = "Name",
A_Time = 0.0,
A_Variables = 16,
BLOCK = "DS_Gen",
DELTA = 1.464E-6,
DS_NAME = "Processor_DS",
ID = 16,
INDEX = 732,
TIME = 1.5E-6}

Routing_Table
This can route instructions within the processor, bus, cache, SDRAM topology modeled. One
advantage of this simplified routing table is that the external bus creates its own internal routing
map, so bus input port to output bus port, for a connected cache, or SDRAM does not need to be
added to the routing table, thereby saving many manual entries. Here is a typical routing table:

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
Processor_1 Cache_1 Port_1 bus_out ;
Processor_1 SDRAM_1 Port_1 bus_out ;
Cache_1 Processor_1 Port_2 output ;
Cache_1 SDRAM_1 Port_2 output ;
SDRAM_1 Processor_1 Port_4 output ;
SDRAM_1 Cache_1 Port_4 output ;

The organization of the routing table is source, destination to obtain the next hop in the routing
table, and there is also a Source_Port for the port name to exit if there is more than one output
port on the block, such as the Processor, Cache, or DRAM. One will notice that the default
routing table does not have any bus ports, Port_1, Port_2, Port_3, or Port_4 as sources or
destinations, since the bus itself creates an internal bus specific routing table. Thus, one just
needs to add entries for Processor, Cache, DRAM, I_O blocks, meaning to/from destination
nodes in the topology.

The use of the routing table is straight forward, in the sense that any entry missing during
processor execution will throw an exception saying this source, destination pair is “missing” in the
routing table, one then needs to add source destination, and the next hop in the routing. The Hop
column are typically bus ports, such as going from the Processor to Cache_1, using Port_1 of the
bus, and using the bus_out port of the Processor. The Hop column is used in the model to check
that the next destination is correct, meaning each block A_Hop field must match the node name,
else the model will throw an exception. This is to confirm the desired routing, and if a change has
been made to make simple checks at each point in the overall topology. To determine the next
Hop in the routing table simply look at which port one wishes to use, and the source port to leave
the Processor, for example.

This routing table can be expanded to include multiple busses in the same topology by just
adding more rows to the routing table, based on advance knowledge, or routing exceptions, when
the model is running. The Source_Port column becomes more important in multiple bus
topologies, as one can connect a dual port cache, dual port SDRAM to two different processors,
by having the source (Cache for example), destination (Processor_1 or Processor_2 – two entries

110603 Page 95 of 364 Architecture Library
 Mirabilis Design, Inc.

in routing table), and Hop with different port names, and the Source_Port will be output or output2
on the Cache, depending on the destination processor.

Here is an example of a dual processor, dual-port cache, dual-port SDRAM routing table:

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
ARM7_1 Cache_L2 Port_1 bus_out ;
ARM7_2 Cache_L2 Port_8 bus_out ;
Cache_L2 ARM7_1 Port_2 output ;
Cache_L2 ARM7_2 Port_5 output2 ;
Cache_L2 SDRAM_1 Port_2 output ;
SDRAM_1 Cache_L2 Port_4 output ;
SDRAM_1 ARM7_1 Port_4 output ;
SDRAM_1 ARM7_2 Port_7 output2 ;

Here is what the above topology looks like, and shows how a relatively complex topology requires
only a few routing table entries. Each to/from node in the topology requires two entries in the
table, in the model below the to/from nodes are ARM7_1, ARM7_2, Cache_L2, and SDRAM_1.
One will also observe that there are no entries for the eight bus ports as source or destinations,
since they contain their own mini-routing tables calculated when “hello” messages are sent during
model initialization. The bus ports do appear as Hop column entries, used for dynamic routing.

Figure 53 Dual Processor, Dual-Port Cache, Dual-Port SDRAM Routing

110603 Page 96 of 364 Architecture Library
 Mirabilis Design, Inc.

Purpose of Hello Messages
Every block within the hardware architecture library sends out Hello messages at simulation time
0.0 to determine the node-to-node connectivity. Each bus in the topology creates an internal
routing table, based on the hello messages received, meaning the bus knows each end node it is
connected to, and the user is freed from having to construct each bus routing table.

Hello Messages received by each to/from node are added to the routing table with the source,
destination, port information. User entries to the routing table supplement the Hello message
entries to simplify routing table construction.

Custom Routing with DeviceInterface (a.k.a I_O) Block
One can create custom routing within a model, simply by using the DeviceInterface block as a
named port connected to the bus. The output of the DeviceInterface block passes transactions
outside of the internal routing table of one portion of the hardware architecture and can reenter
another portion of the hardware architecture with a second DeviceInterface block. The user
needs to enter the DeviceInterface block names manually into the routing table, as if they are
endpoint to/from nodes, while in reality they become gateway nodes. In the example below, the
Cache_Miss_Name can now refer to DeviceInterface block, which could route to the SDRAM_1
shown, or other memories, assuming user routing between DeviceInterface blocks. Here is an
example of custom routing with bridge functionality:

Figure 54 Custom Routing with I_O Block

Number_of_Samples
This field determines how many statistics samples will be collected for the simulation run. If set to
10, then the simulation time will be segmented into 10 equal times for obtaining statistics for the
Processor, caches, execution units, bus, cache, or SDRAM blocks.

Util_stats_out
Here are typical statistical outputs for utilizations only (util_stats_out port on Architecture_Setup
block):

{BLOCK = ".Processor_500_ADDs_Instruction.Arch_Setup",
Bus_1_Utilization_Pct_Max = 7.304347826087,
Bus_1_Utilization_Pct_Mean = 5.2869565217391,
Bus_1_Utilization_Pct_Min = 3.6521739130435,
Bus_1_Utilization_Pct_StDev = 1.3391304347826,
Cache_1_Utilization_Pct_Max = 1.5652173913043,

110603 Page 97 of 364 Architecture Library
 Mirabilis Design, Inc.

Cache_1_Utilization_Pct_Mean = 0.5565217391304,
Cache_1_Utilization_Pct_Min = 0.1739130434783,
Cache_1_Utilization_Pct_StDev = 0.5132645065521,
DELTA = 0.0,
DS_NAME = "Architecture_Stats",
ID = 10,
INDEX = 0,
Processor_1_D_1_Utilization_Pct_Max = 4.9565217391304,
Processor_1_D_1_Utilization_Pct_Mean = 3.622712086394,
Processor_1_D_1_Utilization_Pct_Min = 2.5217391304348,
Processor_1_D_1_Utilization_Pct_StDev = 0.6703205236235,
Processor_1_INT_1_Utilization_Pct_Max = 30.0,
Processor_1_INT_1_Utilization_Pct_Mean = 27.0821422758912,
Processor_1_INT_1_Utilization_Pct_Min = 18.2009838369642,
Processor_1_INT_1_Utilization_Pct_StDev = 3.4499003893845,
Processor_1_INT_2_Utilization_Pct_Max = 27.4782608695652,
Processor_1_INT_2_Utilization_Pct_Mean = 24.3595441693535,
Processor_1_INT_2_Utilization_Pct_Min = 16.9360505973296,
Processor_1_INT_2_Utilization_Pct_StDev = 2.9988177798574,
Processor_1_I_1_Utilization_Pct_Max = 57.304347826087,
Processor_1_I_1_Utilization_Pct_Mean = 51.5928249820748,
Processor_1_I_1_Utilization_Pct_Min = 35.2775825720309,
Processor_1_I_1_Utilization_Pct_StDev = 6.3599231594066,
Processor_1_L_2_Utilization_Pct_Max = 4.0,
Processor_1_L_2_Utilization_Pct_Mean = 3.5771415496232,
Processor_1_L_2_Utilization_Pct_Min = 2.6001405481377,
Processor_1_L_2_Utilization_Pct_StDev = 0.3884179251631,
Processor_1_PROC_Utilization_Pct_Max = 57.2173913043478,
Processor_1_PROC_Utilization_Pct_Mean = 51.4825160304522,
Processor_1_PROC_Utilization_Pct_Min = 35.1370344342937,
Processor_1_PROC_Utilization_Pct_StDev = 6.3833018229608,
Processor_1_Register_Rd_Utilization_Pct_Max = 57.3913043478261,
Processor_1_Register_Rd_Utilization_Pct_Mean = 51.7965463970403,
Processor_1_Register_Rd_Utilization_Pct_Min = 34.9964862965566,
Processor_1_Register_Rd_Utilization_Pct_StDev = 6.4092284138104,
Processor_1_Register_Wr_Utilization_Pct_Max = 55.4395126196693,
Processor_1_Register_Wr_Utilization_Pct_Mean = 49.686043916307,
Processor_1_Register_Wr_Utilization_Pct_Min = 34.0126493323963,
Processor_1_Register_Wr_Utilization_Pct_StDev = 6.1062749523381,
SDRAM_1_Utilization_Pct_Max = 11.5942028985507,
SDRAM_1_Utilization_Pct_Mean = 7.6811594202899,
SDRAM_1_Utilization_Pct_Min = 5.7971014492754,
SDRAM_1_Utilization_Pct_StDev = 2.2264190573532,
TIME = 2.3E-5}

One will notice min, mean, stdev, max values for all architecture resources.

Internal_stats_out
Here are typical statistical output for throughput, latencies, and buffering within the architecture
resources (internal_stats_out port on Architecture_Setup block):

{BLOCK = ".Processor_500_ADDs_Instruction.Arch_Setup",
Bus_1_Delay_Max = 3.8E-8,
Bus_1_Delay_Mean = 1.3212765957447E-8,
Bus_1_Delay_Min = 3.9999999999986E-9,
Bus_1_Delay_StDev = 1.3652894900276E-8,
Bus_1_Throughput_MBs_Max = 130.4347826086957,
Bus_1_Throughput_MBs_Mean = 89.3913043478261,
Bus_1_Throughput_MBs_Min = 62.6086956521739,
Bus_1_Throughput_MBs_StDev = 27.8825514070694,
Cache_1_Delay_Time_Max = 3.2E-8,
Cache_1_Delay_Time_Mean = 3.7647058823529E-9,
Cache_1_Delay_Time_Min = 2.0E-9,
Cache_1_Delay_Time_StDev = 7.0588235294118E-9,
Cache_1_Hit_Ratio_Max = 100.0,
Cache_1_Hit_Ratio_Mean = 95.5,
Cache_1_Hit_Ratio_Min = 75.0,

110603 Page 98 of 364 Architecture Library
 Mirabilis Design, Inc.

Cache_1_Hit_Ratio_StDev = 9.0691785736085,
Cache_1_Prefetch_Count_Max = 1.0,
Cache_1_Prefetch_Count_Mean = 0.2,
Cache_1_Prefetch_Count_Min = 0.0,
Cache_1_Prefetch_Count_StDev = 0.4,
Cache_1_Throughput_MBs_Max = 31.304347826087,
Cache_1_Throughput_MBs_Mean = 11.1304347826087,
Cache_1_Throughput_MBs_Min = 3.4782608695652,
Cache_1_Throughput_MBs_StDev = 10.2652901310426,
DELTA = 0.0,
DS_NAME = "Architecture_Stats",
ID = 10,
INDEX = 0,
Processor_1_Context_Switch_Time_Pct_Max = 17.5652173913043,
Processor_1_Context_Switch_Time_Pct_Mean= 10.528036160504,
Processor_1_Context_Switch_Time_Pct_Min = 8.7826086956522,
Processor_1_Context_Switch_Time_Pct_StDev= 2.7060851320617,
Processor_1_D_1_Hit_Ratio_Max = 100.0,
Processor_1_D_1_Hit_Ratio_Mean = 95.5349143610013,
Processor_1_D_1_Hit_Ratio_Min = 83.3333333333333,
Processor_1_D_1_Hit_Ratio_StDev = 6.1908148498191,
Processor_1_D_1_Throughput_MIPs_Max = 24.7826086956522,
Processor_1_D_1_Throughput_MIPs_Mean = 18.11356043197,
Processor_1_D_1_Throughput_MIPs_Min = 12.6086956521739,
Processor_1_D_1_Throughput_MIPs_StDev = 3.3516026181173,
Processor_1_INT_1_Throughput_MIPs_Max = 150.0,
Processor_1_INT_1_Throughput_MIPs_Mean = 135.4107113794562,
Processor_1_INT_1_Throughput_MIPs_Min = 91.0049191848208,
Processor_1_INT_1_Throughput_MIPs_StDev = 17.2495019469227,
Processor_1_INT_2_Throughput_MIPs_Max = 137.3913043478261,
Processor_1_INT_2_Throughput_MIPs_Mean = 121.7977208467678,
Processor_1_INT_2_Throughput_MIPs_Min = 84.6802529866479,
Processor_1_INT_2_Throughput_MIPs_StDev = 14.9940888992868,
Processor_1_I_1_Buffer_Length_Max = 1.0,
Processor_1_I_1_Buffer_Length_Mean = 0.7,
Processor_1_I_1_Buffer_Length_Min = 0.0,
Processor_1_I_1_Buffer_Length_StDev = 0.4582575694956,
Processor_1_I_1_Hit_Ratio_Max = 96.8,
Processor_1_I_1_Hit_Ratio_Mean = 95.9988414763396,
Processor_1_I_1_Hit_Ratio_Min = 93.6416184971098,
Processor_1_I_1_Hit_Ratio_StDev = 0.850823915122,
Processor_1_I_1_Throughput_MIPs_Max = 286.5217391304348,
Processor_1_I_1_Throughput_MIPs_Mean = 257.9641249103743,
Processor_1_I_1_Throughput_MIPs_Min = 176.3879128601546,
Processor_1_I_1_Throughput_MIPs_StDev = 31.799615797033,
Processor_1_L_2_Hit_Ratio_Max = 100.0,
Processor_1_L_2_Hit_Ratio_Mean = 98.0977801268499,
Processor_1_L_2_Hit_Ratio_Min = 92.5,
Processor_1_L_2_Hit_Ratio_StDev = 2.9900119064018,
Processor_1_L_2_Throughput_MIPs_Max = 20.0,
Processor_1_L_2_Throughput_MIPs_Mean = 17.885707748116,
Processor_1_L_2_Throughput_MIPs_Min = 13.0007027406887,
Processor_1_L_2_Throughput_MIPs_StDev = 1.9420896258153,
Processor_1_Register_Rd_Buffer_Length_Max = 1.0,
Processor_1_Register_Rd_Buffer_Length_Mean = 0.7,
Processor_1_Register_Rd_Buffer_Length_Min = 0.0,
Processor_1_Register_Rd_Buffer_Length_StDev = 0.4582575694956,
Processor_1_Register_Rd_Throughput_MIPs_Max = 286.9565217391305,
Processor_1_Register_Rd_Throughput_MIPs_Mean = 258.9827319852018,
Processor_1_Register_Rd_Throughput_MIPs_Min = 174.9824314827829,
Processor_1_Register_Rd_Throughput_MIPs_StDev = 32.0461420690518,
Processor_1_Register_Wr_Throughput_MIPs_Max = 277.1975630983464,
Processor_1_Register_Wr_Throughput_MIPs_Mean = 248.4302195815351,
Processor_1_Register_Wr_Throughput_MIPs_Min = 170.0632466619818,
Processor_1_Register_Wr_Throughput_MIPs_StDev = 30.5313747616902,
Processor_1_Stall_Time_Pct_Max = 3.9130434782609,
Processor_1_Stall_Time_Pct_Mean = 2.4951121451687,
Processor_1_Stall_Time_Pct_Min = 1.1243851018974,
Processor_1_Stall_Time_Pct_StDev = 0.8058290563884,

110603 Page 99 of 364 Architecture Library
 Mirabilis Design, Inc.

Processor_1_Task_Delay_Max = 1.282E-6,
Processor_1_Task_Delay_Mean = 7.1638958829534E-7,
Processor_1_Task_Delay_Min = 1.64E-7,
Processor_1_Task_Delay_StDev = 2.9889837826806E-7,
SDRAM_1_Delay_Time_Max = 6.6666666666667E-8,
SDRAM_1_Delay_Time_Mean = 6.3095238095238E-8,
SDRAM_1_Delay_Time_Min = 1.6666666666667E-8,
SDRAM_1_Delay_Time_StDev = 1.2876968840943E-8,
SDRAM_1_Throughput_MBs_Max = 111.304347826087,
SDRAM_1_Throughput_MBs_Mean = 72.695652173913,
SDRAM_1_Throughput_MBs_Min = 55.6521739130434,
SDRAM_1_Throughput_MBs_StDev = 22.0094497663393,
TIME = 2.3E-5}

The Processor stall time relates to the execution pipeline waiting for an execution unit to
complete, assuming the pipeline is waiting for the results. The Processor idle time relates to time
the Processor cannot start an execution because the execution unit is busy. The cache hit ratios
are in percent (100.0 maximum). The throughput should correlate to the utilization percentages
in the first statistics output, done for convenience, and a different way to look at performance.

Statistics_to_Plot
The Architecture Setup parameter, Statistics_to_Plot are simply lists of the statistics one wishes
to plot from the above two statistics summaries. One just needs to add a comma-separated list to
the parameter line, that match the above statistics names on the left. At the output of the
Architecture_Setup block, one can add a relation, plus add a parameter to the relation (configure
relation) named “width” to reflect how many traces one wishes to see on the plot.

Internal_Plot_Trace_Offset
The Architecture_Setup parameter, Internal_Plot_Trace_Offset indicates how many spaces
between state plots. The reason this is valuable, is that the state plots reflect the internal
execution unit buffering, based on pipeline execution.

Listen_to_Architecture
The Listen_to_Architecture pulldown menu, allows one to listen to specific blocks in the
architecture, and watch operation at the detailed level. For example the Processor, if
selected in this menu pulldown has the following sequence, on the start of a new task, including
context switch cycles, prefetch, and task execution of instructions (500 ADDs):

Field_Name_Mapping Array:
{{Ext_Field = "ID",
Int_Field = "A_Address"}, {Ext_Field = "A_Bytes",
Int_Field = "A_Bytes"}, {Ext_Field = "A_Data",
Int_Field = "A_Data"}, {Ext_Field = "A_IDX",
Int_Field = "A_IDX"}, {Ext_Field = "A_Instruction",
Int_Field = "A_Instruction"}, {Ext_Field = "A_Priority",
Int_Field = "A_Priority"}, {Ext_Field = "A_Source",
Int_Field = "A_Source"}, {Ext_Field = "A_Destination",
Int_Field = "A_Destination"}, {Ext_Field = "A_Task_ID",
Int_Field = "A_Task_ID"}, {Ext_Field = "A_Time",
Int_Field = "A_Time"}}

"Processor_1 Bus In:
{A_Destination = \"Architecture_1\",
A_Hop = \"output1\",
A_Instruction = \"Hello\",
A_Source = \"Port_1\"}"
"Processor_1 Bus In:
{A_Destination = \"Architecture_1\",
A_Hop = \"output1\",
A_Instruction = \"Hello\",
A_Source = \"Port_3\"}"
"Processor_1 (ADD) virtual input at Cycle: 1"
"Processor_1 context switch at Cycle: 2"
"Processor_1 context switch at Cycle: 3"
"Processor_1 context switch at Cycle: 4"

110603 Page 100 of 364 Architecture Library
 Mirabilis Design, Inc.

"Processor_1 context switch prefetch I_1 internal (L_2) cache at Cycle: 4"
"Processor_1 context switch prefetch I_1 to bus (L_2) cache at Cycle: 4"
"Processor_1 context switch prefetch D_1 internal (L_2) cache at Cycle: 4"
"Processor_1 context switch prefetch D_1 to bus (L_2) cache at Cycle: 4"
"Processor_1 context switch at Cycle: 5"
"Processor_1 context switch at Cycle: 6"
"Processor_1 context switch at Cycle: 7"
"Processor_1 context switch at Cycle: 8"
"Processor_1 context switch at Cycle: 9"
"Processor_1 context switch at Cycle: 10"
"Processor_1 context switch at Cycle: 11"
"Processor_1 context switch at Cycle: 12"
"Processor_1 context switch at Cycle: 13"
"Processor_1 context switch at Cycle: 14"
"Processor_1 context switch at Cycle: 15"
"Processor_1 context switch at Cycle: 16"
"Processor_1 context switch at Cycle: 17"
"Processor_1 context switch at Cycle: 18"
"Processor_1 context switch at Cycle: 19"
"Processor_1 context switch at Cycle: 20"
"Processor_1 context switch at Cycle: 21"
"Processor_1 context switch at Cycle: 22"
"Processor_1 context switch at Cycle: 23"
"Processor_1 context switch at Cycle: 24"
"Processor_1 context switch at Cycle: 25"
"Processor_1 context switch at Cycle: 26"
"Processor_1 context switch at Cycle: 27"
"Processor_1 context switch at Cycle: 28"
"Processor_1 context switch at Cycle: 29"
"Processor_1 context switch at Cycle: 30"
"Processor_1 context switch at Cycle: 31"
"Processor_1 context switch at Cycle: 32"
"Processor_1 context switch at Cycle: 33"
"Processor_1 context switch at Cycle: 34"
"Processor_1 context switch at Cycle: 35"
"Processor_1 context switch at Cycle: 36"
"Processor_1 context switch at Cycle: 37"
"Processor_1 context switch at Cycle: 38"
"Processor_1 context switch at Cycle: 39"
"Processor_1 context switch at Cycle: 40"
"Processor_1 context switch at Cycle: 41"
"Processor_1 context switch at Cycle: 42"
"Processor_1 context switch at Cycle: 43"
"Processor_1 context switch at Cycle: 44"
"Processor_1 context switch at Cycle: 45"
"Processor_1 context switch at Cycle: 46"
"Processor_1 context switch at Cycle: 47"
"Processor_1 context switch at Cycle: 48"
"Processor_1 context switch at Cycle: 49"
"Processor_1 context switch at Cycle: 50"
"Processor_1 context switch at Cycle: 51"
"Processor_1 context switch at Cycle: 52"
"Processor_1 context switch at Cycle: 53"
"Processor_1 context switch at Cycle: 54"
"Processor_1 context switch at Cycle: 55"
"Processor_1 context switch at Cycle: 56"
"Processor_1 context switch at Cycle: 57"
"Processor_1 context switch at Cycle: 58"
"Processor_1 context switch at Cycle: 59"
"Processor_1 context switch at Cycle: 60"
"Processor_1 Bus In:
{A_Address = 0,
A_Branch = false,
A_Bytes = 64,
A_Bytes_Remaining = 4,
A_Bytes_Sent = 64,
A_Command = \"Read\",
A_Data = \"MyData\",
A_Destination = \"Processor_1\",
A_Hop = \"Processor_1\",
A_IDX = 0,
A_Instruction = {\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",

110603 Page 101 of 364 Architecture Library
 Mirabilis Design, Inc.

\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\", \"ADD\",
\"ADD\", \"ADD\", \"ADD\", \"ADD\"}
,
A_Interrupt = false,
A_Pipeline = {0, 0, 0, 0, 0, 0}
,
A_Prefetch = true,
A_Priority = 0,
A_Proc_Return = -1,
A_Return = -1,
A_Source = \"SDRAM_1\",
A_Status = \"Port_3_\",
A_TIME = 8.0E-9,
A_Task_ID = 731470001L,
A_Task_Name = \"I_1\",
A_Time = 8.7E-8,
A_Variables = 16,
BLOCK = \"uEngine\",
DELTA = 2.0E-9,
DS_NAME = \"Processor_DS\",
ID = 0,
INDEX = 0,
TIME = 2.0E-9}"
"Processor_1 External Cache Line Prefetch (I_1731470001) complete at
Cycle: 60"
"Processor_1 context switch at Cycle: 60"
"Processor_1 context switch at Cycle: 61"
"Processor_1 context switch at Cycle: 61"
"Processor_1 context switch at Cycle: 62"
"Processor_1 context switch at Cycle: 62"
"Processor_1 context switch at Cycle: 63"
"Processor_1 context switch at Cycle: 63"
"Processor_1 context switch at Cycle: 64"
"Processor_1 context switch at Cycle: 64"

110603 Page 102 of 364 Architecture Library
 Mirabilis Design, Inc.

"Processor_1 context switch at Cycle: 65"
"Processor_1 context switch at Cycle: 65"
"Processor_1 context switch at Cycle: 66"
"Processor_1 context switch at Cycle: 66"
"Processor_1 context switch at Cycle: 67"
"Processor_1 context switch at Cycle: 67"
"Processor_1 context switch at Cycle: 68"
"Processor_1 context switch at Cycle: 68"
"Processor_1 context switch at Cycle: 69"
"Processor_1 context switch at Cycle: 69"
"Processor_1 context switch at Cycle: 70"
"Processor_1 context switch at Cycle: 70"
"Processor_1 context switch at Cycle: 71"
"Processor_1 context switch at Cycle: 71"
"Processor_1 context switch at Cycle: 72"
"Processor_1 context switch at Cycle: 72"
"Processor_1 context switch at Cycle: 73"
"Processor_1 context switch at Cycle: 73"
"Processor_1 context switch at Cycle: 74"
"Processor_1 context switch at Cycle: 74"
"Processor_1 context switch at Cycle: 75"
"Processor_1 context switch at Cycle: 75"
"Processor_1 context switch at Cycle: 76"
"Processor_1 context switch at Cycle: 76"
"Processor_1 context switch at Cycle: 77"
"Processor_1 context switch at Cycle: 77"
"Processor_1 context switch at Cycle: 78"
"Processor_1 context switch at Cycle: 78"
"Processor_1 context switch at Cycle: 79"
"Processor_1 context switch at Cycle: 79"
"Processor_1 context switch at Cycle: 80"
"Processor_1 context switch at Cycle: 80"
"Processor_1 context switch at Cycle: 81"
"Processor_1 start pipeline at Cycle: 81"
"Processor_1 (ADD) to I_1 (1, 3) at Cycle: 81"
"Processor_1 (ADD) to D_1 (1, 4) at Cycle: 81"
"Processor_1 (2) empty at Cycle: 81"
"Processor_1 (3) empty at Cycle: 81"
"Processor_1 (4) empty at Cycle: 81"
"Processor_1 prefetch I_1 internal (L_2) cache at Cycle: 82"
"Processor_1 I_1 complete at Cycle: 82"
"Processor_1 Register_Rd complete at Cycle: 82"
"Processor_1 start pipeline at Cycle: 82"
"Processor_1 (ADD) to I_1 (1, 3) at Cycle: 82"
"Processor_1 (ADD) to D_1 (1, 4) at Cycle: 82"
"Processor_1 start pipeline at Cycle: 82"
"Processor_1 wait done I_1 (2, 3) at Cycle: 82"
"Processor_1 (3) empty at Cycle: 82"
"Processor_1 (4) empty at Cycle: 82"
"Processor_1 I_1 complete at Cycle: 82"
"Processor_1 L_2 busy at Cycle: 82"
"Processor_1 Register_Rd complete at Cycle: 82"
"Processor_1 start pipeline at Cycle: 82"
"Processor_1 (ADD) to I_1 (1, 3) at Cycle: 82"
"Processor_1 (ADD) to D_1 (1, 4) at Cycle: 82"
"Processor_1 start pipeline at Cycle: 82"
"Processor_1 wait done I_1 (2, 3) at Cycle: 82"
"Processor_1 start pipeline at Cycle: 82"
"Processor_1 wait done D_1 (3, 4) at Cycle: 82"
"Processor_1 (ADD) to INT (3, -1) at Cycle: 82"
"Processor_1 (4) empty at Cycle: 82"
"Processor_1 I_1 complete at Cycle: 83"
"Processor_1 INT_1 busy at Cycle: 83"
"Processor_1 L_2 busy at Cycle: 83"
"Processor_1 Register_Rd complete at Cycle: 83"
"Processor_1 start pipeline at Cycle: 83"
"Processor_1 (ADD) to I_1 (1, 3) at Cycle: 83"
"Processor_1 (ADD) to D_1 (1, 4) at Cycle: 83"
"Processor_1 start pipeline at Cycle: 83"
"Processor_1 wait done I_1 (2, 3) at Cycle: 83"
"Processor_1 start pipeline at Cycle: 83"
"Processor_1 wait done D_1 (3, 4) at Cycle: 83"
"Processor_1 (ADD) to INT (3, -1) at Cycle: 83"
"Processor_1 start pipeline at Cycle: 83"
"Processor_1 (ADD) to D_1 (4, -1) at Cycle: 83"
"Processor_1 I_1 complete at Cycle: 83"
"Processor_1 INT_1 busy at Cycle: 83"

110603 Page 103 of 364 Architecture Library
 Mirabilis Design, Inc.

"Processor_1 L_2 busy at Cycle: 83"
"Processor_1 Register_Rd complete at Cycle: 83"
"Processor_1 start pipeline at Cycle: 83"
"Processor_1 (ADD) to I_1 (1, 3) at Cycle: 83"
"Processor_1 (ADD) to D_1 (1, 4) at Cycle: 83"

Listen_to_Architecture: Pipeline View

PPC_7410_1 FPU_s_add DECODE EXECUTE STORE Active @Instr 0 @Cycle 202
PPC_7410_1 FPU_s_add FPU_s_add EXECUTE STORE Active @Instr 1 @Cycle 203
PPC_7410_1 FPU_s_add FPU_s_add FPU_s_add STORE Active @Instr 2 @Cycle 204
PPC_7410_1 *b FPU_s_add FPU_s_add FPU_s_add Stall @Instr 3 @Cycle 205
PPC_7410_1 *b FPU_s_add FPU_s_add FPU_s_add Stall @Instr 3 @Cycle 206
PPC_7410_1 *b FPU_s_add FPU_s_add FPU_s_add Active @Instr 3 @Cycle 207
PPC_7410_1 b *b FPU_s_add FPU_s_add Stall @Instr 4 @Cycle 208
PPC_7410_1 b *b FPU_s_add FPU_s_add Stall @Instr 4 @Cycle 209
PPC_7410_1 b *b FPU_s_add FPU_s_add Active @Instr 4 @Cycle 210

110603 Page 104 of 364 Architecture Library
 Mirabilis Design, Inc.

State Plot
The State Plot for the above Processor, at top level instruction level:

Figure 55 Architecture_State Plot Output

One can see in Figure 9, the register activity at the bottom in red (Reg_R: Register Read), blue
(Reg_W: Register Write) traces. The next two traces, INT_1 and INT_2 are the two integer units,
with more activity from INT_1 for these tasks. The next two traces, I_1, and D_1 are the lower
level cache activity, the next trace up is the L_2 cache activity, including on-going pre-fetch during
instruction execution. The next two traces, CA (Cache_1 Access), and DA (DRAM Access) show
the equivalent L_3, SDRAM memory activity. The black trace DR (DRAM Refresh) shows
dynamic RAM refreshing. The top two traces BS (Bus Controller), BS (Bus Data) show the
external bus traffic. Each task here can be expanded to see individual instructions executing, and
their relation to all of the architecture resources.

Processor Model Features

The statistical processor block can be hierarchical to support multiple processor cores. The
processor block will consist of the instruction stack, instruction pipeline, and external
processor/bus/cache/DRAM blocks. A single processor block will be able to call a second
processor block for out of order instruction processing as instruction streams. For example, the
PowerPC has two integer/floating point instruction streams, and the Altivec Single Instruction
Multiple Data (SIMD) unit that can be modeled as a separate processor. The statistical processor

110603 Page 105 of 364 Architecture Library
 Mirabilis Design, Inc.

block can dispatch instructions from a single pipeline to multiple external execution units, and can
execute them in parallel.

Instructions can be sent from the behavioral level directly to the processor, or via and RTOS
function, depending on the type of processor being modeled, whether common microprocessor,
FPGA, ASIC, DSP, or custom microcontroller. Typically, the basic or macro level instruction will
be requested through the RTOS or behavioral directly, and executed on the processor model. If
common ADD, SUB, MULT, DIV microprocessor instructions, and then a behavioral block can
send requests to the processor model for execution as a single instruction or task level set of
instructions. If FPGA, ASIC, or DSP, then a behavioral block can send FFT level instruction with
operands to the processor model for execution as a single instruction or task level set of
instructions, using a Data Structure that has the additional information for the FFT algorithm, for
example.

The statistical processor block will support thread context switching as a result of RTOS pending
tasks, or hardware interrupts sent directly to the processor model. Context switching cycles is a
parameter of the processor model. Branch prediction can also be performed by a processor
model by annotating instruction mnemonics with a ‘*’ in front of BRCH type instructions, assuming
the Instruction_Set block contains the ‘*’ in front of the instruction mnemonic. If the ‘*’ is
appended to the instruction name in the task, then perform a pipeline flush as a result of
instruction missed branch prediction. If no ‘*’ chracter is appended, then perform branch with
branch prediction correct. In other words, branch prediction can be controlled from the instruction
sequence coming in, or expanded in the Processor by external execution, and setting the field
called A_Branch to true, this will also cause a pipeline flush to occur if the branch prediction is
incorrect. The ‘*’ instruction simply sets this flag, so branch prediction can be controlled at the
instruction level, or at the pipeline level with the Data Structure field A_Branch.

The statistical processor block also supports DMA style operations, whereby once the instruction
starts execution; it is placed in an interrupt queue, awaiting a hardware interrupt when the
instruction completes to resume operation. These instructions are denoted with a ‘#’ character in
front of the instruction name, assuming the Instruction_set block contains the ‘#’ in front of the
instruction mnemonic. The executing task is suspended, and a new one starts, while the first one
completes. The DMA_Controller is the block that executes the DMA Instructions driven by a
Database block with the specific instruction.

DMA Database Format:

A_Task_NA_InstructA_IDX A_Task_Source Burst_WA_Task_AddresA_AddresA_AddresA_Command A_Bytes A_Priorit A_Destination
MyTask MOV 0 SDRAM_1 8 3 0 0 Read 100 0 DMA_1
MyTask MOV 1 SDRAM_1 8 3 0 0 Read 100 0 DMA_1
MyTask2 MOV 1 SDRAM_1 8 2 0 0 Write 100 0 DMA_1
MyTask3 MOV 1 SDRAM_1 8 3 0 0 Read_Write 100 0 DMA_1

The statistical processor block can also call a VisualSim scheduler, Scheduler_SW or
Scheduler_HW, simply by using the “task” Action in the pipeline, and using the
Execution_Location as the Scheduler name. The Condition field of the pipeline must reference
an instruction in the Instruction_Set, and the Processor will append the task time, sent to the
scheduler, based on the number of instruction cycles, and the processor speed. The scheduler
will then return the instruction to the pipeline upon completion.

Here is a processor model connecting directly to a scheduler:

110603 Page 106 of 364 Architecture Library
 Mirabilis Design, Inc.

Figure 56 Processor to Scheduler_SW for instruction execution
The pipeline setup for this configuration, note SCHED_1, the name of Sched_SW block in above
model. INT_1 is where the instruction is defined, calculates the time needed for scheduler
execution.

/* First row contains Column Names. */
Stage_Name Port_or_Virtual Action Condition ;
1_PREFETCH L_1 read none ;
2_DECODE none exec none ;
3_EXECUTE L_1 wait none ;
3_EXECUTE SCHED_1 task INT_1 ;
4_STORE L_1 write none ;

110603 Page 107 of 364 Architecture Library
 Mirabilis Design, Inc.

The statistical processor block can also call a Task_Generator block directly from the pipeline and
return after completion. The Task_Generator could perform an operation on the instruction, or
modify the branch prediction field (A_Branch), for example.

Figure 57 Processor to TaskGenerator for pipeline, instruction execution

The Soft_Gen block is used to generate new tasks to execute on the processor. The mix of
instructions in the task is read from the file that is referenced by the parameter
Read_My_Instruction_Mix_Table.

The instructions are placed in the A_Instruction field of the Processor_DS template Data
Structure and sent on the output port.

The generated instruction assumes that each instruction takes exactly one cycle to excecute for
the purpose of generating the tasks.

The Read_My_Instruction_Mix_Table file has two parts. The first Part defines instruction
mnemonics for each type. The number of types is the parameter Number_Instruction_Types.
There is a line delimiter ';' at the end of every line. The instructions will be randomly selected
based on the Percentages of each type (Pct) in the second half of table

The second Part of the file defines individual tasks, and the mix within each task. Each line starts
with the task name and is followed by the duration of the task. The duration can either be in
number of instructions or the duration of the task in number of cycles (Relative_Time). This
generator assumes that each task has an execution time of 1 cycle. This will be followed by the
Type Name and Percentage for each of the types in Part One. Each task line must end with the
line delimiter ';' The number of types must match the parameter and the number of items in Part
One. The total percentages of all types cannot exceed 100%.

Sample Template of SoftGen or TaskGenerator is shown below

110603 Page 108 of 364 Architecture Library
 Mirabilis Design, Inc.

Cache and Memory Overview

The Memory blocks model Cache and SDRAM activity in terms of performance, using threads
and a relative addressing methodology. This means the exact address is not needed in the
model saving considerable time in adding it to the model, or in the time the simulation needs to
process specific addresses. Relative addressing provides sufficient internal address information
to model cache activity accurately, above 80%. The model generates, uses internal relative
addresses without the user needing to perform any special processing in a model.

The Processor can be configured with mutlitple caches that can be used in the Processor
pipeline. Here is an example of an I_1 (Instruction), D_1 (Data), L_2 (Hierarchical) cache
structure one can define in a model:

I_1 {Cache_Speed_Mhz=500.0, Size_KBytes=64.0, Words_per_Cache_Line=16,
Cache_Miss_Name=L_2}
D_1 {Cache_Speed_Mhz=500.0, Size_KBytes=64.0, Words_per_Cache_Line=16,
Cache_Miss_Name=L_2}
L_2 {Cache_Speed_Mhz=500.0, Size_KBytes=64.0, Words_per_Cache_Line=16,
Cache_Miss_Name=Cache_1}

These definitions define the cache speed, cache size, cache words per line, and the cache miss
name. If a miss occurs, then this is the cache that is called. One notes the I_1 and D_1 caches
call the L_2 cache on a miss, and the L_2 cache calls he cache "Cache_1' which is external to

110603 Page 109 of 364 Architecture Library
 Mirabilis Design, Inc.

the Processor chip, going through an external bus. The I_1, D_1 go to the L_2 via internal bus
with no contention.

The Processor block then uses these caches with the Pipeline description:

Stage_Name Execute_Location Action Condition ;
1_PREFETCH I_1 instr none ;
1_PREFETCH D_1 read none ;
2_DECODE I_1 wait none ;
3_EXECUTE D_1 wait none ;
3_EXECUTE INT exec none ;
4_STORE D_1 write none ;

This is the basic four stage pipeline with prefetch, decode, execute, and store cycles. One will
notice only the first two caches are used in the pipeline description, since it accesses these
memories, and the L_2 cache does not appear, since it is accessed by I_1, D_1 only for a miss
case.

The Cache has also been updated to support shared caches between Processor blocks, differing
access words per access, and DMA activity. The following parameters can be used in the cache:

I_1 {Processor_Name=Processor_Name, Cache_Speed_Mhz=500.0,
Size_KBytes=64.0, Words_per_Cache_Access=8, Words_per_Cache_Line=16,
Cache_Miss_Name=L_2}
D_1 { Processor_Name=Processor_Name, Cache_Speed_Mhz=500.0,
Size_KBytes=64.0, Words_per_Cache_Access=8, Words_per_Cache_Line=16,
Cache_Miss_Name=L_2}
L_2 { Processor_Name=Processor_Name, Cache_Speed_Mhz=500.0,
Size_KBytes=64.0, Words_per_Cache_Access=8, Words_per_Cache_Line=16,
Cache_Miss_Name=Cache_1}

Cache Thread
A Cache thread is maintained for each thread, or task, in the Processor using relative
addressing. This also means each cache has its own list of active threads. When a thread starts
in the processor, the I_1, D_1 caches begin to prefetch a line from the Cache during the context
switchover time parameter:

Context_Switch_Cycles: 100

The user can vary this according to the Processor setup. Once, the Context_Switch_Cycles
period is over, the instructions will be processed, and each instruction will begin processing.
In addition, the total number of cache threads is maintained by the Processor, in determining how
much memory is available to each thread. This information is used when a cache crosses a
cache line boundary to determine if there is a cache miss due to less memory per thread.

Cache Misses
Cache misses are primarily determined by the relative addressing of instructions. This is
dependent on other Processor activity, and if the cache is external via a bus, then the time
can affect the prefetch mechanism. Once, a cache miss occurs then it will literally prefetch the
next level memory for this word.

110603 Page 110 of 364 Architecture Library
 Mirabilis Design, Inc.

Cache Instrs, Reads, Writes
The Processor cache perform cache operations for instr (I_1), reads (D_1), writes (D_1);
depending on the pipeline "Action" column. A cache "instr" action performs a read without waiting
in the pipeline for the result, a "read" performs a read with the pipeline waiting for the result,
and a "write" just writes to the cache.

If a cache "read" is not complete in the right pipeline stage, due to off-chip access, or other
Processor activity, then the pipeline will stall, statistics provided. Pipeline stalls are sometimes
mis-interpreted as cache misses. The Processor model keeps track of this case.

In addition, if the Processor/cache pipeline, there are many variations that have been designed,
runs out of sufficient buffering, due to long instructions prior; then the Processor will insert an idle
cycle to allow the Processor to catch up, statistics provided for this case as well.

This suggests that the instruction sequence can introduce cache related delays not associated
with the cache itself, more the Processor, or external processing delay. This can be as important
as a very detailed cache model.

DRAM Memory
The external DRAM memory block can perform accesses based on user defined instruction
delays, obtained from data sheets of the respective memory. The parameter field looks like:

"Read 10.0, Prefetch 10.0,Write 7.0, ReadWrite 8.0, Erase 6.0"

This is a very flexible way to model individual instruction processing at the SDRAM level. The
only restriction is any "read" command start with "Read", and "Prefetch" maintained for internal
use.

In addition, there is a "Memory_Type" pull down for different memory technologies, including
SDR, DDR, DDR2, DDR3, QDR, or RAMBUS type of clocking access methodologies. Currently,
a memory block is in development that will also maintain "banks" of memory for parallel access
schemes, or for page style of access that is critical to application performance. The DDR will
process two requests for each Memory_Speed_Mhz period, for example.

DRAM Processing
DRAM memory processing takes the parameter for Memory_Speed_Mhz as the memory
controller speed that will access the first word in a memory request, and the above delays for
individual instructions will then be added to this memory controller access, to model burst access
of N words properly. The number of memory cycles will then be determined for the read or write
style access. "Write" commands will not return any value to the bus, to properly model write
commands.

External Bus
Our Architecture Bus, also processes Cache and DRAM requests according to command type,
output the first word at the proper time for large transfers to/from memory to maintain the proper
bus timing, as related to arbitration, or protocol differences .

Cache Summary
Our Cache memory methodology is very efficient, models relative addresses, prefetched cache
lines/words, total cache thread activity, and pipeline stalls or idle cycles. Cache misses are
directed to the next level memory, which in turn models its own prefetch independent of

110603 Page 111 of 364 Architecture Library
 Mirabilis Design, Inc.

the requesting cache. The Processor statistics also provides an estimate of "how" much cache
memory is being used based on words accessed; this is another measure of cache
size, dependent on the Cache size parameter entered, secondary effect. This statistic appears
as:

Processor_1_D_1_KB_per_Thread_Max = 0.052,
Processor_1_D_1_KB_per_Thread_Mean = 0.0184,
Processor_1_D_1_KB_per_Thread_Min = 0.0,
Processor_1_D_1_KB_per_Thread_StDev = 0.0192831532691

This can give an estimate of actual cache usage, based on the number of threads used, and
cache accesses.

110603 Page 112 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus, Switch and Controller Toolkit

Bus Arbiter

Block Description
The BusArbiter helps the master (traffic generator) and slave (traffic receiver) devices to
communicate smoothly by routing the generated bus traffic. The BusArbiter is similar to
the existing Bus Port, Bus Controller in addition of Arbitration modes that allows
preemption and enable user to implement their own bus processing algorithms.

Block Usage
An arbiter that controls the bus traffic can be depicted using the BusArbiter. This is
connected to BusInterface to represent the linear bus model. Block supports 1) FCFS, 2)
FCFS with preemption and 3) CUSTOM modes of arbitration schemes.

Functionality

Figure 58 Bus Arbiter Flow Diagram

The Linear Bus topology allows only one bus master to actively use the bus at one time. The Bus
Arbiter block maintains an inbuilt routing table that can determine the source and destination
devices for processing a transaction. The following arbitration modes can select which master to
gain the bus access.

Internal Mode: FCFS

A default mode, accepts requests one at a time serves them in incoming order. Also the Linear
Controller block monitors the requests for priorities A_Priority of incoming data structure and
choose the master with highest priority request as the next bus transaction master. Preemption is
allowed when higher priority request is waiting while a lower priority request is in progress. Each
time before start processing new requests the arbiter checks for preempted requests if any. The
priority of preempted request is again if low, the arbiter will increment its priority in order to get a
better chance of being selected in the next time. This allows the lower priority transactions to not
wait too long as its priority is increased each time it is not selected.

In short, the preempted request will be selected if its priority is high, else higher priority request
among the incoming data structures will be selected and increment the priority of preempted

Bus

Maste
 Slav

Maste
 Slav

From Linear Port

BusArbiter

Master
Slave

Master
Slave

To Linear Port T From

Custom
Arbiter
FSM

110603 Page 113 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

request. The requests with priority A_Priority of incoming data structure are equal then very first
requested Master is the default Master.

External Mode: CUSTOM

This mode enables users to easily implement their own arbitration scheme to suit their particular
needs. An user can allowed to access and modify the core Bus Transaction data structure
externally using the input and output arbiter ports of Linear Controller block. For example, one
can modify the order of transaction; can customize bus selection of next transaction; issuing an
address/control cycle for any fragment is allowed. This can be performed by Processing, Decision
and Virtual Machine blocks that supports RegEx functions.

User can implement their own arbitration algorithms using the following RegEx (…) functions.

Name of the RegEx functions

Functionality

readBusPorts(“Arch_Bus_Name”) Read the available Linear Port Names as an ArrayToken
of Strings.

lengthBusQueue(“Arch_Bus_Name”,
“Port_Name”)

Obtain the length of the named Port Input Queue.

lengthBusPreempt(“Arch_Bus_Name”,
“Port_Name”)

Obtain the length of the named Port Preempt Queue.

clearBusQueue(“Arch_Bus_Name”,
“Port_Name”)

Clear the named Port Input Queue

clearBusPreempt(“Arch_Bus_Name”,
“Port_Name”)

Clear the named Port Preempt Queue

readBusQueue (“Arch_Bus_Name”,
“Port_Name”, Position)
(String, String, int)

Obtain a copy of the Transaction (RecordToken) by Port
Name of Input Queue by position argument, assumes user
obtained length prior.

readBusPreempt (“Arch_Bus_Name”,
“Port_Name”, Position)

Obtain a copy of the Transaction (RecordToken) by Port
Name of Preempt Queue by position argument, assumes
user obtained length prior

removeBusQueue (“Arch_Bus_Name”,
“Port_Name”, Position)
(String, String, int)

Remove the Transaction (RecordToken) by Port Name of
Input Queue by position argument, assumes user
obtained length prior.

removeBusPreempt
(“Arch_Bus_Name”, “Port_Name”,
Position)

Remove the Transaction (RecordToken) by Port Name of
Preempt Queue by position argument, assumes user
obtained length prior.

writeBusQueue (“Arch_Bus_Name”,
“Port_Name”, Position, Transaction)
(String, String, int, RecordToken)

Write the Transaction (RecordToken) by Port Name of
Input Queue by position argument, assumes user
obtained length prior.

writeBusPreempt (“Arch_Bus_Name”,
“Port_Name”, Position, Transaction)

Write the Transaction (RecordToken) by Port Name of
Preempt Queue by position argument, assumes user
obtained length prior.

preemptedBusQueue
(“Arch_Bus_Name”, “Port_Name”)

Checks the named Port Input Queue been preempted with
a higher priority transaction? true means yes, false means
no. Also return false if named Port Input Queue is a last
fragment.

110603 Page 114 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The string arguments,
“Arch_Bus_Name” – is the concatenation of parameters Architecture_Name and Bus_Name
 of Linear Controller.

“Port_Name” – is used in Point to Point bus.

To find the first fragment of a transaction one can follow the condition in processing blocks as

First_Word = (input.A_Addr_Ctrl_Flag && input.A_First_Word && (input.A_Bytes ==

 input.A_Bytes_Remaining + input.A_Bytes_Sent)) ? true : false

The A_Addr_Ctrl_Flag of the Bus Transaction data structure is always true by default. One can
ignore the Address/Control cycle by setting the field A_Addr_Ctrl_Flag to false. The field
A_First_Word is true for the first word transfer on every burst, else false.

Preemption = First_Word ? false : preemptedBusQueue(Arch_Name, Arch_Name)

The above RegEx expression determines the occurrences of preemption; if the active transaction
is the very first word transfer of a burst then there is no preemption. Else allows the higher priority
transaction if waited to preempt the lower priority transaction.

Statistics
IO_per_sec: Input and output transactions per second.

Input_Buffer_Occupancy_in_Words: No. of words occupied in FIFO_Buffers Input queue.

Preempt_Buffer_Occupancy_in_Words: No. of words occupied in FIFO_Buffers Preempt queue.

The Architecture Setup block in the statistic name Bus_Name_Statistic_Name each collects the
Statistic sample.

State Plots
BD: Bus Data
BC: Bus Control

These are Bus signals shows the external bus traffic. The Linear Bus updated the state transition
with the Architecture Setup block. The Architecture Setup block sends the plotting information to
the hierarchical State_Plot block through the virtual connection (IN block).

110603 Page 115 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Configuration of Parameters

Figure 59 BusArbiter Configuration Window
Architecture_Name
Name of the common architecture to which blocks in the model belong to, Type is String. There
can be different architectures existing; hence the unique Architecture name is defined with each
block.

Bus_Name
Name of the bus model, Type is String. The linear ports that constitute the physical bus need to
be configured with the same bus name.

Bus_Speed_Mhz
Speed of the linear bus model, Type is double. This determines the rate at which the linear bus
model can operate.

FIFO_Buffers
It is the Length of the FIFO buffers. There are two FIFO buffers 1) Input queue and 2) Preempt
queue, Type is integer. Default value is 8. All requests are initially added to the FIFO_Buffers
input queue and each request from the queue is processed further. Also can set priorities among
each request to sort higher priority request in front of the FIFO_Buffers input queue in descending
order. FIFO_Buffers preempt queue holds all the preempted requests.

Burst_Size_Bytes
The maximum size of the data that can be sent across the bus at any instant of time, Type is
integer. Default is 100.

Width_Bytes
Width of the data traffic in words, Type is pulldown.

110603 Page 116 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The values are 2, 4, and 8.

Arbiter_Mode
Represents modes of bus arbitration scheme. The values are 1) FCFS 2) CUSTOM. Type is
pulldown. Default mode is FCFS.

Split_Retry_Flag
By selecting the split and retry operation is enabled. It provides a mechanism for slaves to
release the bus when they are unable to supply the data for a transfer immediately. This
mechanism allows the transfer to finish on the bus therefore allow a higher priority master to get
access to the bus.

Bus Interface

Block Description
Represents a Bus Interface that can receive data traffic and send data traffic out on the Bus
Arbiter. Co-ordinates data transfer by handling control to the Linear Controller.

Block Usage
Can be used to depict any number of linear ports that are linked together to form a Linear Bus
model connected to several devices (master and slave).

Functionality
Bus Interface adds the requests received from the master on to a queue. Then forwards the
request to the Bus Arbiter. The Bus Arbiter identifies the right master and slave and sends out the
request to the BusInterface. The BusInterface then transfers the data to the slave.

The BusInterface tentatively has six ports: input from child Bus Interface blocks (1 port), output to
parent Bus Interface or BusArbiter (1 port), input/output for two Bus Interface (4 ports).

110603 Page 117 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Configuration of Parameters

Figure 60 BusInterface Configuration Window

Architecture_Name
Name of the common architecture to which blocks in the model belong to, Type is String. There
can be different architectures existing; hence the unique Architecture name is defined with each
block.

Bus_Name
Name of the linear bus model, Type is String. The linear ports that constitute the physical bus
need to be configured with the same linear bus name.

Port_Name_1
Name of the BusInterface that is connected to the linear bus, Type is String. The routing table in
the Architecture_Setup block refers to this port name as the hop name.

Port_Name_2
Name of the BusInterface that is connected to the linear bus, Type is String. The routing table in
the Architecture_Setup block refers to this port name as the hop name.

FIFO_Buffer
It is the Length of the FIFO buffer. Length of Input queue, Type is integer.
Default value is 8. All requests are initially added to the FIFO_Buffer input queue and each
request from the queue is send to BusArbiter.

DMA_Controller

Block Description
The DMA_Controller block is a hardware DMA block that can be used in a model. The block can
receive requests directly from the processor block or from the Req port.

110603 Page 118 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Functionality
The DMA Controller block contains multiple channels that are defined using the DMA_Channels
parameter. A database is required to characterize the task operation of the DMA block. Every
channel has an individual queue.

When a request comes in, the DMA block matches the A_Task_Name and A_Instruction fields of
the data structure with the database content. If there is no a match, then an error is reported. If
there is a match, then the attributes of this request are taken from the matched line in the
database. The A_Task_Address field of the database will assign the request to a channel. The
burst size, command (Read/Write), data size (A_Bytes) and priority (A_Priority) are taken from
the database. The queue is not reordered for the priority. If there are multiple lines for the
A_Task_Name and A_Instruction, then the lines are executed in the sequence listed in field
A_Idx. The DMA is typically connected to Bus on the right-side. A processor identifies a DMA
operation by prefix # for the instruction in the Instruction_Table. The data structure arriving at the
processor does not need to have the # prefix, just the instruction name. The database name is
required in the optional Processor_Setup parameter called DMADatabase.

The first request in each channel is sent out on the bus. The channel is locked until the data
structure completes all the lines associated with this transaction. When the transaction is
completed, it sends the data structure to the ack port if it came from via the req port or back to the
processor pipeline. The Device_to_DMA and DMA_to_Device parameters can be used to model
any hardware delays to improve accuracy. The field A_Task_Source specifies the destination.
The A_Destination field in the table specifies which DMA to use for this transfer as there can be
multiple DMA blocks in a model. Each DMA block requires a separate Database setup block.

The DMA Controller is configurable using a Database setup. The Database fields are:

A_Task_Name Processor Task

A_Instruction Processor Instruction

A_IDX Instruction index

A_Task_Source Processor internal memory or external memory

Burst_Word_Size Burst size

A_Task_Address Channel number

A_Command Read, Write or Read_Write transaction

A_Bytes Total bytes of transaction

A_Priority Priority index of the transaction, used internally.

A_Destination DMA block name

110603 Page 119 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 61 DMA Flow Diagram

Example csv file:

A_Task_Name A_Instruction A_IDX A_Task_Source Burst_Word_Size A_Task_Address
MyTask MOV 0 L_2 8 1
MyTask2 MOV 1 SDRAM_1 8 2
MyTask3 MOV 1 SDRAM_1 8 3

A_Command A_Bytes A_Priority A_Destination
Read 100 0 DMA_1
Write 100 0 DMA_1
Read_Write 100 0 DMA_1
DMA execution of Sequence of Tasks

The Xilinx Multiport memory controller supports transfer of sequences of Reads and Writes. The
VisualSim DMA Controller supports the same by executing sequence of tasks defined in the
Database. Once a DMA transaction completes it looks to see if there is a DMA Transaction with
the next index number. The DMA executes sequence of tasks defined in the database and then
proceeds to process the next transaction.

A_Task_Name A_Instruction A_IDX A_Task_Source Burst_Word_Size A_Task_Address
MyTask MOV 0 SDRAM_1 8 3
MyTask MOV 1 SDRAM_1 8 3

DMA Queues
High Speed

Low Speed

Input
Queue

Bus Port,
IO_Control,
or Memory

Processor
Memory

Bus Port
or

Processor

Database
Setup

Req

Dout

Ack

Din

110603 Page 120 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

A_Command A_Bytes A_Priority A_Destination
Read 100 0 DMA_1
Read 100 0 DMA_1

After executing the task “MyTask” with A_IDX as 0, DMA looks in the database if there is a task in
sequence with A_IDX as 1. After executing the tasks in sequence, the block sends out the DS
through the Dout port.

The figure below illustrates the DMA sequence of tasks in Xilinx Memory Controller.

Figure 62 CDMAC Illustration of Tx Engine Flow

Routing Functionality

If the DMA block is connected to a Linear Bus or another bus that adds devices to the Routing
Table based on the Hello Messages, no additional entry is required for Bus connectivity. A line is

110603 Page 121 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

required for the device connected to the ack port of the DMA. This is added to the
Architecture_Setup routing table as follows:

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
DMA Trigger DMA Dout ;

Example of DMA in a Model

Figure 63 Using DMA in a Model

Statistics
IO_per_sec: Input and output transactions per second.

110603 Page 122 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Parameters

Figure 64 DMA_Controller Configuration Window

Architecture_Name
Name of the common architecture to which blocks in the model belong to, Type is String. There
can be different architectures existing; hence the unique Architecture name is defined with each
block.

DMA_Controller_Name
Name of the DMA_Controller block, Type is String. The block name has to be unique within the
same architecture. Another architecture can exist with the same block name.
The name identifies the unique block instances.

Memory_Database_Reference
Name of the Database block that has the DMA setup details. Type is String.
The specified Database block has to exist in the model with either a reference to the Database
configuration file (*.csv) or defined in the Data Structure Text field of the Database block.

DMA_to_Device_Cycles
DMA_to_Device_Cycles is the Cycles taken to send data from DMA_Controller to memory. Type
is integer.
The parameter value can be either a RegEx_or_Integer.
 If a RegEx is specified the result of the regular expression is used as parameter value.
An integer value- number of cycles can also be specified like 100.

DMA_to_Device_Address
DMA_to_Device_Address is the Address of Memory or Device to which the DMA_Controller
routes a transaction. Type is integer.

110603 Page 123 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The parameter value can be either a DS_Fld_Name_or_Integer. If a Data Structure field name is
specified the incoming Data Structure's field value will be used as parameter
value;example:A_Address_Min. An integer value for the address can also be specified like 101.

Device_to_DMA_Cycles
Device_to_DMA_Cycles is the Cycles taken to send data from memory to DMA_Controller. Type
is integer.
The parameter value can be either a Regex_or_Integer.
If a RegEx is specified the result of the regular expression is used as parameter value.
An integer value- number of cycles can also be specified like 100.

Channel_FIFO_Buffers
It is the Length of the FIFO buffer of each channel; Length of both the Input and Output queues
that hold the transactions flowing in and out of the block. Type is integer.
An integer value for the size of FIFO buffer is specified like 20.

Speed_Mhz
Speed of the DMA_Controller block in Mega hertz, Type is double. This is the rate at which the
DMA Controller block processes transactions. Speed is used to calculate the DMA Controller
cycle time; DMA Controller cycle time = 1.0E-06 / Speed in Mhz.

Burst_Size_Bytes
The burst size of DMA transfer in bytes. A High speed channel would transfer entire data
completely in a transaction as a burst transfer.

DMA_Channels
The number of channels in the DMA

Width_Bytes
The size of DMA transfers in bytes. A slow speed channel would transfer word by word. The
number of words to be transferred depends on the total bytes/width bytes.

Request Acknowledge Node/ Asynchronous Bus

Introduction
The Request Acknowledge Node (Req_Ack_Node) block is a high performance, hardware
level, asynchronous bus for interconnecting processor, memory subsystems, and high bandwidth
peripherals. This block was used in creating the CoreConnect Bus, for example. The
Req_Ack_Node can be configured as a Master, Controller, or Slave by the block pulldown
parameter named Node_Type, as shown below.

110603 Page 124 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 65 Master, Slave and Controller Block Connection

110603 Page 125 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 66 Req_Ack Node View

Block Configure Parameters
The Req_Ack_Node configure parameter settings:

 Architecture_Name: “Architecture_1” Unique Name of Architecture
 Bus_Name: "Bus_1" Unique Name of Bus
 Node_Name: “Node_1” Unique Node Name
 Bus_Speed_Mhz: 33 Bus Speed in Mhz
 Request_Clock_Multiplier: 0.99 Speed of Request Channel

Fraction of Clock Time, can be zero
 FIFO_Buffers Number of Transactions that

can be stored in Port Buffer
 Burst_Size_Bytes Largest Byte transfer

over the bus.
 Width_Bytes Width of Bus Channels in Bytes
 Address_Bytes Address Bytes can be larger than

Width_Bytes for 64 bit words on
32 bit bus width, for example.

 Request_In_Queue_Name Name of Queue where incoming
Requests are placed, default Request
Channel.

 Node_Type Master, Controller, or Slave
 Max_Read User added for maximum queue

110603 Page 126 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Size on Controller Node, user must
add this parameter to make it valid.

 Max_Write User added for maximum queue
Size on Controller Node, user must
add this parameter to make it valid.

 Round_Robin true or false to select the next master
Selected. If true, the controller will
Direct a new request to the oldest
Request pending.

Data Structure: Processor_DS
The Processor_DS was selected as the best data structure to send through the Req_Ack_Node
block. This data structure is used by the Processor block and other Architectural Library busses.
The following are specific data structure fields to be set prior to entering a master port.

A_Bytes – Total number of bytes to be transferred
A_Bytes_Remaining – A_Bytes (total) minus A_Bytes_Sent (bus width)
A_Bytes_Sent – bus width
A_Command – Req_Ack_Node bus commands, see below:

Req_Ack_Node Bus Commands

A_Command field

IO Read “Read_IO”
IO Write “Write_IO”
Memory Read “Read_Memory”
Memory Write “Write_Memory”

Any Read or Write command whether it is from an IO device or Memory is handled by the bus in
a similar fashion. Hence the bus looks for A_Command that starts with the “Read_*” string to
process a Read transaction and starts with the “Write_*” string to process a Write transaction.
Read commands will return to the source node, Write commands will execute on the slave device
and “not” return. One exception is if the slave device is a Processor block.

A_First_Word – default is true, not used by the Req_Ack_Node block.
A_Priority – the priority of the transaction, higher priority gains bus access.
A_Source – routing source node, or transaction initiator.
A_Hop – represents the next node in the routing path external to the Master

 Slave ports, and internal to block it is used to pass a message
 from the Ack port output to the Din input port. Internal use
 as a block level command.

A_Status – used internally by the Req_Ack_Node block to designate the
 channel of the data structure: either Request, Address, Read, or Write .

A_Destination – routing destination node, or transaction target.

The Req_Ack_Node has fields that it adds to the Processor_DS for internal routing, and
identification.

A_Bus_Source – internal Req_Ack_Node bus source name.
A_Bus_Destination – internal Req_Ack_Node bus destination name

110603 Page 127 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

A_Bus_ID – internal Req_Ack_Node bus transaction ID, unique.
A_Bus_Index – internal Req_Ack_Node integer field indicating same as A_Status.

A_Bus_ID is used to keep transactions uniquely identified when removing requests from the
Master, Controller, and Slave blocks. A sample set of data, a user can set in fields of data
structure “Processor_DS”:

Data Structure Field Data Type Sample Data
A_Bytes int 64
A_Command string “Read_Memory”
A_First_Word boolean true
A_Priority int 1
A_Source string “IO_1”
A_Destination string “SDRAM_1”

Acknowledge Port to Data-In Port Block Commands

Here is a list of block commands supported by the Master. The internal block command is set in
the “A_Hop” field of the Processor_DS:

Master Commands

Action

“send_to_a_destination” Send to A_Bus_Destination, Master or Slave
"send_to_a_source" Send to A_Bus_Source, Master or Slave
"send_queue_element" Send DS to Dout Port of Req_Ack_Node
"drop_queue_element" Drop DS, no further action
"enqueue" Put DS into Channel, based on A_Status field
"rearbitrate" Reprocess DS back to source

Here is a list of block commands supported by the Controller. The internal block command is set
in the “A_Hop” field of the Processor_DS:

Controller Commands

Action

“send_to_a_destination” Send to A_Bus_Destination, Master or Slave
"send_to_a_source" Send to A_Bus_Source, Master or Slave

Here is a list of block commands supported by the Slave internal block command is set in the
“A_Hop” field of the Processor_DS:

Slave Commands

Action

“send_to_a_destination” Send to A_Bus_Destination, Master or Slave
"send_to_a_source" Send to A_Bus_Source, Master or Slave
"send_queue_element" Send DS to Dout Port of Req_Ack_Node
"drop_queue_element" Drop DS, no further action

110603 Page 128 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

"enqueue" Put DS into Channel, based on A_Status field
"rearbitrate" Reprocess DS back to source

110603 Page 129 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Routing Table
The Req_Ack_Node supports the Architectural Library auto-routing capability for
busses. If the transactions must traverse multiple busses, or one wishes to over-ride the
auto-routing, then additions can be made to the routing table:

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
IO_1 SDRAM_1 Node_1 to_bus ;
IO_2 SDRAM_1 Node_3 to_bus ;
SDRAM_1 IO_1 Node_2 output ;
SDRAM_1 IO_2 Node_2 output ;

The third column represents the next hop in the routing, which might be the name of the
bus port, I_O, Cache, DRAM, IO_Controller, Memory_Controller, or DMA_Controller.
The Source_Port is the name of the port the transaction is leaving, and applies if there is
more than one output port from a bus or memory block. The Req_Ack_Node Bus has a
single input and output per port, so the value of the Source_Port column is not critical to
entering routing information. If any routing entries are missing, exceptions are thrown
indicating the missing source and destination pair during the model execution.

Bus Statistics
The following statistics are collected in the same Req_Ack_Node bus model.

• Delay – Transaction delay
• IOs_per_sec – Input Output transactions per sec
• Node_Buffer_Occupancy_in_Words – Input buffer occupancy in words
• Throughput_MBs – Throughput in Mbps
• Utilization_Pct – Utilization percentage

The sample statistics collected in the model are given below in min, mean, stdev, and
max values for the Req_Ack_Node bus.

{BLOCK = ".Req_Ack_Node_Read_Read_N_Bytes.Architecture_Setup",
Bus_1_Address_Buffer_Occupancy_in_Words_Max = 1.0,
Bus_1_Address_Buffer_Occupancy_in_Words_Mean = 1.0,
Bus_1_Address_Buffer_Occupancy_in_Words_Min = 1.0,
Bus_1_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Delay_Max = 8.0E-9,
Bus_1_Delay_Mean = 7.0E-9,
Bus_1_Delay_Min = 4.0E-9,
Bus_1_Delay_StDev = 1.4142135623731E-9,
Bus_1_IOs_per_sec_Max = 6.0E6,
Bus_1_IOs_per_sec_Mean = 4.0E6,
Bus_1_IOs_per_sec_Min = 3.0E6,
Bus_1_IOs_per_sec_StDev = 1.309307341416E6,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,

110603 Page 130 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Read_Buffer_Occupancy_in_Words_Max = 2.0,
Bus_1_Read_Buffer_Occupancy_in_Words_Mean = 2.0,

110603 Page 131 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus_1_Read_Buffer_Occupancy_in_Words_Min = 2.0,
Bus_1_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Request_Buffer_Occupancy_in_Words_Max = 4.0,
Bus_1_Request_Buffer_Occupancy_in_Words_Mean = 4.0,
Bus_1_Request_Buffer_Occupancy_in_Words_Min = 4.0,
Bus_1_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Throughput_MBs_Max = 112.0,
Bus_1_Throughput_MBs_Mean = 112.0,
Bus_1_Throughput_MBs_Min = 112.0,
Bus_1_Throughput_MBs_StDev= 0.0,
Bus_1_Utilization_Pct_Max = 5.79,
Bus_1_Utilization_Pct_Mean = 5.79,
Bus_1_Utilization_Pct_Min = 5.79,
Bus_1_Utilization_Pct_StDev = 0.0,

110603 Page 132 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Power Modeling Toolkit
The VisualSim Power Manager is the first System-Level Design solution to trade-off performance
and power in a single architecture model. This Library is used to evaluate the effectiveness of
power scheduling algorithms and to estimate the power consumption of a design. The power
manager updates the instantaneous and cumulative power using dynamic state change
information of the individual devices. The power manager is fully integrated with
the Architecture Library, scheduler blocks and the RegEx language. Function calls are available
to dynamically alter the power level of a state or record a state change. The devices analyzed
can be standard devices, custom hardware acceleration and software components. The Power
Manager library consists of a manager block and utility functions for state change transitions,
change in power levels and statistics generation. An initial charge for the Power Manager is
specified as a parameter of the block.

Multiple power blocks can be maintained in a single model. Any number of devices can be
associated with a single Power Manager block. Each standard device can have up to 4 power
states (standby (leakage), idle, active and wait) and a transition cycle time. For custom blocks,
there can be up to 12 states defined. These the current state and power in a state can be
modified during the simulation using the RegEx functions explained later in this Chapter.
The VisualSim Power Manager is based on dynamic system operation and will enable users to
design application-based power schedulers and make trade-offs between performance and
power consumption including battery drain.

The power for each device is maintained individually. When the operation state of a device
changes (idle, standby, wait and busy), the power level goes to the new state. There is a delay to
go to the new state called transition cycles. The number of cycles in that column is multiplied by
the Power_Manager speed (Parameter) to compute the transition delay. The transition cycles
can be turned off to disable this performance impact.

Let us take an example. When the Processor is in standby state, the power_manager maintains
the current power consumed by this processor to be value in the standby column for this
processor. When processor moves to active/busy state, the power_manager delays by the
transition cycles and then changes the current value for the processor to the value in the active
column. This is an automatic internal process and the user does not have to do anything.

If the user has a hardware accelerator, the model uses the functions listed below update the state
change or a new power level.

Introduction

The Power_Manager maintains a list of the devices supported. The Power Manager can read the
power level for each state from the text window or a file, at initialize and store the configuration
information internally. The file type can be csv or txt. There are two types of supported devices-
(1) Hardware library and scheduler blocks and (2) functions. Each referenced block in the Power
Manager contains the following;

Block Name Standby

State
Active State Wait

State
Idle State Transition

Cycles
Architecture_Name
+ “_” +

Double Double Double Double Integer
(Based on

110603 Page 133 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Block_Name Manager
speed)

Scheduler + “_” +
Block_Name

Double Double Double Double Integer
(Based on
Manager
speed)

Table 5 : Manager_Setup format
All blocks supporting the Power Manager are considered to be in standby state at the start of a
simulation. Some blocks may have only one actual power state, such as Active, whereas others
may have two, three or four states. There are four possible power states: standby, active, wait or
idle. Custom blocks can have up to 12 columns. For example, the processor maintains 4 states
while the cache has only two states. There is also an entry for transition cycles, based on the
Power Manager Clock speed, for changing from one state to another, typically related to a natural
time constant of the chip, or may be a controlled transition to minimize power spikes. Zero is a
legal number of Transition Cycles. Each time there is a state change in a block that supports
the Power Manager, the new state is sent to the Power Manager block. The Transition Cycles
entry will schedule an event to change the power for the requesting block to the new value,
assuming a non-zero entry.

How it works

A Cache block in Standby state gets a request and sets the internal state to BUSY while
processing request. At the end of the request, the state is set back to IDLE, if no requests are
pending. Cache will send powerUpdate (Arch_1, Cache_1, ACTIVE) when Cache goes busy,
and powerUpdate (Arch_1, Cache_1, STANDBY) when the transaction completes.

Assumptions

• Power Update RegEx function can communicate with this block. If the requested device
is not found, then ignore the updates.

• Power Change RegEx function allows one to modify the power dynamically during
simulation execution to reflect voltage changes on top of state information.

• Power Current or Power Cumulative RegEx functions can obtain all power information
from Power Manager.

• Transition Cycles can range from 0 to N.
• Instantaneous power is updated at the end of the Transition Cycles.
• Active State is minimal entry for any referenced block, others optional.
• Power information includes instantaneous power per block, cumulative power

consumption per block, total in Battery_Units, average power in the units of the block and
total discharge for the Power_Manager.

Block Level Parameters

The block level parameters reflect the different Power Manager features discussed in the
introduction, power leakage notwithstanding:

Manager_Name: This is the name of the Power Manager block. This is used to send and
receive data from RegEx functions and also to call for advanced plotting.
Manager_Setup: This is a Text Window containing columns for the power states and rows for
each device. The current implementation offers four predefined power states. This window can

110603 Page 134 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

also be provided the path to a text file or a CSV file. The file can contain the same information.
The CSV file does not require a “;” at the end of each line of the file.
Manager_Speed_Mhz: The rate at which the Power Manager is charged.
Battery_Charge_Hr: This is the number of charge units per hour.
Battery_Units: This is a pull-down indicating the units for the charge parameter and the units for
the power state value in Manager_setup. The values are Micro_Watts, Milli_Watts and Watts.
Enable_Transition_Cycles: This checkbox turns on and off the Transition cycles.

Block Ports

The Power Manager has two ports: the instantaneous power level after Transition Cycles have
completed for individual blocks, and battery charge port, showing the remaining cumulative power
in selected units. The output from both ports can be connected to a Timed Plotter block. The
instantaneous power level will be in the “Battery_Units of the block while the Cumulative Power
will be in Battery_Units per hour.

Block Methods

Six RegEx functions are available for use to update the Power_Manager and to retrieve power
information. These RegEx functions can be called from Expression and Script blocks.

Function 1:
powerUpdate(String Manager_Name, String Arch_Block_Name, String Power_State)
Eg: Result_A = powerUpdate(Pwr_Mgr1,ArchSetup_uP, “Active”)
Description: This function updates the current power state of the block at the Power_Manager.
The Power_State can accept any name in the Manager Setup table. The Manager_Name must
match name in the Power_Manager block while the Arch_Block_Name must match the name
(Arch_Lib + Block_Name) in the Manager_Setup field. The three parameters can be string
values or indirect references such as memory or field names. If the new state is the same as the
existing state, no update is made. If the new state is different, then the instantaneous power and
the cumulative power columns are updated. This function does not return any value.
Function 2:
newPowerLevel(String Manager_Name, String Arch_ Block_Name, String Power_State, double
New_Value)
Eg: Result_A = newPowerLevel(Pwr_Mgr1,ArchSetup_uP, “Active”,0.13)
Description: The newPowerLevel function enables the user to dynamically modify the power level
of a particular state during the course of a simulation. For example the Active state power level
can be changed, if the chip or board changed the voltage. The function updates the power level
in the Manager_Setup column. The Power_State can accept any name in the Manager Setup
table. The Manager_Name must match name in the Power_Manager block while the
Arch_Block_Name must match the name (Arch_Lib + Block_Name) in the Manager_Setup field.
The three parameters can be string values or indirect references such as memory or field names.
This block does not return any value.
Function 3:
double powerCurrent(String Manager_Name, String Arch_Block_Name)
Eg: Result_A = powerCurrent(Pwr_Mgr, Scheduler_Sched1)
Description: This RegEx functions returns the instantaneous power as a double value for the
selected Block. If the Block_Name= “total”, then the total value for the entire model, i.e. all the
devices will be generated. The Manager_Name must match name in the Power_Manager block
while the Arch_Block_Name must match the name (Arch_Lib + Block_Name) in the
Manager_Setup field. The two parameters can be string values or a memory or field names that
contains this name.

110603 Page 135 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Function 4:
double powerCumulative(String Manager_Name, String Arch_Block_Name)
Eg: Result_A = powerCumulative(Pwr_Mgr, ArchSetup_DMA1)
Description: This RegEx functions returns the cumulative power consumed as a double value for
the selected Architecture Block. If the Block_Name= “total”, then the total value for the entire
model, i.e. all the devices will be generated. The Manager_Name must match name in the
Power_Manager block while the Arch_Block_Name must match the name (Arch_Lib +
Block_Name) in the Manager_Setup field. The two parameters can be string values or a memory
or field names that contains this name.
Function 5:
double addBatteryCharge(String Manager_Name, Double new_battery_charge_)
Eg: Result_A = addBatteryCharge(Pwr_Mgr, 1.0)
Description: This RegEx functions adds additional battery charge during the simulation. This
value will be added to the existing battery charge. The Manager_Name must match name in the
Power_Manager block while the new battery charge must be positive double value. A double
negative value will decrease the battery charge by that amount. The two parameters can be
string values or a memory or field names that contains this name. This returns the new charge
value as a type double.
Function 6:
double getBatteryCharge(String Manager_Name)
Eg: Result_A = getBatteryCharge(“Pwr_Mgr”)
Description: This RegEx functions gets the current battery charge during the simulation. The
Manager_Name must match name in the Power_Manager block. The parameter can be string
values or a memory or field names that contains this name. This returns the current charge value
as a type double.

Function 7:
Data_Structure powerManager(String Manager_Name)
Eg: Result_A = (powerManager("Manager_1").Architecture_1_AHB_Bus).Active
Description:This function extracts the current power table. You can then use the results of this
function to extract the power level of a state for an individual device. The return is a data
structure. The example shows how to return the particular double value. The powerManager
function returns the following:
Architecture_1_AHB_Bus = {Active = 0.1, Time = 2.517059E-4, Wait = 0.0,
Architecture_Block = "Architecture_1_AHB_Bus", Standby = 0.025, Cumulative = 2.42591E-5,
Idle = 0.0, Current = 0.025, Cycles = 1},
Architecture_1_DMA = {Active = 0.15, Time = 0.0, Wait = 0.0, Architecture_Block =
"Architecture_1_DMA", Standby = 0.05, Cumulative = 0.0, Idle = 0.0, Current = 0.05, Cycles = 1},
Architecture_1_DRAM = {Active = 0.15, Time = 2.517379E-4, Wait = 0.0,
Architecture_Block = "Architecture_1_DRAM", Standby = 0.05, Cumulative = 3.5082705E-5, Idle
= 0.0, Current = 0.05, Cycles = 1},
Architecture_1_MAC_ARM9 = {Active = 0.2, Time = 2.518719E-4, Wait = 0.1,
Architecture_Block = "Architecture_1_MAC_ARM9", Standby = 0.075, Cumulative =
4.6035870000002E-5, Idle = 0.1, Current = 0.1, Cycles = 1},
total = {Time = 0.0, Active = 0.0, Wait = 0.0, Architecture_Block =
"total", Standby = 0.0, Cumulative = 1.05377675E-4, Idle = 0.0, Current = 0.225, Cycles = 0}

Function 8:
Double powerUpdateN(String power_manager_name, String block_name, String
power_state,integer Queue_Number)
Eg: Result_A = powerUpdateN("Manager_1",Name,"Wait",input.A_Queue)
Description:This function updates the current power state of a particular Queue of the
Smart_Timed_Resource block. The return is the new power value in Watts for the Queue.

110603 Page 136 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Power Utilities

The Packaged Power Model is a self-contained modeling environment with a complete model-
based power solution with traffic profile, power generator, hardware power, software power, state-
based power finite state machines, and pre-defined modeling reports. Traffic Profile can be
constant, variable, or trace set by parameters or spreadsheet *.csv files. Power Generator can
be contant, variable, trace, or time-based (solar, etc.) set by parameters or spreadsheet *.csv
files. Hardware and software power profiles can be analyzed independently. One unique feature
is the ability to obtain the power consumption and end-to-end latency for a set of software tasks.
The power FSM supports Active, Standby, Suspend, Off states with separate timers for Suspend
and Off states. If the provided power FSM does not match the actual system operation, users
can modify the finite state machine.

Next, the traffic profile, resources+FSM, hardware/software execution, power generator, and
report details are described.

Figure 1. Traffic Profile Block Diagram

110603 Page 137 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 2. Traffic Profile Constant Mode

Figure 3. Traffic Profile Variable Mode

110603 Page 138 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 4. Traffic Profile Trace Mode

Figure 5. Traffic Profile Parameters

110603 Page 139 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Traffic Profile Parameters
Name Type Description

Constant boolean mode of operation

StartTime double first data structure

Mean_Interarrival_Time double time between data structures

JitterTime double add jitter to Mean_Interarrival_Time
(default 0.0)

Variable boolean mode of operation

StartTime double first data structure

VariableTrafficSetup text ID and MeanTime columns

Inter_Burst_Time double time between Variable_Traffic_Setup

Trace boolean mode of operation

StartTime double first data structure

Trace_File_Name string file name

Mapped_Inter_Arrival_Column string this is the Mean_Interarrival_Time in the
trace file, i.e. time between data
structures

Note: More than one Mode can be enabled for complex traffic.

110603 Page 140 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 6. Resources Modal FSMs Block Diagram

Power Finite State Machine: Active, Standby, Suspend, Off States
• Startup: init to off transition. Sets resource to OffTransitionCycles for first transaction.

Power State = off
• First Transaction: off to active transition, based on OffTransitionCycles. Power State =

active
• First Transaction Complete: active to standby transition, based on resource completing.

Power State = standby
• Standby Timer expires: standby to suspend transition, else return to active, based on

StandbyCycles. Power State = suspend
• Suspend Time expires: suspend to off transition, else return to active, based on

SuspendCycles. Power State = off

110603 Page 141 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 7. Power FSM States and Transitions

110603 Page 142 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 8. Resources Modal FSMs Parameters

Resources Modal FSMs Parameters
Name Type Description
ResourceNameList array list of resources with individual power

states: Active, Standby, Suspend, Off

ContextSwitchTime double time to switch between resources

SuspendTransitionCycles integer cycles between power states Suspend and
Active

OffTransitionCycles integer cycles between power states Off and
Active

SuspendTimer double If expires, then resource goes to Suspend
state

OffTimer double If expires, then resource goes to Off state

Note: ResourceNameList must match Execute references.

110603 Page 143 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 9. Execution Block Diagram

Figure 10. Execution Parameters

110603 Page 144 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Execution Parameters
Name Type Description
Application_Name string resource name to execute. Must match

existing resource name

ClockEnable boolean boolean to enable clock port

MechanicalDevice boolean boolean to indicate this is a mechanical
device

OffsetTime double time to offset or delay clock to trigger
execution

PowerManager, DatabaseName,
Mechanical_Database_Name

string fixed, pre-set value

Note: Execute must match ResourceNameList references.

Figure 11. Power Generator Block Diagram

110603 Page 145 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 12. Power Generator Constant Mode

Figure 13. Power Generator Variable Mode

110603 Page 146 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 14. Power Generator Trace Mode

Figure 15. Power Generator Time-Based Mode

110603 Page 147 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Figure 16. Power Generator Parameters

110603 Page 148 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Power Generator Parameters
Name Type Description

Power_Generator_Name string unique power generator name

Constant boolean mode of operation

StartTime double first data structure

Charge_Update_Interval double time between data structures

ChargeCapacity double charge rate in Watt-Hr

Motor_Generator boolean mode of operation

StartTime double first data structure

Motor_Charge_Setup text ID, RPM, Duration,
ChargeCapacityWHR, and Efficiency
columns used by the Motor Generator
mode

Inter_Charge_Time double time between Motor_Charge_Setup

Trace boolean mode of operation

StartTime double first data structure

Trace_File_Name string file name

Mapped_Charge_CapacityWHR_Column string charge rate in WHR

Mapped_Time_Stamp_Column string time between data structures

Time-Based boolean mode of operation

StartTime double first data structure

Time_Based_Charge_Setup text columns for ID, StartWHR, EndWHR,
Efficiency, and PercentTime

Time_Based_Duration string relates to Percent time column to calc
time

110603 Page 149 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Name Type Description
Charge_Enable boolean enables charging to maximum value

Note: More than one Mode can be enabled for complex motor generator operation.

Figure 17. Reports Processing Block Diagram

Reports Processing
• Instant Power (watts), Average Power (watts), Battery Power (watts-seconds) plotted from

Power_Manager
• Power Statistics: Text output with Average Power (watts), Minimum Power (watts), Maximum

Power (watts), and Total Power (watts-seconds). Each Application shows Cumulative (watts-
seconds) and average (watts).

• Battery Charge Problem: Plot indicates battery charge exceeds Maximum Battery Charge
parameter with 1.0 values, else 0.0 values. The plot also indicates the simulation time on the
X axis.

• Each Application Execution reports the power consumed and the latency.

110603 Page 150 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus and Interface Standards

1 AMBA Buses

1.1 AMBA AHB

The interconnects of the System-On-chip can be modeled using the AMBA AHB Bus block. The
System resources are modeled using the Architecture library blocks; Processor, Cache, DRAM,
I_O device.

1.1.1 Sample Model

1.1.2 Setup
To use the AMBA AHB Bus block certain Model Parameters, Model memories, Data Structure
generated and flowing into the bus (ex: Processor_DS) etc need to be setup.

1.1.3 Model Parameters
 Sim_Time: 3.0E-06
 Bus_Name: “Bus_1”
 Architecture_Name: "Arch_" + Bus_Name
 Bus_Speed_Mhz: 100
 Burst_Size_Bytes: 64
 Bus_Width_Bytes: 8
 FIFO_Buffers: 8

1.1.4 Initialize the Processing Data Structure

The Standard library blocks like “Traffic” block can be used to generate the necessary
Processor_DS. The following Processor_DS fields needs to be initialized to send transactions
through the AMBA AHB Bus. This can be achieved with “Processing” or “Expression_List” blocks

110603 Page 151 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Processor_DS
A_Command: Read or Write
A_Bytes: Size of Bytes transferred in the transaction
A_Destination: Destination cache or memory

If an DeviceInterface block is used, the DeviceInterface block fields can also be used to replace
the Processor_DS field values.

DeviceInterface field MapsTo Processor_DS field
IO_Destination A_Destination
IO_Command A_Command
IO_Bytes A_Bytes

1.1.5 A Typical AMBA Bus System Architecture

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory
bandwidth, on which the CPU, on-chip memory and other Direct Memory Access
(DMA) devices reside. This bus provides a high-bandwidth interface between the
elements that are involved in the majority of transfers.

The AMBA AHB bus can be modeled using the AMBA AHB Bus Hierarchical block present in the
Bus Library. The CPU, on chip memory etc can be modeled using the
Processor, Superscalar_Processor, DRAM blocks in the Architecture library.
The DMA can be modeled using the DMA_Controller block in the Bus library.

Also located on the high performance bus is a bridge to the lower bandwidth APB, where most of
the peripheral devices in the system are located.

The AMBA APB Bus can be modeled using the AMBA APB Bus Hierarchical block present in the
Bus Library. The bridge between the AHB and the APB can be modeled using the IO_Controller
block in the Bus library.

The IO_Controller when operating in Custom mode can act as a bridge.

110603 Page 152 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The IO_Controller block when operating in internal mode can also be used to model connecting
the AMBA AHB bus to banks of memory. The DRAM in the memory bank can be accessed either
using the address mode or using the DRAM name.
Pl refer to IO_Controller block documentation for details.

The connectivity to peripheral devices can be modeled using an I_O block connected to the bus.

1.1.6 AMBA Bus Features supported:

AMBA AHB

 High performance
 Pipelined operation
 Multiple bus masters
 Burst transfers
 Split transactions

AMBA APB

 Low power
 Latched address and control
 Simple interface
 Suitable for many peripherals

1.1.7 Typical AMBA System components and the Mapping to
VisualSim

AMBA System component Map to VisualSim
AHB Master Typically a Processor or DMA. Traffic generators can also be

used to send transactions to the bus routed through an I_O
block that provides flexibility of setting certain fields of the
Processor_DS.

AHB Slave High bandwidth On-chip RAM or an External memory
represented using the DRAM block.

AHB Arbiter The AMBA AHB Hierarchical Bus consists of a BusArbiter
(arbiter) and Linear Bus Ports (to connect the Master an slave
devices).
Supports FCFS, Custom arbitration.

AHB Decoder Decoding the address of each transfer and provide a select
signal for the slave that is involved in the transfer is abstracted
as locating the slave using the routing table, A_Destination field
represents the name of the slave and its availability is found by
obtaining the block status.

1.1.8 Routing Table
The blocks directly connected to the bus would be located using the internal table maintained by
the bus. To trace the route of a transaction flowing from the Processor through the bus to Cache
or DRAM, entries in the routing table needs to be updated.

110603 Page 153 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

1.1.9 Routing Table for the Sample Model

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
DeviceInterface_1 SDRAM_1 Port_1 output ;
SDRAM_1 DeviceInterface _1 Port_2 output ;
Port_1 SDRAM_1 Port_2 port2 ;
Port_2 DeviceInterface _1 Port_1 port1 ;

Tips: The easy way to identify the entries required is to run the model first without any routing
entries, and the model will prompt for entry required between a Source block and a Destination
node. The appropriate entries can be then added incrementally till it succeeds.

1.1.10 Bus Statistics

Statistics collected for the AMBA Bus include

 Throughput in Mbps
 Utilization percentage
 Input Output transactions per sec (IOs_per_second)
 Input buffer occupancy in words

1.1.11 Statistics of the Sample Model
Collected for a Read Transaction of 256 bytes data.

BLOCK = ".AMBA_AHB_Bus_Model.Architecture_Setup",
Bus_1_Delay_Max = 3.3E-7,
Bus_1_Delay_Mean = 1.75E-7,
Bus_1_Delay_Min = 2.0E-8,
Bus_1_Delay_StDev = 1.55E-7,
Bus_1_IOs_per_sec_Max = 1.3333333333333E6,
Bus_1_IOs_per_sec_Mean = 1.3333333333333E6,
Bus_1_IOs_per_sec_Min = 1.3333333333333E6,
Bus_1_IOs_per_sec_StDev = 0.0,
Bus_1_Input_Buffer_Occupancy_in_Words_Max = 64.0,
Bus_1_Input_Buffer_Occupancy_in_Words_Mean = 33.0,
Bus_1_Input_Buffer_Occupancy_in_Words_Min = 4.0,
Bus_1_Input_Buffer_Occupancy_in_Words_StDev = 21.2367605815953,
Bus_1_Throughput_MBs_Max = 176.0,
Bus_1_Throughput_MBs_Mean = 176.0,
Bus_1_Throughput_MBs_Min = 176.0,
Bus_1_Throughput_MBs_StDev = 0.0,
DELTA = 0.0,
DS_NAME = "Architecture_Stats",
ID = 1,
INDEX = 0,
SDRAM_1_Delay_Time_Max = 5.76E-7,
SDRAM_1_Delay_Time_Mean = 2.88E-7,
SDRAM_1_Delay_Time_Min = 0.0,
SDRAM_1_Delay_Time_StDev = 2.88E-7,

110603 Page 154 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

SDRAM_1_Throughput_MBs_Max = 45.3333333333333,
SDRAM_1_Throughput_MBs_Mean = 45.3333333333333,
SDRAM_1_Throughput_MBs_Min = 45.3333333333333,
SDRAM_1_Throughput_MBs_StDev = 0.0,
TIME = 1.5E-6}

{BLOCK = ".AMBA_AHB_Bus_Model.Architecture_Setup",
Bus_1_Utilization_Pct_Max = 24.6666666666667,
Bus_1_Utilization_Pct_Mean = 24.6666666666667,
Bus_1_Utilization_Pct_Min = 24.6666666666667,
Bus_1_Utilization_Pct_StDev = 0.0,
DELTA = 0.0,
DS_NAME = "Architecture_Stats",
ID = 1,
INDEX = 0,
SDRAM_1_Utilization_Pct_Max = 38.4,
SDRAM_1_Utilization_Pct_Mean = 38.4,
SDRAM_1_Utilization_Pct_Min = 38.4,
SDRAM_1_Utilization_Pct_StDev = 0.0,
TIME = 1.5E-6}

1.1.12 Validation comparing with AMBA Spec

Figure 3-29 of AMBA Specification shows an AHB master arbitration and Timing diagram.

110603 Page 155 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The VisualSim AMBA AHB Bus implements the AMBA AHB Protocol at a higher level of
abstraction. The A_Command field of the Processor DS maps to the transfer types Read or a
Write. The A_Addr_Ctrl_Flag field of the Processor_DS maps to the Address/Control cycle. With
the default FCFS mode of arbitration the VisualSim AMBA Bus works with the A_Addr_Ctrl_Flag
set to true; i.e. introduces one address/control cycle. The slave response OKAY, SPLIT/RETRY
etc is mapped to the Slave status.

In the VisualSim Bus Timing diagram, the Address/Control cycles can be seen as single plot of
Bus Control (legend-BC). The Bus data transferred can be seen as plot of Bus Data (legend-BD).

The actual data Read or a data write happening at the slave (SDRAM) can be seen as a DRAM
Access (legend-DA).

Figure 4-2 from the AMBA Specification shows the use of NONSEQUENTIAL and SEQUENTIAL
transfers to perform a burst transaction.

The VisualSim AMBA AHB Bus can be configured to have any of the supported data bus widths
(8, 16, 32, 64, 128, 256, 512 or 1024-bits wide). However, it is recommended that a minimum bus
width of 32 bits is used and it is expected that a maximum of 256 bits will be adequate for almost
all applications.

110603 Page 156 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The Width_Bytes parameter is used to specify the data bus width and the Burst_Size_Bytes
parameter is used to specify the bytes that can be transferred in a burst operation.

The Figure above shows address/control cycles followed by the data cycles for a Burst Read
Operation. The VisualSim Timing diagram for a similar 4 byte Read transfer also depicts the
same.

110603 Page 157 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

A similar burst operation of a 4 byte Read Transfer done with the VisualSim AMBA AHB Bus is
shown in the following figure.

110603 Page 158 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

A NONSEQUENTIAL transfer occurs for either a single transfer or at the start of a
burst of transfers. An 8 byte non-sequential Read transfer shows address/control cycles longer.

Figure 4-3 from AMBA Specification shows a typical NONSEQUENTIAL read transfer
including wait states.

With the VisualSim AMBA AHB Bus configured to run in Custom mode, the address/control
cycles could be manipulated by the user to see a similar behavior as seen in the specification.

The Processor_DS field A_Addr_Ctrl_Flag (boolean) represents an Address or Control Flag. To
introduce longer address/control cycles, the A_Addr_Ctrl_Flag flag can bet set to true in custom
mode and the same would introduce an additional address/control cycle.

110603 Page 159 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Operational View of the Model

The traffic generator pumps in transactions through the bus. The Processor_DS setup
determines the type of Transaction – Read or a Write, the Size of bytes to be
transferred, the source and destination blocks. On receiving a DS from the Bus Master,
the Bus Port places it on the FIFO Buffer and transfers control to the Bus Controller. The
Bus Controller decides which master to grant access to the bus and allows transfer
through the bus to the respective slave. The Bus Controller handles the response from
the slave (OKAY, Split/Retry) and processes till the transfer is complete.

A Write transaction is processed as follows.

1. The address/control signal (Write request) is transferred through the bus in one
cycle (Sample model: Cycle time is 10 ns).

2. The data fragments are transferred through the bus taking several cycles,
depending on the bus width, burst size, bus speed, bytes transferred etc.
(Sample model: 32 clock cycles)

3. The slave now takes several cycles to write the data, nothing returns on
successful completion.

Timing Diagram – Write Transaction

110603 Page 160 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Data Fragmentation – Write Transaction

{A_First_Word, A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

Address/Control Signal:
First fragment: {true, 256, 192, 64, Write} //sends address, 8 bytes

Data Transfer:
The 256 bytes to be transferred through the bus are sent in 4 burst operations (Burst_Size_Bytes
= 64).

Burst #1
First fragment: {true, 256, 192, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 192, 64, Write} //sends remaining words, 56 bytes

Burst #2
First fragment: {true, 256, 128, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 128, 64, Write} //sends remaining words, 56 bytes

Burst #3
First fragment: {true, 256, 64, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 64, 64, Write} //sends remaining words, 56 bytes

Burst #4
First fragment: {true, 256, 0, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 0, 64, Write} //sends remaining words, 56 bytes

A Read transaction is processed as follows.

1. The address/control signal (Read request) is transferred through the bus in one
cycle (Sample model: Cycle time is 10 ns).

2. The slave now responds by performing the data Read and returns the data
fragments setting the A_Command as ‘Write’ so the bus would return the data to
the master.

3. The data fragments are transferred to the master through the bus taking several
cycles, depending on the bus width, burst size, bus speed, bytes transferred etc.
(Sample model: 32 clock cycles).

110603 Page 161 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Timing Diagram – Read Transaction

Data Fragmentation

{A_First_Word, A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

Address/Control Signal:
First fragment: {true, 256, 192, 64, Read} //sends address, 8 bytes

Data Transfer:
The slave DRAM reads and returns the data fragments setting the A_Command as ‘Write’.

The 256 bytes to be transferred through the bus are sent in 4 burst operations (Burst_Size_Bytes
= 64).

Burst #1
First fragment: {true, 256, 192, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 192, 64, Write} //sends remaining words, 56 bytes

Burst #2
First fragment: {true, 256, 128, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 128, 64, Write} //sends remaining words, 56 bytes

Burst #3
First fragment: {true, 256, 64, 64, Write} //sends first word, 8 bytes

110603 Page 162 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Second fragment: {false, 256, 64, 64, Write} //sends remaining words, 56 bytes

Burst #4
First fragment: {true, 256, 0, 64, Write} //sends first word, 8 bytes
Second fragment: {false, 256, 0, 64, Write} //sends remaining words, 56 bytes

110603 Page 163 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

1.2 AMBA APB Bus

AMBA APB Bus is a subset of AHB Bus and is used with low bandwidth peripheral devices that
does not require high bandwidth of the main system bus.

AMBA APB Hierarchical block models the APB Bus.

Features Supported:

 Low power
 Latched address and control
 Simple interface
 Suitable for many peripherals

The AMBA APB appears as a local secondary bus that is encapsulated as a single AHB
or ASB slave device. APB provides a low-power extension to the system bus which
builds on AHB or ASB signals directly.

APB Bridge connecting the AHB Bus and the APB Bus can be modeled using the Bridge block
with Delay cycles of 1 cycle.

110603 Page 164 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

1.3 AMBA AXI

The AMBA AXI Bus protocol is targeted at high-performance, high-frequency system designs and

includes a number of features that make it suitable for a high-speed sub micron interconnect. The

objectives of the AMBA AXI Bus are to be suitable for high-bandwidth and low-latency designs
and enable high-frequency operation without using complex bridges. It meets the interface

requirements of a wide range of components and it is suitable for memory controllers with high

initial access latency and provide flexibility in the implementation of interconnect architectures.

The VisualSim AXI Bus library provides design engineers the ability to construct platform models

with different variations of the AXI protocol quickly and efficiently. The library functionality and

timing are fully open for the user to modify either using parameters or by editing the script written

in the high-level Virtual Language. The library also has built-in flow control for communication with

masters, slaves and other AXI buses. The AXI can be connected in any combination of topology.

1.3.1 Setup
To include the AXI Bus block in a model, the following steps must be followed:

a. From Folder-> Interfaces and Buses  AMBA  AMBA_AXI, drag on to the BDE. This

is an instance of the AMBA_AXI. When opening to view details, always select “Open

Instance”.

b. Set the block parameters to match your block diagram. Refer to the Parameter selection.

c. Connect each Master to the multi-ports on left-side. Connect all Slaves to the right-side.

Make sure you connect the input to the AXI first and then the output. All connections

must be made to a input/output of a Hierarchical block or another a single block.

d. The AXI Bus expects the Data Structure named Processor_DS, to be used. If you are

using any other Data Structure template, make sure the fields are mapped appropriately.

Look at Section 1.4 for a listing of all the fields used within the AXI block.

e. The AXI block supports up to 16 Master and 8 Slave ports.
f. Modify the various Thresholds to add the threshold for all the ports including the new

Master ports.

g. Select the number of channels and arbitration

h. Select whether the Master or Slave will use the AXI arbitration

110603 Page 165 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

1.3.2 Sample Model

Figure 1-1 AMBA AXI Bus Model

1.3.3 Setup
To Run the Model, the Model Parameters and the transaction data structure flowing into the

respective channel of the AXI Bus Block (ex: Processor_DS) etc need to be setup.

1.3.4 Model Parameters, Data Structure Fields and Ports

Parameter Name Value (Data Type) Explanation
Architecture_Name

“Architecture_1”
(String)

Name of the Architecture Setup
block

Bus_Name “AXI” (String) Unique name for this Bus. Different from
all architecture blocks and global model
memories.

AXI_Speed_MHz 200.0 (Double) Bus Speed
AXI_Cycle_Time 1.0E-06 /

AXI_Speed_MHz
AXI Bus Cycle Time calculation

Bus_Width 8 (Int) Width
Write_Threshold 64 (Int)

Outstanding Write Data on the Bus.
Depends on Threshold parameter below
for units- bytes or transactions.

Read_Threshold

64 (Int)

Outstanding Read Data on the Bus.
Depends on Threshold parameter below
for units- bytes or transactions.

Master_Request_Threshold {2,2,2,2,2,2,2,2}

Array list of number of outstanding
requests per Master

Number_Master 16 (Int) Connected Masters (Left-side)
Number_Slaves 8 (Int) Connected Slaves (Right-side)
Threshold_Trans_T_Bytes_F true for Transaction

false for Bytes
(Boolean)

This is the flow control mechanism
Slave. If true, then the Bus holds
transmission based on the number of

110603 Page 166 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

transactions. If false, then the Bus holds
the transmission based on the number of
Bytes irrespective of the number of
transactions.

Arbiter_FIX_1_RR_2_CUSTOM_3 Fixed Priority is 1;
Round_Robin is 2 and
user defined arbitration
is 3. For 3, the
Custom_File and
Custom_Path fields
must be set.1

1

Slave_Speeds_Mhz

{AXI_Speed_Mhz,
AXI_Speed_Mhz,
AXI_Speed_Mhz,
AXI_Speed_Mhz}

This is used to synchronizes the timing
between the slave devices and the bus.
Each index is for the slave ports in
order.

Extra_Cycles_for_
RdReq_WrReq_RdData_WrData

{0,0,0,0}

For more details on this special
parameter, read Section on Extra
Cycles.

Devices_Attached_to_Slave_by_Po
rt

{{“RAM1”},{”RAM2”}}
(Array of arrays of
string)

This is an array of arrays. Each array
contains the list of devices that are
accessed via a Slave Port. Index 0 of the
array is for Slave Port 1, Index 1 is for
Slave Port 2 and so on. There must be
one array with one value for each Slave.
The names are strings.

Master_First_Word_Flag

true (Boolean)

true returns the first word while a false
sends out the last word back to the
Master for a Read operation

Single_Request_Channel false (Boolean)

There are separate Read and Write
Request queues by default, which is
false. If set to true, all the Read/Write
Requests are sent to the Read Request
Queue from the Master Transaction
block. The user will need to modify only
the arbitration logic.

Master_Throttle_Enable {true,true,true,true} If set to true, then the Master will send a
acknowledge Event to the device
connected on that port using the return
wire. The device cannot send any new
Read Request or Write data until it
receives a acknowledgement for the
previous transfer. The Read and Write
are handled independently. If set to
false, the Read and Write Threshold will
be the only factor affecting the flow
control.

Slave_Throttle_Enable

{true,true,true,true}

If set to true, then the Slave will not send
the next Read Request or Write data
until it receives a acknowledgement for
the previous transfer. The Read and
Write are handled independently. If set to
false, the Read and Write Threshold will
be the only factor affecting the flow

110603 Page 167 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

control.
Single_Request_Channel true Boolean value of true or false. if ture,

then there is a single request channel for
reads and writes. if false, then the read
and write have separate channels. The
Read and Write thresholds are still
utilized for flow control.

DEBUG

false (Boolean)

If set to true, the lower port outputs the
current time, the active transaction and
the channel.

Sim_Time

1.0 (Double)

This is simulation time and match the
top-level Digital Simulator

Custom_Arbiter_File "Custom_Script.txt" Name of File containing custom
arbitration in Virtual Machine script.

Custom_Arbiter_Path "C:/VisualSim/Scripts for
Windows
/VisualSim/Scripts for
UNIX"

Path to the custom arbitration script file.

Fixed_Priority_Array {{1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16},{1,2,3,4,
5,6,7,8,9,10,11,12,13,14
,15,16},{1,2,3,4,5,6,7,8,9
,10,11,12,13,14,15,16},{
1,2,3,4,5,6,7,8,9,10,11,1
2,13,14,15,16},{1,2,3,4,5
,6,7,8,9,10,11,12,13,14,
15,16},{1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16},{1
,2,3,4,5,6,7,8,9,10,11,12
,13,14,15,16},{1,2,3,4,5,
6,7,8,9,10,11,12,13,14,1
5,16}}

Fixed Priority based on Port Numbers

Table 1 List of AXI Bus Block Parameters

1.3.5 Data Structure
Field

Value (Data Type)
1.3.6 Explanation

A_Bytes 128 (Int) Total bytes to be transferred

A_Bytes_Remaining 32 (Int) Remaining bytes to transfer after current
transaction

A_Bytes_Sent

8 (Int)

Bytes currently transferred and will equal
the Width

A_Command “Read” or “Write”
 (String)

Bus Operation. Internal activity will
breakdown to Request, Address, Data
Channel and Acknowledge

A_Message Used internal to the Bus
(String). No user setting

Indicate the type of transaction (Request
, Response, Address out, Data and

110603 Page 168 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

required and does not need to
exist in the incoming Data
Structure

ACK)

A_Priority 2 (Int) Transaction Priority. Will reorder all
queues according to priority.

A_Source “ARM9” (String) Master Name

A_Destination “DRAM” (String) Final Destination

A_Hop “DRAM” (String) Set to match A_Destination

AXI_Src_Arr

{“Master1”,”Master2”} Used internally to return the transaction
from Slave to the correct Master port

A_Prior_Des 1 Slave number sending the transaction

Event_Name “Block_Event_Slave” This field contains the Event name that

the sending device is waiting on.

This is the name of the Event that the
sending device is waiting on. If the

Master Throttle is enabled for this port,

the Master_port of the AXI will look for

this field. If it does not exist, a error will

be reported. If it exists and when the

transaction is accepted, the AXI bus

Master port will send this event. This is

a notification for the device to send the

next transaction. This is used for the

flow control. Similarly on the AXI slave

side, if the Slave Throttle is enabled, the
Slave Port will wait for the Event to be

received from the connected slave to

send the next transaction.

Table 2 List of Data Structure Fields used in the AXI Bus

Port Name Type Explanation
Input, input2, input3,
input4, input5, input6,
input7, input8, input9,
input10, input11,
input12, input13,
input14, input15,

Multiport or input/output.
Connection must be made in
order- first input to this port and
then output away from this port.

Each port is for one Master. Must
be a Transaction (Data Structure of
type Processor_DS)

110603 Page 169 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

input16

output, output1,
output2, output3,
output4, output5,
output6, output7,
output8

Multiport or input/output.
Connection must be made in
order- first input to this port and
then output away from this port.

Each port is for one Slave. Must be
a Transaction (Data Structure of
type Processor_DS)

Stats_Out

Output port

Statistics (Data Structures) and
debugging (String) information.

Table 3 List of AXI Bus Ports

1.3.7 Master and Slave Queue Depths
The length of the Master and Slave queues can be used to throttle the transmission of

transactions into the AMBA AXI bus. The thresholds are in memory arrays.

Memory Name Value Explanation
Read_Threshold_Array

{0,0,0,0}

Number of outstanding Read
Requests. Index starts from 0, which
corresponds to Slave 1. The value
can be transaction or bytes
depending on Threshold setting.

Write_Threshold_Array

{0,0,0,0}

Number of outstanding Write
Requests. Index starts from 0, which
corresponds to Slave 1. The value
can be transaction or bytes
depending on Threshold setting.

Read_Master_Array

{0,0,0,0,0,0,0,0}

Number of outstanding Read
Requests at the Master Queues for all
Slaves. Index starts from 0, which
corresponds to Master 1. The value
can be transaction or bytes
depending on Threshold setting.

Write_Master_Array

{0,0,0,0,0,0,0,0}

Number of outstanding Write
Requests at the Master Queues for all
Slaves. Index starts from 0, which
corresponds to Master 1. The value
can be transaction or bytes
depending on Threshold setting.

Table 4 Queue Depth Array Memory Locations

These are local memories inside the AMBA_AXI block. To access these memories, you need to
first reference it into Virtual_Machine, Smart_Controller, Processor and Decision blocks using

X=readMemory(“Model_Name.Hierarchical_Name.AXI_Block_Name.Write_Master_Array”).

This will create a reference to the array. Define this in the initial section. After that, you can use it

in your code as X(Master_Number -1). Remember that array index starts from 0. To get the

memory path, you can use the RegEx function called readAllMemory. This will provide the

complete path. You can also use local_memory to get the hierarchical path.

110603 Page 170 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

1.3.8 Read and Write Request Channels
The AXI Bus supports two types of channel structure. The setting is based on the block

parameter- Single_Request_Channel

• Separate Read and Separate Write channel

• Combined Read and Write channel

The Read_Threshold and Write_Threshold are used for the flow control in both cases, as

described in the Flow Control section of this document.

1.3.9 Arbitration
Three types of arbitration are supported by the AXI Bus- Fixed Time Slot, Round Robin and User-

Defined. The parameter “Arbiter_FIX_1_RR_2_CUSTOM_3” determines the arbitration for the
Bus. 1 is for Fixed Time Slot, 2 is for Round-Robin and 3 is for Custom.

Fixed Slot Time: The fixed priority arbitration has time broken down into slots. The number of

slots is equal to the AXI_Cycle * Number_of_Master parameter. Each slot is assigned to a

master in the order listed. So, master 1 gets slot 1, Master 2 gets slot 2 and so on. At the

respective slot, the arbiter checks the master for a transaction. If one is available, it sends it out

else it waits a slot and arbitrates for the next slot. The slot time is the duration of one AXI cycle

time.

Round-Robin: This performs the round-robin between requests from the Master at every Slave. At

the first clock cycle, it starts at Master 1 (input) and then scans each Master (order is based on

the input port number). When it finds a request, it sends this out. The next clock cycle, it starts
from the next Master after the one that was sent out last cycle. This is done at every Slave for

every cycle.

Custom: The user can define a custom arbitration mechanism. The arbitration is described in the

form of a Virtual Machine Script. The file name and path are set in the block parameters. Use

the standard arbitration scripts as a template to construct your own algorithm.

1.3.10 Throttle Mechanism and Throttle block
The throttle mechanism is built into the AXI bus. The master and slave devices can use the

event-based or TLM-style arbitration provided by the AXI throttle. Alternately, the modeler can

define their own throttle mechanism by looking at the threshold memory arrays listed in Queue

Depth array table above.

Standard Throttle

110603 Page 171 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

In the Throttle-enabled mode, the master and/or slave devices can be controlled by the AXI bus.

Also, some devices can be controlled and other can be turned off based on the parameter setting.

When a device sends a transaction to the AXI Master, the device goes into a Wait for Event state.

The device sends a string value in the field called Event_Name to identify the unique Event

expected. When the AXI master accepts the transaction, it sends the event with that name out.

At the same time, the AXI master deletes the Event_Name field and sends it to the request

channel. On the Slave side, the AXI adds the Event_Field with the string name and sends the

transaction out. When the AXI receives the Event, it sends the next transaction out. Each master

and slave device must maintain a unique name for the Event. This is done by concatenating the

device name + event.

There are two arrays that keep track of the thresholds for the slaves (set to transactions):

Read_Threshold_Array local {0,0,0,0} ; /* Current Read Thresholds */

Write_Threshold_Array local {0,0,0,0} ; /* Current Write Thresholds */

Once, a request is sent from the Master Read_Master_Array to the slave, then the

Read_Master_Array is decremented (one cycle typically), and the Read_Threshold_Array is

incremented. When the first word of the read returns from the slave, the Read_Threshold_Array

is decremented. These arrays give the user insight into pending master requests and active slave

110603 Page 172 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

transactions. The Read and Write Arbiters control the Read_Threshold_Array and

Write_Threshold_Array internally. However, they can be monitored externally like the

Read_Master_Array and Write_Master_Array.

If a user block is to be connected to the Master or Slave port of the AXI Bus, it is best to use the

Flow_Control_Manager block (Hardware_Modeling->Bus_Switch_Ctrl Folder).

The Slave side throttle can be turned off by setting the “Slave_Throttle_Enable” for that slave port
to false. If not, the slave will require an Event before it can send the next transaction, else will

cause a lockup in the model.

1.3.11 Adding additional Master and Slave port

i. The following steps must be followed to increase the Masters and Slaves:

a. Specify the number of Masters and Slaves in the parameter field called

Number_Master and Number_Slaves respectively.

b. Modify Master_Request_Threshold to add additional indices for the new Master

ports.

c. For Slave Ports, add additional indices for the new ports in the Slave_Speed_Mhz.

d. To enable or disable throttle, add an index for each additional master or slave. The
master is Master_Throttle_Enable and slave is Slave_Throttle_Enable.

e. Update parameter “Device_Attached_to_Slave_by_Port” by adding the

Slave_Name in Array.

f. To add new Master, copy the input8 port and Transaction8 block. Modify the

parameter port_number to the next port number. Make the connection similar to the

current method.

g. To add a Slave, copy Slave_4 block and output4 port. Make the connection similar to

the current method. Modify the Slave_Number to the next value

h. The decoders are setup to support 12 Masters and 6 Slave. So, you will not have to

change anything for this addition. If you go beyond this number, then you need to edit

the script of Distribute_Data.
i. In the Distribute_Data, you will add the following lines for the definition:

One for each master greater than 12:

Master_13 = Bus_Name + "_Transaction_13"

For each slave greater than 6:

Slave_1 = Bus_Name + "_Slave_1"

110603 Page 173 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

j. In the Distribute_Data, add the information for each additional master as below:

 CASE: 13

 SEND(Master_13, port_token, no_dup)

 GTO (END)

k. In the Distribute_Data, add the information for each additional slave as below:

 CASE: 7

 SEND(Slave_7, port_token, no_dup)

 GTO (END)

1.3.12 AXI Bus Description

 The AXI protocol is burst-based. Every transaction has address and control information
on the address channel that describes the nature of the data to be transferred. The data is

transferred between master and slave using a write data channel to the slave or a read data

channel to the master. In write transactions, in which all the data flows from the master to the

slave, the AXI protocol has an additional write response channel to allow the slave to signal to the

master the completion of the write transaction. The AXI protocol enables address information to

be issued ahead of the actual data transfer.

 Read Address Channel

 Address
 and
 Control

 Read Data Channel

 Read Read Read
 Data Data Data

Fig. 1.2 Channel Architecture of Read Command

Master
Interface

Slave
Interface

110603 Page 174 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

 Write Address Channel

 Address
 and
 Control

 Write Data Channel

 Write Write Write Write
 Data Data Data Data

 Write Response Channel

 Write
 Response

Fig. 1.3 Channel Architecture of Write Command
Read and Write Request Channels
Read and write transactions can be a combined channel or each can have their own Request
channel. The appropriate Request channel carries all of the required address and control

information for a transaction. The AXI protocol supports the following mechanisms are as follows:

variable-length bursts, from 1 to 16 data transfers per burst, bursts with a transfer size of 8-1024

bits, and wrapping, incrementing, and non-incrementing bursts

Read Data Channel
The read data channel conveys both the read data and any read response information from the

slave back to the master. The read data channel can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits

wide. In the VisualSim AXI implementation, either the first or the last word in a burst is sent out

only. The selection is based on the Master_First_Word_Flag setting. If true, the first word is sent.

Write Data Channel
The write data channel conveys the write data from the master to the slave and includes:

• The data bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide

• One byte lane strobe for every eight data bits, indicating which bytes of the data bus are

valid.

Write data channel information is always treated as buffered, so that the master can perform write

transactions without slave acknowledgment of previous write transactions.

Master
Interface

Slave
Interface

110603 Page 175 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Write Response Channel
 The write response channel provides a way for the slave to respond to write transactions.

All write transactions use completion signaling. The completion signal occurs once for each burst,

not for each individual data transfer within the burst.

1.3.13 Flow Diagram
 The Traffic Generator generates the token. The token field can be setup according to

their requirement. The AMBA AXI Bus contain five different type of channel are as follows

Channel Name AMBA AXI Specification
Name

Description/Notes

Request_Channel Read_Address_Channel Address
Address_Out_Channel Write_Address_Channel Address
Data Channel_1 Read_Data_Channel Read data
Data_Channel_2 Write_Data_Channel Write Data
ACK_Channel Write_Response Write Acknowledgement

Table 5 List of AXI channels implemented in the VisualSim AMBA AXI Bus Model

If the Read_Address_OK is false (by Default), and the threshold is fine, The Request is passed

through Request_Channel to the respective slave. If a write operation, the Address_out is
generated and then fragments the data and is passed through the Address_out Channel,

Data_Channel respectively as shown in the figure below. When the Slave device status is

compared to the Threshold value, if it exceed the Threshold value, negative acknowledgement

will return to the Master results in resend the Request again.

Traffic_Generator
(A_Command = “write”)

Generate Request
pass it through the (a)

Slave

Negative
ACK

a) b) c)

AXI BUS

a) Write_Address_Channel
b) Write_Data Channel
c) Write_ACK Channel

110603 Page 176 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Fig. 1.4 Flow Layout of AMBA AXI Bus (Write operation)

Timing and Extra Cycle for Write Operation:
• WriteAddress = 1 cycle + Extra Delay

• WriteData = 1 cycle + Extra Delay for the first word. The transaction is sent out. Here the

Data Structure fields are

o A_Bytes=Full Data Size;

o A_Bytes_Sent = AXI_Width;
o A_Bytes_Remaining=(A_Bytes – A_Bytes_Sent).

• If the Write contains multiple words, there is an internal delay of 1 cycle/word for each of the

remaining words. The extra cycle will not be added to these words. Say, that A_Bytes= 32

bytes and the AXI_Width = 8 bytes. The first word of 8 bytes will be delayed and output. The

remaining Words will be delayed but will not be output.

• The remaining words will be in consecutive cycles. Out-of-order execution is not permitted by

AMBA-AXI standard.

Fig. 1.5 Flow Layout of AMBA AXI Bus (Read operation)

Traffic_Generator
(A_Command = “Read”)

Generate Request
pass it through the (a)

Negative
ACK

Slave

 AXI_BUS
 a) Read_Request Channel
 b) Read_Response Channel*
a) b) c) c) Read_Data Channel

 * denotes Optional

110603 Page 177 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Timing and Extra Cycle for Read Operation:
• ReadRequest = 1 cycle + Extra Delay

• ReadData = 1 cycle + Extra Delay for the first word. The transaction is sent out. Here the
Data Structure fields are

o A_Bytes=Full Data Size

o A_Bytes_Sent = AXI_Width

o A_Bytes_Remaining=(A_Bytes – A_Bytes_Sent).

• If the Read contains multiple words, there is an internal delay of 1 cycle/word for each of the

remaining words. The extra cycle will not be added to these words. Say, that A_Bytes= 32

bytes and the AXI_Width = 8 bytes. The first word of 8 bytes will be delayed and output. The

remaining Words will be delayed but will not be output.

• The remaining words will be in consecutive cycles. Out-of-order execution is not permitted by
AMBA-AXI standard.

1.3.14 Bus Statistics
Standard statistics are collected for the various channels in the AXI bus:

• AXI_Top_Rd_Request_Queue: Read Request Channel

• AXI_Top_Wr_Request_Queue: Write Address Channel

• AXI_Top_Wr_Data_Channel: Write Data Channel

• AXI_Top_Rd_Data_Channel: Read Data Channel

The statistics fields are:

• Queue_Number corresponds to the Master number. In the Request channel, they

correspond to a combination of Master+Slave. For example, Master 1 to Slave 1 will be

Queue 1 while Master 2 to Slave 6 will be 14. The first 8 correspond to the 8 Master’s

going to Slave 1, second 8 are the Master’s going to Slave 2 and so on.

• Total_Delay is the time across the channel for the entire transaction. The maximum size

must be the Bus Width.

• Occupancy is the queue depth that is occupied. This is in number of transactions.

• Number if IOs per second

• Throughput in MB/sec

110603 Page 178 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

1.3.15 Latency Flow
 The Latency for the Read and Write operations are shown below.

Read Command

 Request (1 Cycle)

 Response (1 Cycle)

 Data (1st Fragment)

 A_Bytes = 128
 Bus_Width = 8
 Ctrl_Time=1Cycle

Figure 6 Total Latency for the whole READ operation = 20 Cycle

Note:
Overhead = Fragments * (Slave_Width / Slave_Speed) *(Bus_Speed / Bus_Width)
Total_Data_Cycle =Ctrl_Time + (A_Bytes/Bus_Width) + DRAM_Latency

110603 Page 179 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Write Command

 Request (1 Cycle)

 Response (1 Cycle) (optional)

 Address_out (1 Cycle)

 Data (1st Fragment)

 A_Bytes = 128
 Bus_Width = 8
 Ctrl_Time = 1 Cycle
 ACK (1 Cycle)

Figure 2: Total Latency for the whole WRITE operation = 22 Cycle

Note: Total_Data_Cycle =Ctrl_Time + (A_Bytes/Bus_Width) + DRAM_Latency

1.3.16 Operational View of the Model
 All Masters and Slave transmit “Hello” messages at startup to indicate their presence and

the connectivity location. This is used to build up the routing table. AXI Bus requires the listing of

the Slaves that are reached through each Slave_Port. When a transaction arrives, the bus

determines the type of Transaction – Read or a Write, the Size of bytes to be transferred, the

source and destination blocks and whether the transmitted is Read/Write command from the

source. On receiving a DS from the source, the AXI_Bus send the Request through the

Request_Channel to the slave. For a Write operation, the data is fragmented to the Bus width and

transmitted on the Data_Channel to the respective Slave.

1.3.16.1 Write Operation

A Write transaction is processed as follows.

1. The address/control signal (Write request) is transferred through the bus in one cycle

110603 Page 180 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

2. The data fragments are transferred through the bus taking several cycles, depending on

the bus width and bytes transferred.

3. At the end of the transfer, the slave takes one additional cycles to write the data and

return the Write Response.

Data Fragmentation – Write Transaction

{First_Word, A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

Address/Control Signal:
First fragment: {true, 128, 120, 8, Write} //sends address through
Write_Request_Channel, 8 bytes

Data Transfer:
The 128 bytes to be transferred are sent in 16 burst operations through the
Write_Data_Channel.
First fragment: {true, 128, 120, 8, Write} //sends first word, 8 bytes
Remaining fragment: {false, 128, 0, 120, Write} //sends remaining 15 words, 8 bytes

1.3.16.2 Read Operation

A Read transaction is processed as follows.

1. The address/control signal (Read request) is transferred through the bus in one cycle.
2. The slave now responds by performing the data Read and returns the data fragments

setting the A_Command as ‘Write’ so the bus would return the data to the master.

3. The data fragments are transferred to the master through the bus taking several cycles,

depending on the bus width and bytes transferred.

Data Fragmentation – Read Transaction

{A_First_Word, A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

Address/Control Signal:
First fragment: {true, 128, 120, 8, Write} //sends address through
Read_Request_Channel, 8 bytes

Data Transfer:
The slave DRAM reads and returns the data fragments setting the A_Command as ‘Write’. The
128 bytes to be transferred are sent in 16 burst operations through the Read_Data_Channel.

110603 Page 181 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

2 PCI Family of Buses
2.1 PCI and PCI-X Bus

The PCI, PCI-X Local bus protocol is a high performance bus for interconnecting peripheral
chips to any independent processor/memory subsystems. The PCI bus block can use as
interconnect between high bandwidth peripherals closer to the CPU for performance gains.

The Systems are modeled using the Architecture library blocks: Processor, Cache, DRAM, I_O
device. The PCI, PCI-X buses are implemented using Hierarchical_Block that contains BusArbiter
and Linear_Port library blocks.

2.1.1 Sample Model

2.1.2 Setup
To use the PCI Bus block, Model Parameters, Model memories, Data Structure generated and
flowing into the bus (ex: Processor_DS) etc need to be setup.

2.1.3 Model Parameters
The parameter for a system that uses implementation of 32-bit PCI bus at 33 MHz:

 Sim_Time: 3.0E-06
 Bus_Name: “Bus_1”
 Architecture_Name: "Architecture_1"
 Bus_Speed_Mhz: 33.0
 Burst_Size_Bytes: 32
 Bus_Width_Bytes: 4
 FIFO_Buffers: 8

110603 Page 182 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

2.1.4 Initialize the Processing Data Structure
The following are sample data structure fields to be set before a data transfer.

A_Bytes – total no. of bytes to be transfer
A_Bytes_Remaining – bus block set the field with remaining no. of data after every transfer
A_Bytes_Sent – bus block set the field with no. of data transferred
A_Command – represent bus command, the PCI bus commands can be specified
 as per the mapping given below:

PCI Bus Command

A_Command field

IO Read “Read_IO”
Memory Read “Read_Memory”
Memory Read Multiple “Read_Multiple_Memory”
Memory Read Line “Read_Line_Memory”
IO Write “Write_IO”
Memory Write “Write_Memory”

Any Read or Write command whether it is from an IO device or Memory it is handled by the bus
in a similar fashion. Hence the bus looks for A_Command that starts with the “Read*” string to
process a Read transaction and starts with the “Write” string to process a Write transaction.

A_First_Word – default is true, Bus block sets to true, if the first word is sent out
 in a fragment, otherwise set to false.
A_Priority – can set the priority of the device, higher priority master gained the bus
 access. The multiple transactions flowing into the bus with different
 priorities are covered in chapter 4, Architecture Modeling.
A_Source – routing source, an initiator.
A_Hop – routing hop, bus block sets and use the fields for internal routing
 table.
A_Status – routing status, bus block sets and use the fields for internal routing
 table.
A_Destination – routing destination, a target.

A sample set of data, a user can set in fields of data structure “Processor_DS”:

Data Structure Field Data Type Sample Data
A_Bytes int 128
A_Command string “Read_Memory”
A_First_Word boolean true
A_Priority int 1
A_Source string “IO_1”
A_Destination string “SDRAM_1”

The data structure Processor_DS can be generated using the block Transaction_Source at given
time. The block Statement is used to modify the fields of the generated data structure.
The fields of data structure Processor_DS are also used as parameter values in block I_O.

110603 Page 183 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

2.1.5 A typical PCI, PCI-X system

In the PCI system model, the processor/cache/memory subsystem is connected to PCI bus
through a PCI bridge. This PCI-Bridge/Memory Controller provides a low latency path through
which the processor may directly access PCI devices mapped anywhere in the memory. The PCI
and PCI-X buses established a central role in I/O systems, which connect the different
peripherals (storage, network, graphics) and low-speed devices (keyboard, serial
communications) to modern Servers and Workstation in the system. Connected to these
“backbones” are several other I/O systems, such as SCSI buses. These are connected to the
PCI/PCI-X system through bridge devices.

Typical PCI, PCI-X System components and the Mapping to VisualSim

The PCI, PCI-X System can build with standard library blocks available in Hardware Architecture
Generator Tool Kit and Bus Modeling Tool Kit. The hierarchical block PCI_Bus represent the PCI
and PCI-X buses. The components of subsystem processor/cache/memory can model with
blocks Processor, Cache, and DRAM. The block IO_Controller can act as bridge for connection
between multiple PCI, PCI-X and other IO buses. The block I_O can act as a port for connecting
IO chips communicate to the Bus.

Each library block has documentation, which provides details on its own parameters and usage in
chapter 4, Architecture Modeling.

The sample model contains one PCI bus providing interconnects between peripheral components
named IO_1, IO_2 and memory SDRAM_1.

PCI, PCI-X Bus features supported:

 Synchronous bus with operation up to 33 MHz, 66 MHz, or 133 MHz.
 Supports multiple families of processors as well as future generations of processors (by

bridges or by direct integration).

110603 Page 184 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

 Support for up to six PCI bus masters.
 FCFS and Custom arbitration scheme.
 Preemption
 Split/Retry transactions
 Support for bus parking (Not supported)
 Support for 64-bit addressing (Not supported)

2.1.6 Routing Table
Route instructions between the blocks I_O, I_O2, SDRAM_1 connected to the bus block
PCI_Bus are entered in Routing Table. The sample model has the following entries in
routing table:

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
IO_1 SDRAM_1 PCI_Port_1 to_bus ;
IO_2 SDRAM_1 PCI_Port_3 to_bus ;
SDRAM_1 IO_1 PCI_Port_2 output ;
SDRAM_1 IO_2 PCI_Port_2 output ;

Bus block create its own routing map internally, so bus ports PCI_Port_1 etc., does not
need to be added as sources or destinations to the routing table. However if any routing
entries are missing, exceptions are thrown with saying the missing source and destination
pair during the model execution.

2.1.7 Bus Statistics

The following statistics are collected in the same PCI, PCI-X bus model.

• Delay – Transaction delay
• IOs_per_sec – Input Output transactions per sec
• Input_Buffer_Occupancy_in_Words – Input buffer occupancy in words
• Preempt_Buffer_Occupancy_in_Words – Preempt buffer occupancy in words
• Throughput_MBs – Throughput in Mbps
• Utilization_Pct – Utilization percentage

The sample statistics collected in the model are given below in min, mean, stdev, and
max values for all architecture resources.

{BLOCK = ".PCI_Bus_Model.Architecture_Setup",
Bus_1_Delay_Max = 9.999E-7,
Bus_1_Delay_Mean = 9.999E-7,
Bus_1_Delay_Min = 9.999E-7,
Bus_1_Delay_StDev = 0.0,
Bus_1_IOs_per_sec_Max = 666666.6666666666,
Bus_1_IOs_per_sec_Mean = 666666.6666666666,
Bus_1_IOs_per_sec_Min = 666666.6666666666,
Bus_1_IOs_per_sec_StDev = 0.0,

110603 Page 185 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus_1_Input_Buffer_Occupancy_in_Words_Max = 32.0,
Bus_1_Input_Buffer_Occupancy_in_Words_Mean = 10.6666666666667,
Bus_1_Input_Buffer_Occupancy_in_Words_Min = 0.0,
Bus_1_Input_Buffer_Occupancy_in_Words_StDev = 15.084944665313,
Bus_1_Throughput_MBs_Max = 85.3333333333333,
Bus_1_Throughput_MBs_Mean = 85.3333333333333,
Bus_1_Throughput_MBs_Min = 85.3333333333333,
Bus_1_Throughput_MBs_StDev = 0.0,
DELTA = 0.0,
DS_NAME = "Architecture_Stats",
ID = 1,
INDEX = 0,
SDRAM_1_Delay_Time_Max = 2.3E-7,
SDRAM_1_Delay_Time_Mean = 1.15E-7,
SDRAM_1_Delay_Time_Min = 0.0,
SDRAM_1_Delay_Time_StDev = 1.15E-7,
SDRAM_1_Throughput_MBs_Max = 96.0,
SDRAM_1_Throughput_MBs_Mean = 96.0,
SDRAM_1_Throughput_MBs_Min = 96.0,
SDRAM_1_Throughput_MBs_StDev = 0.0,
TIME = 1.5E-6}

{BLOCK = ".PCI_Bus_Model.Architecture_Setup",
Bus_1_Utilization_Pct_Max = 68.6868686868687,
Bus_1_Utilization_Pct_Mean = 68.6868686868687,
Bus_1_Utilization_Pct_Min = 68.6868686868687,
Bus_1_Utilization_Pct_StDev = 0.0,
DELTA = 0.0,
DS_NAME = "Architecture_Stats",
ID = 1,
INDEX = 0,
SDRAM_1_Utilization_Pct_Max = 61.3333333333333,
SDRAM_1_Utilization_Pct_Mean = 61.3333333333333,
SDRAM_1_Utilization_Pct_Min = 61.3333333333333,
SDRAM_1_Utilization_Pct_StDev = 0.0,
TIME = 1.5E-6}

2.1.8 Statistics Validation comparing with PCI Specification
The PCI bus standard is validated against as the PCI Local Bus Specification, Revision 2.3.

Model Statistics:

A_Bytes : 128
Burst_Size_Bytes : 32
Bus_Width_Bytes : 4

Transaction Throughput_MBps Utilization_Pct Clocks Latency (us)
Burst Read 88.0 74.74 1 + 32 1.0705
Burst Write 85.33 68.6 1 + 32 1.0001

110603 Page 186 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Table-1: Statistics for burst transfer

A_Bytes : 4
Burst_Size_Bytes : 32
Bus_Width_Bytes : 4

Transaction Throughput_MBps Utilization_Pct Clocks Latency (us)
Single Read 5.33 8.08 1 + 1 0.1312
Single Write 2.67 4.04 1 + 1 0.0606

Table-2: Statistics for Single word transfer

Specification statistics:

The statistics obtained in the model are closely related to the statistics given in the specification.

2.1.9 Operational View of the Model

The model uses one PCI bus communicate between devices IO_1, IO_2 and SDRAM_1. The
hierarchical PCI_Bus block has six input/output multiports (bi-directional buses). The device IO_1
requested the bus access for transferring 128 bytes (parameter IO_Bytes = A_Bytes) of data to
the target (IO_Destination = A_Destination) SDRAM_1.

In the sample model assuming that neither the initiator nor the target inserts wait states during
each data phase, the maximum theoretical bandwidth over a 32-bit bus (Bus_Width_Bytes = 4)
is 132 Mbytes/second and perform continuous bursting with a 32-bit (Burst_Size_Bytes = 32)
data transferred on each PCI clock cycle.

Transaction flow:

Write Transaction:

The PCI bus operation is “Write” (IO_Command = A_Command). Address and data transfers are
multiplexed over the same lines on the PCI bus, the address is sent first and then the data.

In the timing diagram of sample model, Address out (BC signal) is completed in one cycle time,
takes 30.3 ns for Bus_Speed_Mhz = 33.0.

{A_First_Word, A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

110603 Page 187 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Address/Control phase: {true, 128, 96, 32, “Write”} // PCI_Bus sent address, 4 bytes to
 SDRAM_1

Data Phase:

After the address out is completed bus start sending data fragments (BD signal) to the target
SDRAM_1. In the sample model PCI bus sent 128 bytes (IO_Bytes = A_Bytes) in four bursts.
Hence take 32 clock cycles to complete entire data transfers.

Fragmentation on Write data:

The bus sent the first word with field A_First_Word as true (4 bytes), and sent the remaining
words with field A_First_Word as false (28 bytes) in all the burst fragments.

Burst #1
First fragment : {true, 128, 96, 32, “Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 96, 32, “Write”} //sent remaining words, 28 bytes

Burst #2
First fragment : {true, 128, 64, 32, “Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 64, 32, “Write”} //sent remaining words, 28 bytes

Burst #3
First fragment : {true, 128, 32, 32,”Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 32, 32, “Write”} //sent remaining words, 28 bytes

Burst #4
First fragment : {true, 128, 0, 32, “Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 0, 32, “Write”} //sent remaining words, 28 bytes

110603 Page 188 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Read Transaction:

The bus initiated Read transfer by start transferring the Address/Control (BC signal) to target.

{A_First_Word, A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

Address/Control phase: {true, 128, 96, 32, “Write”} // PCI_Bus sent address, 4 bytes to
 SDRAM_1

Data Phase:

The SDRAM_1 sent requested data to the bus block setting the field A_Command as “Write”. The
bus starts returning data fragments (BD signal) to the Initiator.

Fragmentation on Read data:

First fragment : {true, 128, 96, 32, “Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 96, 32, “Write”} //sent remaining words, 28 bytes
First fragment : {true, 128, 64, 32, “Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 64, 32, “Write”} //sent remaining words, 28 bytes
First fragment : {true, 128, 32, 32,”Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 32, 32, “Write”} //sent remaining words, 28 bytes
First fragment : {true, 128, 0, 32, “Write”} //sent first word, 4 bytes
Second fragment: {false, 128, 0, 32, Write} //sent remaining words, 28 bytes

Arbitration Schemes

The PCI_Bus block is designed to have more than one master device. If several devices may
require the use of the PCI bus to perform a data transfer at the same time, the PCI arbiter

110603 Page 189 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

effectively control these devices in the listed arbitration schemes in chapter 4, Architecture
Modeling.

 FCFS
 Custom Arbitration

2.1.10 Preemption while stepping in progress

When the PCI bus arbiter grants the bus to a bus master, the address fragment is started to
transfer immediately. During the address out transfer, if the arbiter detects a request from a
higher-priority master, it can remove the grant from the first master before start fragmenting it’s
data. The PCI_Bus arbiter simultaneously remove one master’s grant and assert another’s during
the same clock cycle if a transaction is in progress. It is a rule that the arbiter cannot deassert one
master’s grant and assert grant to another higher priority master during the last word data
transfer.

The bus received a request from Master1 (“IO_1”) starts transferring the data (A_Bytes = 128).
The bus operation is “Write” (IO_Command = “Write”). The priority of device “IO_1” is 1
(IO_Priority = A_Priority). The priority by default is 0.

The bus received a higher priority request from Master2 (“IO_2”) while transferring the second
burst data fragments. The priority of “IO_2” is 2 and A_Bytes = 8. So the bus deasserts the grant
from “IO_1” and start processing the higher priority transaction of “IO_2” before completing the
current transaction. After finished processing higher priority transaction bus started to process the
remaining fragments of preempted transaction and other transactions if any based on the priority.

110603 Page 190 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

2.2 PCI-Express

PCI Express (PCIe) provides a scalable, high-speed, serial I/O bus that maintains backward

compatibility with PCI applications and drivers. The PCI Express layered architecture supports

existing PCI applications and drivers by maintaining compatibility with the existing PCI model. PCI
Express having parallel bus topology and Multiple point-to-point connections. A switch may

provide peer-to-peer communication between different endpoints and this traffic. A PCI Express

link consists of dual simplex channels, each implemented as a transmit pair and a receive pair for

simultaneous transmission in each direction. Each pair consists of two low-voltage, differentially

driven pairs of signals. A data clock is embedded in each pair, using an 8b/10b clock-encoding

scheme to achieve very high data rates.

2.2.1 Sample Model

Figure 2-1 PCIe Bus Model

2.2.2 Setup
To include the PCIe block in a model, the following steps must be followed:

• PCIe Bus is available in Interfaces and Buses  PCI ->PCIe_Bus.
• Set the block parameters to match your block diagram. Refer to the Parameter selection.
• Connect each Master to the multi-ports on left-side. Connect all Slaves to the right-side.
Make sure you connect the input to the PCIe first and then the output. All connections must
be made to a Hierarchical block or intput/output must be to a single block.
• The PCIe Bus expects the Data Structure, Processor_DS, to be used. If you are using
any other Data Structure template, make sure the fields are mapped appropriately. Look at
Section 1.4 for a listing of all the fields used within the PCIe block.

110603 Page 191 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

2.2.3 Model Parameters, Data Structure Fields and Ports
Parameter Name Value (Data Type) Explanation
Architecture_Name “Architecture_1”

(String)
Name of the Architecture_Setup block

Bus_Name “PCIe_1” (String) Unique name for this Bus. Different
from all architecture blocks and global
model memories.

PCIe_Channel_MHz 100.0 (Double) Bus Speed
Number_of_Lanes 16 (Int) Total Number of Data Lane
Slave_Buffer 512 (Int) Buffer in bytes at each Slave interface.

This is used when Flow Control with the
SLave is enabled. In this case the
incoming payload is placed in the Bufer
until it receives an EVENT from the
Slave device.

Master_Buffer 512 (Int) Buffer in bytes at each Master
interface. The Master buffer stores the
payloads and the requests. When the
Slave is not busy, the Request is sent
out. When the Request is
acknowledged, the payload is sent out.

Header_Bytes 16 (Int) Overhead bytes. If not proprietary, DO
NOT MODIFY.

Number_of_Ports {12,12} Two index array with the list of Master
and Slave ports

BER 1.0E-11, Double Error rate that will cause a retry
between the End Point and the Root
Complex

Max_Payload_Size 64 (Int) Write data transfer size .
Max_Payload_Req_Size 64 (Int) Size of the Read requests
PCIe_Gen_1 250.0 (Double) PCIe Gen1 Transfer Rate
PCIe_Gen_2 500.0 (Double) PCIe Gen2 Transfer Rate
PCIe_Gen_3 985.0 (Double) PCIe Gen3 Transfer Rate
PCIe_Gen_4 1969.0 (Double) PCIe Gen4 Transfer Rate
Read_to_Write_Ratio 0.5 (Double) Range is 0.00001-1.0. If 0.0, the value

is ignored. This is the ratio between the
Reads and Writes sent out of a Master.
This simply attempts to maintain a
average ratio between Read and Write.
This will work correctly if there are
sufficient Reads and Writes to maintain
the ratio.

Devices_Attached_to_Slaves {{"DRAM_1"},{"DRAM
_2"},{"DRAM_3"},{"D
ev_4"},{"Dev_5"},{"De
v_6"},{"Dev_7"},{"Dev
_8"},{"Dev_9"},{"Dev_
10"},{"Dev_11"},{"Dev
_12"}}

Array of arrays. This is a list of slave
devices that are downstream from this
port. The order must match the port
order.

110603 Page 192 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Devices_Attached_to_Slave_Port {“DRAM1”,”DRAM2

”} (Array of Strings)
List of slave devices that have to pass
through the Slave port 1

Devices_Attached_to_Slave_Port2 {“DRAM1”,”DRAM2
”} (Array of Strings)

List of slave devices that have to pass
through the Slave port 2

Devices_Attached_to_Slave_Port3 {“DRAM1”,”DRAM2
”} (Array of Strings)

List of slave devices that have to pass
through the Slave port 3

Root_Complex_Flow_Control

{false,false,false,fal
se,false,false,false,
false,false,false,fals
e,false,false,false,f
alse,false}

Array of booleans that corresponds to
all theRoot Complex ports. If true, there
is a Flow Control with the Master
device.The order of the booleans
correspond to the order of the ports

Endpoint_Flow_Control

{false,false,false,fal
se,false,false,false,
false,false,false,fals
e,false,false,false,f
alse,false}

Array of booleans that corresponds to
all the End Point ports. If true, there is a
Flow Control with the Slave.The order
of the booleans correspond to the order
of the ports.

DEBUG false (Boolean) If set to true, the lower port outputs the
current time, the active transaction and
the channel.

Sim_Time 1.0 (Double) This is simulation time and match the
top-level Digital Simulator

Bit_64_Mode True This is for addressing and header
sizing only.

Table 6 List of PCIe Bus Block Parameters

Data Structure Field Value (Data Type) Explanation
A_Bytes 128 (Int) Total bytes to be transferred

A_Bytes_Remaining 120 (Int) Remaining bytes to transfer after current
transaction

A_Bytes_Sent 8 (Int) Bytes currently transferred and will equal
the Width

A_Command “Read” or “Write” (String) Bus Operation. Internal activity will
breakdown to Request, Address, Data
Channel and Acknowledge

A_Message Used internal to the Bus (String). No user
setting required and does not need to exist
in the incoming Data Structure

Indicate the type of transaction (Request,
Response, Data and ACK)

A_Priority 1 (Int) Transaction Priority. Used for Traffic
Class.

A_Source “Node_1” (String) Master Name
A_Destination “DRAM_1” (String) Final Destination

A_Hop “DRAM_1” (String) Set to match A_Destination

Table 7 List of Data Structure Fields used in the PCIe Bus

110603 Page 193 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Port Name Type Explanation

Input, input2, input3,
input4

Multiport or input/output. Connection
must be made in order- first input to this
port and then output away from this port.

Each port is for one Master. Must be a
Transaction (Data Structure of type
Processor_DS)

output1, output2,
output3

Multiport or input/output. Connection
must be made in order- first input to this
port and then output away from this port.

Each port is for one Slave. Must be a
Transaction (Data Structure of type
Processor_DS)

Port Output port Statistics (Data Structures) and
debugging (String) information.

Table 8List of PCIe Bus Ports

2.2.4 Traffic Queue Depths
The length of the Traffic queues can be used to throttle the transmission of transactions into the
PCIe bus. The DRAM Status also in memory arrays.

Memory Name Value Explanation
Max_Q_Value {100, 500, 350, 400, 462, 500, 512,

600, 700, 800}
Used for Traffic Class, the
Maximum Queue Status is
setup before running the model.

Current_Q_Value {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} Used for Traffic Class, the
Current Queue Status is
updated and verified with the
Maximum Queue value before
sending the Request

DRAM_Status {0, 0, 0} DRAM Status can be updated
while sending the Request

Table 9 Queue Depth Array Memory Locations
These are local memories inside the PCIe block. To access these, import into Virtual_Machine

using X =

readMemory(“Model_Name.Hierarchical_Name.PCIe_Block_Name.Current_Q_Value”). This will

create a reference to the array. Define this in the initial section. Remember that array index

starts from 0. To get the memory path, you can use the RegEx function called readAllMemory.

This will provide the complete path.

2.2.5 PCIe Bus Description
The fundamental PCI Express link consists of two, low-voltage, differentially driven pairs

of signals: a transmit pair and a receive pair as shown in Figure 1.2 . A data clock is

embedded using the 8b/10b encoding scheme to achieve very high data rates. The physical

layer transports packets between the link layers of two PCI Express agents.

110603 Page 194 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

 Packet

 Clock Clock

 Packet

Fig. 1.2 A PCI Express link uses transmit and receive signal pairs

The bandwidth of a PCI Express link may be linearly scaled by adding signal pairs to

form multiple lanes. The physical layer supports x1, x2, x4, x8, x12, x16 and x32 lane widths

and splits the byte data. Each byte is transmitted across the lane(s). This data disassembly

and re-assembly is transparent to other layers.

 During initialization, each PCI Express link is set up following a negotiation of lane

widths and frequency of operation by the two agents at each end of the link. The PCI

Express architecture comprehends future performance enhancements via speed upgrades

and advanced encoding techniques. The future speeds, encoding techniques or media would

only impact the physical layer.

Fig. 1.3 A PCI Express Link consists of one or more lanes

2.2.6 Bus Statistics
Statistics collected for the PCI Express Bus

Device A Device B

110603 Page 195 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Response (1 Cycle)

Data (1st Fragment)

ACK (1 Cycle)

A_Bytes = 128
Transfer_Size = 8
Ctrl_Time = 1 Cycle
Total_Data_Cycle = Ctrl_Time
 + (A_Bytes/Bus_Width)
 + DRAM_Latency
For every Fragment, Lane
consumes 8 Cycle (i.e) 1
Cycle per Byte

• Throughput in Mbps

• Utilization percentage

• Input Output transactions per sec (IOs_per_second)

• Input buffer occupancy in words

2.2.7 Latency Flow
The Latency for the Read and Write operation are derived as below.

Read Command

 Total Latency for the whole READ operation = 28 Cycle

Note: Cycle overhead due to Slave = Number of Fragment * (Slave_Width / Slave_Speed) *

(Bus_Speed / Bus_Width)

Request (1 Cycle)

110603 Page 196 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Response (1 Cycle)

Data (1st Fragment)

ACK (1 Cycle)

A_Bytes = 128
Transfer_Size = 8
Ctrl_Time = 1 Cycle
Total_Data_Cycle = Ctrl_Time
 + (A_Bytes/Bus_Width)
 + DRAM_Latency
For every Fragment, Lane
consumes 8 Cycle (i.e) 1
Cycle per Byte

Write Command

Total Latency for the whole WRITE operation = 28 Cycle

2.2.8 Operational View of the Model
 The traffic pumps in transactions through the PCIe_Bus Block along with “Hello”

Message from their respective nodes. The Processor_DS determines the type of Transaction –

Read or a Write, the Size of bytes to be transferred, the source and destination blocks and

A_message to denote whether the transmitted is Request or Data or Acknowledgment from the

source. On receiving a DS from the source, the PCIe Bus send the Request through the x16

Lane to the slave. After getting the Response, the data are fragmented pass it through the x16

Lane Channel as per the Byte Stream concept to the respective Slave. PCIe Bus model will

transfer the Data point to point to the Slave through the x16 Lane Channel.

A Write transaction is processed as follows.

1. The address/control signal (Write request) is transferred through the bus in one cycle

2. The data fragments are transferred through the bus taking several cycles, depending on

the number of Bytes transferred, etc.

3. The slave now takes a cycles to write the data, returns the Write Response.

Request (1 Cycle)

110603 Page 197 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Data Fragmentation – Write Transaction

{A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}

Request Signal:
First fragment: {128, 120, 8, Write} //sends Request, 8 bytes

Data Transfer:
The 128 bytes to be transferred are sent in 16 burst operations through the x16 Lane Channel
as byte by byte.
First fragment: {128, 120, 8, Write} //sends first word, 8 bytes
Remaining fragment: {128, 0, 120, Write} //sends remaining 15 words, 8 bytes

A Read transaction is processed as follows.

• The address/control signal (Read request) is transferred through the bus in one cycle.

• The slave now responds by performing the data Read and returns the data fragments

setting the A_Command as ‘Write’ so the bus would return the data to the master.

• The data fragments are transferred to the master through the bus taking several cycles,

depending on the bytes transferred etc.

Data Fragmentation – Read Transaction

{A_Bytes, A_Bytes_Remaining, A_Bytes_Sent, A_Command}
Request Signal:
First fragment: {128, 120, 8, Write} //sends Request, 8 bytes

Data Transfer:
The slave DRAM reads and returns the data fragments setting the A_Command as ‘Write’. The
128 bytes to be transferred are sent in 16 burst operations through the Channel as Byte by

Byte.

110603 Page 198 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3 CoreConnect Bus
3.1.1 Introduction
The Processor Local Bus (PLB) protocol is a high performance bus for interconnecting
processor, memory subsystems, and high bandwidth peripherals. There are IBM and Xilinx
versions of the bus that match specific timing for reads and writes. The CoreConnect Bus
hierarchical block supports four master and two slave ports with bi-directional ports.

Figure 3-1 VisualSim model of a system using the CoreConnect bus

3.1.2 Setup
The CoreConnect hierarchical block requires certain Model Parameters and a specific Data
Structure (Processor_DS) for proper use, once the CoreConnect hierarchical block has been
dragged into a model window. The Sample Model on the previous page illustrates the model
parameters, below is a more detailed description of their meaning, followed by a description of
the Processor_DS.

3.1.3 Model Parameters
The key bus parameter settings for a Xilinx 32-bit CoreConnect bus at 266 MHz:

110603 Page 199 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

 Bus_Name: “Bus_1”
 Architecture_Name: "Architecture_1"
 CoreConnect_Speed_Mhz: 266.0
 Burst_Size_Bytes: 32
 FIFO_Buffers: 8
 Request_Clock_Multiplier: 0.99

The Bus_Name must be unique with the Architecture_Name, which can be thought of as the
platform domain. The Burst_Size_Bytes represents the CoreConnect Bus model ability to
fragment large transactions into smaller transactions at a master or slave. FIFO_Buffers is the
amount of buffering at the master or slave, based on the Burst_Size_Bytes of the largest bus
fragment. The Request_Clock_Multiplier modifies the request response rate from the master to
slave and slave to master. A Request_Clock_Multiplier of 0.99 represents one clock time per
request transfer from master to slave port, or visa versa.

3.1.4 Data Structure: Processor_DS
The Processor_DS was selected at the best data structure to send through the CoreConnect bus,
as this is the same data structure used by the Processor block, other Architectural Library
busses. The following are specific data structure fields to be set prior to entering a master port.

A_Bytes – Total number of bytes to be transferred
A_Bytes_Remaining – A_Bytes (total) minus A_Bytes_Sent (bus width)
A_Bytes_Sent – bus width
A_Command – CoreConnect bus commands, see below:

CoreConnect Bus Commands

A_Command field

IO Read “Read_IO”
IO Write “Write_IO”
Memory Read “Read_Memory”
Memory Write “Write_Memory”

Any Read or Write command whether it is from an IO device or Memory is handled by the bus in
a similar fashion. Hence the bus looks for A_Command that starts with the “Read_*” string to
process a Read transaction and starts with the “Write_*” string to process a Write transaction.
Read commands will return to the source node, Write commands will execute on the slave device
and “not” return. One exception is if the slave device is a Processor block.

A_First_Word – default is true, not used by the CoreConnect Bus.
A_Priority – the priority of the transaction, higher priority gains bus access.
A_Source – routing source node, or transaction initiator.
A_Hop – represents the next node in the routing path.
A_Status – default OK, not used by the CoreConnect Bus.
A_Destination – routing destination node, or transaction target.

A sample set of data, a user can set in fields of data structure “Processor_DS”:

Data Structure Field Data Type Sample Data
A_Bytes int 64
A_Command string “Read_Memory”
A_First_Word boolean true
A_Priority int 1

110603 Page 200 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

A_Source string “IO_1”
A_Destination string “SDRAM_1”

The data structure Processor_DS can be generated using the block Transaction_Source at given
time. The block Statement is used to modify the fields of the generated data structure.
The fields of data structure Processor_DS are also used as parameter values in block I_O.

3.1.5 Timing Diagrams
3.1.5.1 Back-to-Back Write Transfers (IBM)

 IBM CoreConnect, 4 Cycles for 4 words

110603 Page 201 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.2 Back-to-Back Write Transfers (VisualSim)

Models IBM CoreConnect, 4 Cycles for 4 words
Request_Clock_Multiplier = 0.0
SDRAM (gold color) write shown at bottom, when bus transfer completes.
Note: To reduce SDRAM write latency, it is recommended to reduce the Burst_Size_Bytes
parameter to fewer Words.

110603 Page 202 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.3 Back-to-Back Read Transfers (IBM)

IBM CoreConnect, 6 Cycles for 4 words

110603 Page 203 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.4 Back-to-Back Read Transfers (VisualSim)

 Models IBM CoreConnect, 6 Cycles for 4 words
 Address_Bytes = 8
 Request_Clock_Multiplier = 0.0
 SDRAM (gold color) read shown at bottom, starts with completion of Address
 sent via Address Channel.

110603 Page 204 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.5 Four-word Line Read Followed By Four-word Line Write Transfers (IBM)

IBM CoreConnect, 6 Cycles for 4 word Read followed by 4 word Write

110603 Page 205 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.6 Four-word Line Write Followed By Four-word Line Read Transfers (VisualSim)

 Models IBM CoreConnect, 6 Cycles for 4 word Write followed by 4 word Read
 Address_Bytes = 8
 Request_Clock_Multiplier = 0.0
 SDRAM (gold color) read and write shown at bottom, starts with completion of
 Address sent via Address Channel.

110603 Page 206 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.7 Single Read Transfer (Xilinx)

Xilinx CoreConnect, 6 Cycles for 1 word

110603 Page 207 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.8 Single Read Transfer (VisualSim)

 Models Xilinx CoreConnect, 6 Cycles for 1 word
 Address_Bytes = 4
 Request_Clock_Multiplier = 0.99

110603 Page 208 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.9 Single Write Transfer (Xilinx)

Xilinx CoreConnect, 6 Cycles for 1 word

110603 Page 209 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

3.1.5.10 Single Write Transfer (VisualSim)

 Models Xilinx CoreConnect, 6 Cycles for 1 word
 Address_Bytes = 4
 Request_Clock_Multiplier = 0.99

3.1.6 Routing Table

Routing transactions between the blocks I_O, I_O2, SDRAM_1 connected to the bus
block CoreConnect Bus are added into the Routing Table by the auto-routing capability
within the VisualSim bus blocks. If the transactions must traverse multiple busses, or one
wishes to over-ride the auto-routing, then additions can be made to the routing table:

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
IO_1 SDRAM_1 Port_1 to_bus ;

110603 Page 210 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

IO_2 SDRAM_1 Port_3 to_bus ;
SDRAM_1 IO_1 Port_2 output ;
SDRAM_1 IO_2 Port_2 output ;

The third column represents the next hop in the routing, which might be the name of the
bus port, I_O, Cache, DRAM, IO_Controller, Memory_Controller, or DMA_Controller.
The Source_Port is the name of the port the transaction is leaving, and applies if there is
more than one output port from a bus or memory block. The CoreConnect Bus has a
single input and output per port, so the value of the Source_Port column is not critical to
entering routing information. If any routing entries are missing, exceptions are thrown
indicating the missing source and destination pair during the model execution.

3.1.7 Bus Statistics
The following statistics are collected in the same CoreConnect bus model.

• Delay – Transaction delay
• IOs_per_sec – Input Output transactions per sec
• Node_Buffer_Occupancy_in_Words – Input buffer occupancy in words
• Throughput_MBs – Throughput in Mbps
• Utilization_Pct – Utilization percentage

The sample statistics collected in the model are given below in min, mean, stdev, and
max values for the CoreConnect bus.

{BLOCK = ".Req_Ack_Node_Read_Read_N_Bytes.Architecture_Setup",
Bus_1_Address_Buffer_Occupancy_in_Words_Max = 1.0,
Bus_1_Address_Buffer_Occupancy_in_Words_Mean = 1.0,
Bus_1_Address_Buffer_Occupancy_in_Words_Min = 1.0,
Bus_1_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Delay_Max = 8.0E-9,
Bus_1_Delay_Mean = 7.0E-9,
Bus_1_Delay_Min = 4.0E-9,
Bus_1_Delay_StDev = 1.4142135623731E-9,
Bus_1_IOs_per_sec_Max = 6.0E6,
Bus_1_IOs_per_sec_Mean = 4.0E6,
Bus_1_IOs_per_sec_Min = 3.0E6,
Bus_1_IOs_per_sec_StDev = 1.309307341416E6,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_1_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_1_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_1_Request_Buffer_Occupancy_in_Words_StDev = 0.0,

110603 Page 211 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_3_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_3_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_3_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_4_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_4_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_4_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_5_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_5_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_5_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_6_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_6_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,
Bus_1_Node_6_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_6_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_6_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_6_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_6_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_6_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_6_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_6_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_6_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_6_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_7_Address_Buffer_Occupancy_in_Words_Max = 0.3333333333333,
Bus_1_Node_7_Address_Buffer_Occupancy_in_Words_Mean = 0.3333333333333,

110603 Page 212 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Bus_1_Node_7_Address_Buffer_Occupancy_in_Words_Min = 0.3333333333333,
Bus_1_Node_7_Address_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_7_Read_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_7_Read_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_7_Read_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_7_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Node_7_Request_Buffer_Occupancy_in_Words_Max = 0.6666666666667,
Bus_1_Node_7_Request_Buffer_Occupancy_in_Words_Mean = 0.6666666666667,
Bus_1_Node_7_Request_Buffer_Occupancy_in_Words_Min = 0.6666666666667,
Bus_1_Node_7_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Read_Buffer_Occupancy_in_Words_Max = 2.0,
Bus_1_Read_Buffer_Occupancy_in_Words_Mean = 2.0,
Bus_1_Read_Buffer_Occupancy_in_Words_Min = 2.0,
Bus_1_Read_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Request_Buffer_Occupancy_in_Words_Max = 4.0,
Bus_1_Request_Buffer_Occupancy_in_Words_Mean = 4.0,
Bus_1_Request_Buffer_Occupancy_in_Words_Min = 4.0,
Bus_1_Request_Buffer_Occupancy_in_Words_StDev = 0.0,
Bus_1_Throughput_MBs_Max = 112.0,
Bus_1_Throughput_MBs_Mean = 112.0,
Bus_1_Throughput_MBs_Min = 112.0,
Bus_1_Throughput_MBs_StDev= 0.0,
Bus_1_Utilization_Pct_Max = 5.79,
Bus_1_Utilization_Pct_Mean = 5.79,
Bus_1_Utilization_Pct_Min = 5.79,
Bus_1_Utilization_Pct_StDev = 0.0,

3.1.8 Operational View of the Model
The Read Command/Read Channel and Write Command/Read Channel flows are shown on the
next page.

The flow for the Master to Slave for Read Command/Read Channel starts with adding the
Address to the address queue of the Master, sending a request to the Slave via the Controller.
The Slave receives the request, and acknowledges the request and sends back the
“acknowledge” to the Master via the Controller. Once, the “acknowledge” arrives at the Master, it
sends the Address to the Slave via the Address Channel. The Slave receives the Address, and
sends it to the external Memory. The external Memory returns the Read data and sends to the
Request port of the Slave. The Slave then sends the memory data to the master via the
Controller, until the transfer is complete. Typically, a CoreConnect transfer is less than the
CoreConnect burst word size.

The flow for the Write Command/Read Channel starts with a Request/Address being sent from
the Master to the Slave, via the Controller. The Slave acknowledges the request, sends back to
Master, via the Controller. The Master then sends the Write Command data to the Slave, via the
Controller. If the Write Command exceeds the Burst Size, then it sends a Request back to the
Master to continue the Burst Write Command.

110603 Page 213 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Read Command/Read Channel

ControllerMaster Slave

Req
ReqReq ReqReq

ReqReq

AAck
AddrAddr AddrAddr

Dout

Req

ReqReq

ReadRead ReadRead
Dout

Addr
AddrAddr

Xfer

ReadRead
Xfer

Figure 3-2 Read Command/Read Channel

Figure 3-3 Write Channel/ Write Command

110603 Page 214 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

4 Switched Ethernet
4.1.1 Introduction
Ethernet was originally based on the idea of computers communicating over a shared coaxial
cable acting as a broadcast transmission medium. The common cable providing the
communication channel was likened to the ether and it was from this reference that the name
"Ethernet" was derived. The coaxial cable was replaced with point-to-point links connected by
Ethernet hubs and/or switches to reduce installation costs, increase reliability, and enable point-
to-point management and troubleshooting.

4.1.2 Model Description
The traffic pumps in transactions through the Ethernet Hierarchical Block along with “Hello”
Message from their respective nodes. The Processor_DS determines the type of Transaction –
Read or a Write, the Size of bytes to be transferred, the source and destination blocks and
A_message to denote whether the transmitted is Request or Data or Acknowledgment from the
source. The “Hello” messages are transmitted to the Destination node through the EtherSwitch
Hierarchical Block. On receiving a DS from the node, the MAC_Layer verify the medium condition
and the transmission mode. After fragmenting the frame, the MAC passes it to the PHY_Layer.
The Switches perform as multi port Bridge.

4.1.3 Sample Model

110603 Page 215 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

4.1.4 Setup
To Run the Model, the Model Parameters and the transaction data structure flowing into the
Ethernet_Hierarchical Block (ex: Processor_DS) etc need to be setup.

4.1.5 Initialize the Processing Data Structure
The following are sample data structure fields to be set before a data transfer.

 A_Bytes – total no. of bytes to be transferred
 A_Bytes_Remaining – bus block sets the field with remaining no. of data after every transfer
 A_Bytes_Sent – bus block sets the field with no. of data transferred
 A_Command – represent bus command,
 Any Read or Write command whether it is from any node it is handled by the Ethernet
Hierarchical Block
 A_Priority – set to zero.
 A_Source – an initiator.
 A_Hop – bus block sets and use the fields for internal routing table.
 A_Status – bus block sets and use the fields for internal routing table.
 A_Message – indicate the whether transmitted frame is data or request
 A_Destination – a target.

A sample set of data, a user can set in fields of data structure “Processor_DS” are

Data Structure Field Data Type Sample Data
A_Bytes Int 128

A_Command String “Read_Memory”
A_Message String Request

A_Priority Int 0
A_Source String “Block_Name”
A_Destination String “Cache_1”

EtherSwitch_Full_Duplex Boolean True
EtherSwitch_Speed_Mhz Int 100.0
EtherSwitch_Bytes_per_Frame Int 1500

4.1.6 A Typical Ethernet Model

 Ethernet is fundamentally a shared technology where all users on a given LAN segment
compete for the same available bandwidth IEEE 802.3 logical layers and their relationship to the
OSI reference model. As with all IEEE 802 protocols, the ISO data link layer is divided into two
IEEE 802 sub layers, the Media Access Control (MAC) sublayer and the MAC-client sublayer.
The IEEE 802.3 physical layer corresponds to the ISO physical layer. Ethernet LANs consist of
network nodes and interconnecting media. The network nodes fall into two major classes

• Data terminal equipment (DTE) -- Devices that are either the source or the destination
of data frames. DTEs are typically devices such as PCs, workstations, file servers, or
print servers that, as a group, are all often referred to as end stations.

• Data communication equipment (DCE)— Intermediate network devices that receive
and forward frames across the network. DCEs may be either standalone devices such as

110603 Page 216 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

repeaters, network switches, and routers, or communications interface units such as
interface cards and modems. Throughout this chapter, standalone intermediate network
devices will be referred to as either intermediate nodes or DCEs. Network interface cards
will be referred to as NICs.

 The current Ethernet media options include two general types of copper cable:
unshielded twisted-pair (UTP) and shielded twisted-pair (STP), plus several types of optical fiber
cable.

 Switches create a virtual circuit between two connected devices that want to
communicate. When the virtual circuit is created, a dedicated communication path is established
between the two devices. In theory this creates a collision free environment between the source
and destination, which allows maximum utilization of the available bandwidth. A switch is also
able to facilitate multiple, simultaneous virtual circuit connections.

7-5

4.1.7 FULL DUPLEX OPERATION

 Full-duplex operation is an optional MAC capability that allows simultaneous two-way
transmission over point-to-point links. Full duplex transmission is functionally much simpler than
half-duplex transmission because it involves no media contention, no collisions, no need to
schedule retransmissions, and no need for extension bits on the end of short frames. The result is
not only more time available for transmission, but also an effective doubling of the link bandwidth
because each link can now support full-rate, simultaneous, two-way transmission.
Transmission can usually begin as soon as frames are ready to send. The only restriction is that
there must be a minimum-length interframe gap between successive frames, as shown in Figure
2, and each frame must conform to Ethernet frame format standards.

 IFG IFG

 IFG IFG

 IFG -- Inter Frame Gap

Figure 2 Full Duplex Operation Allows Simultaneous Two-Way Transmission on the Same Link

Full-duplex operation requires concurrent implementation of the optional flow-control capability
that allows a receiving node (such as a network switch port) that is becoming congested to
request the sending node (such as a file server) to stop sending frames for a selected short
period of time. Control is MAC-to-MAC through the use of a pause frame that is automatically
generated by the receiving MAC. If the congestion is relieved before the requested wait has
expired, a second pause frame with a zero time-to-wait value can be sent to request resumption
of transmission.

4.1.8 Operational View of the Model
 The model uses one Ethernet Hierarchical model between Node_1, Node_2, cache and
SDRAM_1. The Ethernet Hierarchical Model consists of MAC_Layer, PHY_Layer and

Frame Frame Frame

Frame Frame Frame

110603 Page 217 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Non_Blocking_Switch. The traffic pumps in transactions through the Ethernet Hierarchical Block
along with “Hello” Message from their respective nodes. The Processor_DS determines the type
of Transaction – Read or a Write, the Size of bytes to be transferred, the source and destination
blocks and A_message to denote whether the transmitted is Request or Data or Acknowledgment
from the source. On receiving a DS from the node, the MAC_Layer verify the medium condition
and the transmission mode. After fragment the frame pass it to the PHY_Layer. The Switches
perform as multi port Bridge. Non Blocking Switches transfer the data to their respective node it
won't broadcast signal.

110603 Page 218 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

5 SpaceWire
5.1.1 Introduction
The SpaceWire standard addresses the handling of payload data on-board a spacecraft. It is a standard for a high-

speed data link, which is intended to meet the needs of future, high-capability, remote sensing instruments and

other space missions. SpaceWire provides a unified high-speed data-handling infrastructure for connecting

together sensors, processing elements, mass-memory units, downlink telemetry sub-systems and EGSE

equipment.

The SpaceWire standard specifies the physical interconnection media and data communication protocols to

enable data to be sent reliably at high-speed (between 2 Mbps and 100 Mbps or more) from one unit to another.

SpaceWire links are full-duplex, point-to-point, serial data communication links.

5.1.1.1 Sample Model

Fig.1 SpaceWire Model

5.1.2 Model Setup
The SpaceWire Blocks requires certain Model Parameters and a specific Data Structure (Processor_DS) for

proper use, once the SpaceWire Node, Link and Router Block has been dragged (from Hardware_Modeling →

110603 Page 219 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Advanced Buses → SpaceWire) into a model window. Each SpaceWire Node Block used in a model must

designate the Architecture_Name associated with Architecture_Setup Block and Power_Manager associated

with the Power_Manager Block, which also needs to be dragged into a model. To Run the Model, the Model

Parameters and the transaction data structure flowing into Node, Link and Router need to be setup.

5.1.3 Model Parameter
The Parameter for a system that uses implementation of SpaceWire Bus

4. Sim_Time = 1.3E-3

5. Architecture_Name = "Architecture_1"

6. Power_Manager = "Power_Manager1"

7. Min_Pkt_Size = 1024

8. Max_Pkt_Size = 4096

9. MySeed = seed(1234)

Add the Architecture_Setup Block

Configure the Power_Manager Block as follows

 for SpaceWire Node,
Architecture_Name + Node_Name (for eg, Architecture_1_SW_Node_1) and then updated the

power State value individually.

 for SpaceWire Link,
“Scheduler_” + Link_Name +”Forward/Reverse” (for eg, Scheduler_SW_Link_1_Forward) and

then updated the power state value individually.

For SpaceWire Router,
 Architecture_Name + Router_Name (for eg, Architecture_1_Router_1) and then updated the

power State value individually.

Architecture_Block Standby Active Wait Idle Cycles;
Scheduler_Flight_Computer_CPU 70.0 350.0 0.0 0.0 0 ;
Architecture_1_SW_Node_1 0.0 0.1 0.0 0.0 0 ;
Architecture_1_SW_Node_2 0.0 0.1 0.0 0.0 0 ;
Architecture_1_SW_Node_3 0.0 0.1 0.0 0.0 0 ;
Architecture_1_SW_Node_4 0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_1_Forward0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_1_Reverse 0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_2_Forward0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_2_Reverse 0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_3_Forward0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_3_Reverse 0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_4_Forward0.0 0.1 0.0 0.0 0 ;
Scheduler_SW_Link_4_Reverse 0.0 0.1 0.0 0.0 0 ;
Architecture_1_Router_1 0.0 0.1 0.0 0.0 0 ;

110603 Page 220 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

5.1.3.1 Initialize the Processing Data Structure

 The standard library blocks like Traffic and transaction sequence are used to generate necessary

Processor_DS. The following Processor_DS fields need to be initialized to send transaction through SpaceWire

bus.

Processor_DS

A_Bytes

A_Source

A_Destination

 A Processing block can be used to set the Processor_DS fields, If an I_O blocks is used, the I_O blocks

fields can also be used to replace the Processor_DS field values.

5.1.4 SpaceWire Node
 A SpaceWire node shall comprise one or more SpaceWire link interfaces (encoder‐decoders) and an

interface to the host system. A SpaceWire node shall accept a stream of packets from the host system for

transmission or provide a stream of packets to the host system after reception from the SpaceWire link, or do

both. In Transmitter side, Queue it up all the inputs from Traffic Source and start processing one by one using

Event Mechanism. During processing the token, power is set to be active state. if there is no transaction, set the

power state to standby. In Receiver side, check out all the Error occurance such as Buffer Full Error, Bit Error

and Timeout Error resend the Token by setting A_Packet = "EEP" and calculate the Statistics.

Fig. 2 SpaceWire Node Block

5.1.4.1 Parameter Setup

Parameter Name Value (Data type) Explanation
Node_Name “SW_Node_1” (String) Unique name for the Node Name
Node_Speed_Mbps 100.0 (Double) Node Speed determines the Node

Delay and Link Delay
BER_Rate 1.0E-6 (Double) Bit Error Rate is used to verify

the received token at node is
within the limit, Otherwise the

110603 Page 221 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

retransmission occurs
Architecture_Name “Architecture_1” (String) Add the Node Block to the

Architecture for further power
calculation

Node_Out_Buffer_Length 16 (Int) Output buffer queue length is set
to verify the Node Queue is
within the specified limit,
otherwise retransmission occurs.

Packet_Overhead_Bytes 16 (Int) Extra bytes added over the data
packet. used for Link_Delay
calculation

Sim_Time Sim_Time (Double) End simulation Time in Digital
Simulator

Debug true (Boolean) Node status are sent out (Send,
Receiving, retransmission and
power status)

Time_to_Init_Link 1.0E-06 / Node_Speed_Mbps Request Token must wait till the
specified time.

5.1.5 SpaceWire Link
 SpaceWire nodes and SpaceWire routing switches shall be interconnected with SpaceWire links.

Transfer (FULL Duplex Transfer Mode) the token based on the Link_Delay field + Link_Latency_Sec. where

Link_Delay Field is calculated in the Node itself. Link_Delay = Packet_Overhead_Bytes * ((1.0E-

6/Node_Speed_Mbps)*8.0) and Link_Latency_Sec Parameter is an userdefined extra delay. Link_Length_Feet

decides the Number of cycles required for processing in Scheduler.

Fig. 3 SpaceWire Link Block

5.1.5.1 Parameter Setup

Parameter Name Value (Data type) Explanation
Link_Name “SW_Link_1” (String) Unique name for the Link Name
Link_Length_Feet 200.0 (Double) Link_Length_Feet decides the

110603 Page 222 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Number of Clocks required for
processing in Scheduler

Link_Latency_Sec 1.0E-09 (Double) Link Latency is the extra latency
added to the Link_Delay

5.1.6 SpaceWire Router
 The Routing out the token to the desired destination while routing set the power state to Active. If there

is no token for processing then set the power state to Standby. If a packet arriving at a routing switch has an

invalid destination address then that packet shall be discarded.

Fig.4 SpaceWire Router Block

5.1.6.1 Parameter Setup

Parameter Name Value (Data type) Explanation
Router_Name “Router_1” (String) Unique name for the Router

Name
Router_Speed_Mbps 500.0 (Double) Router_Speed_Mbps decides the

Router Latency
Device_Connected_To_Router {{"Node_1"},{"Node_2"},{"non

e"},{"none"}}
Device connected to the Router
is set based on the port position

5.1.6.2 Block Diagram

110603 Page 223 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Fig.5 SpaceWire Model Block Diagram

The Data_structure (Processor_DS) generate at the Instrument source and pass over the SpaceWire Bus

to reach the Flight_Computer destination. The Flight_Computer modified the destination and bytes transferred

to SSR and pass over the seperate link and then the same token is routine back to the Telecom block and keeps

on repeating the process till the Simulation time reaches. At the End of Simulation the power and overall

Statistics are calculated.

5.1.7 SpaceWire Description
The SpaceWire standard covers the following normative protocol levels

5.1.7.1 Packet Level

 It defines how data is encapsulated in packets for transfer from source to destination. The format of a

packet is illustrated in Figure

Fig.6 Packet Format

110603 Page 224 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

The “Destination address” is a list of zero or more data characters that represent the destination

identity. This list of data characters represents either the identity code of the destination node or the path that the

packet takes to get to the destination node.

The “cargo” is the data to transfer from source to destination.

 The “End of packet marker” is used to indicate the end of a packet. Two end of packet markers are

defined:

a. EOP normal end_of_packet marker → indicates end of packet;

b. EEP error end_of_packet marker → indicates that the packet is terminated prematurely due to a

error.

5.1.7.2 Network Level

 The network level defines what a SpaceWire network is, describes the components that make up,

explains how packets are transferred across it, and details the manner in which it recovers from errors. A

SpaceWire network is made up of a number of SpaceWire nodes interconnected by SpaceWire routing switches.

SpaceWire nodes are the sources and destinations of packets and provide the interface to the application systems.

SpaceWire nodes can be directly connected together using SpaceWire links or they can be interconnected via

SpaceWire routing switches using SpaceWire links to make the connection between node and routing switch. A

SpaceWire routing switch has several link interfaces connected together by a switch matrix, which allows any

link input to pass the packets that it receives on to any link output for retransmission.

5.1.7.3 Flow Control Mechanism

 Flow control is necessary to manage the movement of packets across a network from one node to

another. For a node or router to receive some data there must be buffer space for that data in the receiving node

or router. When the receive-buffer becomes full the receiver must stop the transmitting node from sending any

more data. SpaceWire uses flow control tokens to manage the flow of data across a data link connecting one

node to the next. Initially Source Node generate the Event mechanism and does not allow next transaction to

flow through the network till the current transaction reaches the destination.

5.1.7.4 ERROR Scheme

 The error occurrence and recovery in the SpaceWire are as follows.

a) Buffer Overflow Error

 The Token in the output Queue is geater than the user-defined Parameter (Node_Out_Buffer_Length)

result in initialize the retransmission by setting A_Packet field to EEP (Error End of Packet) and sent the token

back to Source.

110603 Page 225 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

b) Bit Error Rate

 The Ratio of number of bits received in error to the total number of bits sent across a link. If the Ratio

exceeds the user-defined BER_Rate Parameter, initialize the retransmission by setting A_Packet field to EEP

and sent the token back to Source.

c) Destination Error

 A packet that arrives at a routing switch with an invalid address, i.e. an address that is not recognized by

the routing switch, is discarded.

d) TimeOut Error

 When an application tries to read a packet from a link interface, it can set a timeout period for reception

of the packet. If the complete packet has not been received when the timeout period expires then the receiver is

assumed blocked. The link interface is then disabled to cause a disconnect error and reset of the link, and then

enabled again to allow the link to start and reconnect. The Error Recovery is done by retransmitting the specific

token over the network.

5.1.8 Statistics
Statistics collected for the SpaceWire include

• Throughput in Mbps

• Utilization percentage

• Input Output transactions per sec (IOs_per_second)

• Input buffer occupancy in words

The sample statistics collected in the model are given below in min, mean, stdev, and max values for the

SpaceWire as follows

BLOCK = "SpaceWire_Model.SSR_Q",

DELTA = 0.0,

DS_NAME = "Queue_Common_Stats",

ID = 2,

INDEX = 0,

Number_Entered = 26,

Number_Exited = 26,

Number_Rejected = 0,

Occupancy_Max = 1.0,

Occupancy_Mean = 1.0,

Occupancy_Min = 1.0,

110603 Page 226 of 364 Bus, Switch and Controller Library
 Mirabilis Design, Inc.

Occupancy_StDev = 0.0,

Queue_Number = 1,

TIME = 0.0013,

Total_Delay_Max = 6.9150000000000244E-6,

Total_Delay_Mean = 3.580000000000031E-7,

Total_Delay_Min = 0.0,

Total_Delay_StDev = 1.3896791273251169E-6,

Utilization_Mean = 0.0

BLOCK = "SpaceWire_Model05.Flight_Computer_CPU",

DELTA = 0.0,

DS_NAME = "Queue_Common_Stats",

ID = 2,

INDEX = 0,

Number_Entered = 26,

Number_Exited = 26,

Number_Rejected = 0,

Occupancy_Max = 1.0,

Occupancy_Mean = 0.07142857142857142,

Occupancy_Min = 0.0,

Occupancy_StDev = 0.2575393768188564,

Queue_Number = 1,

TIME = 0.0013,

Total_Delay_Max = 7.983999999999943E-6,

Total_Delay_Mean = 4.985384615384614E-6,

Total_Delay_Min = 2.144000000000039E-6,

Total_Delay_StDev = 1.974573509489743E-6,

Utilization_Mean = 9.970769230769228

101117 Page 227 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

6 Rapid IO

6.1 Introduction

The Rapid IO Block Set is a high performance RIO_Node that works in conjunction with the Serial Switch to
create a Rapid IO bus that can be altered, according to specific arbitration algorithms, or other custom
configurations. The RIO_Node provides the logic for master and slave node message processing, while the
Serial Switch provides the channels and timing needed by the Rapid IO protocol.

In addition, one can monitor the Rapid IO operation with a port at the bottom of the Serial_Switch block, shown
in the diagram as connected to a “Display” block to see if “Doorbell”, “HW_Ack”, Retry”, “NRead”, “NWrite”, etc.
messages are being sent in the expected order. One can also turn off the monitoring, once the messages
have been validated using a parameter of the RIO_Node block called “Enable_Status_Messages” to false.

The RIO_Node takes transactions, or transaction fragments, at a master RIO_Node and sends messages to
the designated slave Rapid_IO_Node, based on an internal routing table. This routing table is assembled in
the Serial Switch and utilizes fields in the Processor_DS called “A_Source” and “A_Destination” to route
through the Rapid IO bus. The Serial Switch has a parameter for the “Bus_Width” that will determine the
latency through the switch based on the field “A_Bytes_Sent” in the Processor_DS.

6.2 Rapid IO Blockset

101117 Page 228 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Setup

The RIO_Node Block requires certain Model Parameters and a specific Data Structure (Processor_DS) for
proper use, once the RIO_Node Block has been dragged into a model window. Each RIO_Node Block used in
a model must designate the Block_ Name and Architecture_Name associated with the Architecture_Setup
Block, which also needs to be dragged into a model, if one does not exist.

6.3 RIO_Node Block Configuration Parameters

The key RIO_Node parameter settings:

 RIO_Name: “RIO”
 Architecture_Name: "Architecture_1"
 RIO_Speed_Mhz: 1000.0
 Interface_Speed_Mhz: 1000.0
 Overhead_Bytes: {8,20,20,20,20,20,20}
 Maximum_Payload_Bytes: 256
 Engress_Buffer: 256
 Sim_Time: 1.0
 RIO_Node_Number: 1
 Power_Manager_Name: “Manager_1”

The RIO_Name must be unique within an RIO cluster, i.e., each RIO_Node has a unique RIO_Name + “_” +
RIO_Node_Number. The RIO_Speed_Mhz, Interface_Speed_Mhz, Device_Width_Bytes are for internal node
timing. The RIO_Speed_Mhz is used to calculate cycle time if a slave mailbox is full, meaning the current
fragment will exceed the slave mailbox size in bytes; and must wait. Interface_Speed_Mhz and
Device_Width_Bytes determine the rate at which incoming data transfers fragment incoming data structures. If

101117 Page 229 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

the Device_Width_Bytes is set to zero, then the input fragmenter does not delay fragments generated, useful
for PHY layer only transfers. Send_Status_Meesages, default of true, will send status of messages processed
by each RIO_Node to the Serial_Switch. User can set this flag to false, once model is running as expected.

One can set the mailbox lengths for sending and receiving by setting the Mailbox_Length_Bytes parameter.
One can also set the Overhead_Bytes for the following conditions: Doorbell, Done, Retry, N_Rd_Overhead,
Rd_Done, N_Wr_Overhead, or Wr_Done.

The RIO_Node Block requires certain Model Parameters and a specific Data Structure (Processor_DS) for
proper use, once the RIO_Node Block has been dragged into a model window. Each RIO_Node Block used in
a model must designate the Architecture_Name associated with the Architecture_Setup Block, which also
needs to be dragged into a model, if one does not exist. One can also monitor power by dragging a
Power_Manager block into the model, and in each RIO node duplicate the power manager name in the
Power_Manager_Name parameter. This is also true for the Serial_Switch.

6.4 Connecting the RIO_Node Block in a model

The RIO_Node Block has these ports:

input – Left-Hand_Side Input Port
input2 – Right-Hand_Side Input Port
output – Left-Hand_Side Output Port
output2 – Right-Hand_Side Output Port

6.4.1 RIO_Node Block added to a Model

The main consideration when adding a RIO_Node block to a model is the mailbox designation and if any
transaction fragmenting is necessary, as the RIO_Node block does not duplicate the functionality, of existing
fragmenters in the Architectural Library. Mailbox designation is set by adding fields to the Processor_DS:
RIO_Sender_Mailbox, or RIO_Receiver_Mailbox. If the user wanted to assign multiple channels, then as each
transaction arrives, one could increment the mailbox designator to a new mailbox, to allocate the bandwidth
desired in the protocol. Certain transactions could always have access to certain mailboxes, such as
Instruction and Data cache, while other mailboxes could be allocated on a round robin basis.

There is also the notion of a transaction entering a “master” node and exiting the RIO bus topology from a
“slave” node. The master node ports are the “input” and “output”. The switch side ports are “input2” and
“output2”.

101117 Page 230 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

One of the key advantages of the RIO_Node block is a User can modify the Message Processing, as required,
since it is written in the VisualSim RegEx language with If-Else conditional statements:

if (port_token.containsRecordTokenLabel("A_Message")) { /* Message Processing */
 SWITCH (port_token.RIO_Message)
 {
 CASE: Doorbell /* Slave */
 SEND (Send_Through, port_token)
 Source = port_token.A_Source
 port_token.A_Source = port_token.A_Destination
 port_token.A_Destination = Source
 port_token.RIO_Message = "HW_Ack" /* Slave send Ack */
 port_token.RIO_Bytes = Done_Overhead_Bytes
 GTO (Send_Return)

 CASE: HW_Ack /* Ack from Slave */
 Sender_Mailbox_ID = port_token.RIO_Sender_Mailbox
 (Sender_Length_Arr(Sender_Mailbox_ID)).decr()
 QUEUE (Sender_Mailbox_ID, length)
 if (length > 0) { /* Start new Xfer? */
 QUEUE (Sender_Mailbox_ID, pop) /* Still Four Threads */
 GTO (Send_Through) /* Master send Next */
 }
 if (Power_Manager_Flag && RIO_Power_Active) {
 if (Receiver_Length_Arr.sum() == 0) {
 if (Sender_Length_Arr.sum() == 0) {
 powerUpdate(Power_Manager_Name_, RIO_Power_Name, "Standby")
 PM_DS = powerManager(Power_Manager_Name_)
 Cycles = (PM_DS.get(RIO_Power_Name)).get("Cycles")
 if (Cycles != 0) {
 WAIT (Cycle_Time * Cycles)
 }
 RIO_Power_Active = false
 }
 }
 }
 GTO (END)

 CASE: Retry /* Master retry */
 Number_of_Retries = Number_of_Retries + 1
 Source = port_token.A_Source
 port_token.A_Source = port_token.A_Destination
 port_token.A_Destination = Source
 port_token.A_Priority = port_token.A_Priority + 1 /* Increase priority */
 GTO (New_Transaction)

 CASE: NRead
 Write_Flag = false
 GTO (NWrite_Continue)
 CASE: NWrite /* Slave accept data */
 Write_Flag = true

101117 Page 231 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

 LABEL: NWrite_Continue
 Mailbox_ID = port_token.RIO_Receiver_Mailbox
 Mbox_Length_Bytes = Receiver_Length_Arr(Mailbox_ID)
 Mailbox_Max_Bytes = Mailbox_Length_Bytes_(Mailbox_ID)
 if (!Write_Flag) { /* Read Command */
 Packet_Bytes = Mbox_Length_Bytes + 4
 }
 else {
 Packet_Bytes = Mbox_Length_Bytes + port_token.A_Bytes_Sent
 }
 if (Packet_Bytes <= Mailbox_Max_Bytes) {
 if (!Write_Flag) { /* Read Command */
 Bytes_Out_Sum = Bytes_Out_Sum + 4
 Receiver_Length_Arr(Mailbox_ID) = Packet_Bytes
 if (port_token.A_Destination == My_Master) {
 port_token.RIO_Message = "Rd_Done"
 }
 }
 else {
 Bytes_Out_Sum = Bytes_Out_Sum + port_token.A_Bytes_Sent
 if (port_token.A_Task_Flag) {
 Receiver_Length_Arr(Mailbox_ID) = Packet_Bytes
 }
 if (port_token.A_Destination == My_Master) {
 port_token.RIO_Message = "Wr_Done"
 }
 }
 SEND (Send_Through, port_token)
 port_token.RIO_Message = "HW_Ack" /* Slave send Ack */
 port_token.RIO_Bytes = 0
 }
 else if (port_token.A_Bytes_Sent > Mailbox_Max_Bytes && Write_Flag) {
 throwMyException (Block_Name + " RIO_Message (" + port_token.RIO_Message + ") from Source (" +
port_token.A_Source + ") with Size (" + port_token.A_Bytes_Sent + ") is larger than the Mailbox (" +
Mailbox_Max_Bytes + ")")
 }
 else {
 port_token.RIO_Message = "Retry" /* Slave send Retry */
 port_token.RIO_Bytes = Retry_Overhead_Bytes
 }
 Source = port_token.A_Source
 port_token.A_Source = port_token.A_Destination
 port_token.A_Destination = Source
 GTO (Send_Return)

 CASE: Rd_Done // Write return from Read, assumes one RIO in model
 Mailbox_ID = port_token.RIO_Receiver_Mailbox
 Mbox_Length_Bytes = Receiver_Length_Arr(Mailbox_ID)
 Packet_Bytes = Mbox_Length_Bytes - 4
 Receiver_Length_Arr(Mailbox_ID) = Packet_Bytes
 GTO (New_Transaction)

101117 Page 232 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

 CASE: Wr_Done // Read return from DMA Write, assumes one RIO in model
 Mailbox_ID = port_token.RIO_Receiver_Mailbox
 Mbox_Length_Bytes = Receiver_Length_Arr(Mailbox_ID)
 Packet_Bytes = Mbox_Length_Bytes - port_token.A_Bytes_Sent
 Receiver_Length_Arr(Mailbox_ID) = Packet_Bytes
 GTO (New_Transaction)

 CASE: New // Start a New Transaction
 GTO (New_Transaction)

 CASE: DEFAULT
 throwMyException (Block_Name + " has an unknown RIO_Message (" + port_token.RIO_Message + ")")
 }
 }
In the above, blue script designates master execution, red script designates slave execution, and black script
designates master or slave execution.

101117 Page 233 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

6.5 Serial Switch Block Configuration Parameters

The key Serial Switch parameter settings:

 Architecture_Name: "Architecture_1"
 Switch_Name: “Switch”
 Speed_Mhz: 1000.0
 Channel_Field_Name: “RIO_Lane_ID”
 Overhead_Cycles: 1
 Sim_Time: Sim_Time
 Number_PHY_Name: 1
 Power_Manager_Name: “Manager_1”
 Custom_Algorithm_File: “None”

The Architecture_Name and Switch_Switch parameters need to be unique and match the Architecture_Setup
block. The Speed_Mhz determines the internal bit cycle time. The Channel_Field_Name is the field for the
channel designation in the Serial_Switch, “RIO_Lane_ID” is a field created by the RIO node block. The user
does not need to add this field, as it will be added by a master RIO node and removed by a slave RIO node.
Overhead_Cycles are the overhead cycles need to switch, depending on the internal switch design. If a
Banyan style switch is used, then for 16 ports 4 cycles would be needed, for example. One can also monitor
power by dragging a Power_Manager block into the model, and in each RIO node duplicate the power
manager name in the Power_Manager_Name parameter.

The parameter Number_PHY_Name can be used to represent multiple twisted pair configurations to the
Serial_Switch. The default is 1, meaning a single PHY connection to the Serial_Switch.

101117 Page 234 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

6.6 Connecting the Serial_Switch Block in a model

The Serial_Switch Block has 16 bi-directional ports, user needs to connect input
port first, then output port:

input – Left-Hand Side Input Port
input2 – Left-Hand Side Input Port
input3 – Left-Hand Side Input Port
input4 – Left-Hand Side Input Port
input5 – Left-Hand Side Input Port
input6 – Left-Hand Side Input Port
input7 – Left-Hand Side Input Port
input8 – Left-Hand Side Input Port
input9 – Right-Hand Side Input Port
input10 – Right-Hand Side Input Port
input11 – Right-Hand Side Input Port
input12 – Right-Hand Side Input Port
input13 – Right-Hand Side Input Port
input14 – Right-Hand Side Input Port
input15 – Right-Hand Side Input Port
input16 – Right-Hand Side Input Port

output – Left-Hand Side Output Port
output2 – Left-Hand Side Output Port
output3 – Left-Hand Side Output Port
output4 – Left-Hand Side Output Port
output5 – Left-Hand Side Output Port
output6 – Left-Hand Side Output Port
output7 – Left-Hand Side Output Port
output8 – Left-Hand Side Output Port
output9 – Right-Hand Side Output Port
output10 – Right-Hand Side Output Port
output11 – Right-Hand Side Output Port
output12 – Right-Hand Side Output Port
output13 – Right-Hand Side Output Port
output14 – Right-Hand Side Output Port
output15 – Right-Hand Side Output Port
output16 – Right-Hand Side Output Port

101117 Page 235 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

6.6.1 Serial_Switch Block added to a Model

A key consideration when adding a Serial_Switch block to a model is that routing has been considered. This
means that hello messages are passed from devices to each RIO Node. Typically, there is an I_O port block
on
each edge node of the RIO bus topology. An I_O block generates hello messages on the bus side, which are
in
turn passed from each RIO_Node to the Serial_Switch block. If one wants to add redundant paths, then
additional Serial_Switches to the destination will have a lower priority in the routing table than fewer
Serial_Switches.

6.7 Data Structure: Processor_DS

The Processor_DS was created at the used in the Architectural Library processors, busses and memories.
The following are specific data structure fields to be set prior to entering the RIO_Node Block, red indicates
fields that should be set.

{A_Address = 100,
A_Branch = false,
A_Bytes = 8,
A_Bytes_Remaining = 4,
A_Bytes_Sent = 4,
A_Command = "Read",
A_Data = "MyData",
A_Destination = "RIO_1",
A_First_Word = true,
A_Hop = "RIO_1",
A_IDX = 0,
A_Instruction = {"ADD", "ADD", "ADD", "ADD", "ADD", "ADD"},
A_Interrupt = false,
A_Pipeline = {0, 0, 0, 0, 0, 0},
A_Prefetch = false,
A_Priority = 0,
A_Proc_Return = -1,
A_Return = -1,
A_Source = "MyNode",
A_Status = "Status",
A_Task_Flag = false,
A_Task_ID = 1L,
A_Task_Name = "Name",
A_Time = 0.0,
A_Variables = 16,
RIO_Receiver_Mailbox = 1,
RIO_Sender_Mailbox = 1,
BLOCK = "Traffic",
DELTA = 0.0,
DS_NAME = "DS_Traffic",
ID = 1,
INDEX = 0,
TIME = 2.0E-9}

A_Source may represent an I_O port on the bus, or an RTOS name where the task or thread originated. It is
important that A_Destination match the destination node. Internally, the Processor, Cache, DRAM, DMA

101117 Page 236 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

blocks will set these fields correctly. A_Priority (higher value is higher priority) can be used in conjunction with
Interface_Speed_Mhz and

101117 Page 237 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

7 Ethernet Audio Video Bridging
Mirabilis Design provides an Audio-Video Bridging (AVB Library) as a standard add-on to the Ethernet and
Networking application library in VisualSim Architect modeling environment. Using this environment, systems
engineers and product architects can evaluate the impact of design decisions on the performance of their
system. The AVB library has been built to the specification of the IEEE 802.1BA for time-synchronized low
latency streaming services. The library supports the following standards:

• IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications (gPTP),
• IEEE 802.1Qat: Stream Reservation Protocol (SRP),
• IEEE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams (FQTSS), and
• IEEE 802.1BA: Audio Video Bridging Systems

VisualSim AVB modeling environment supports the requirement of the automotive, consumer, and professional
audio and video markets. Combined with the industry hardware, software and system library provided in
VisualSim Architect, designers assemble an end-to-end system and evaluate the throughput, latency and other
performance attributes. The proposed system can tested for various fault and error condition to evaluate the
susceptibility of the system for real-world conditions.

VisualSim AVB can be used to design a completely new AVB-based network to integrate all the equipment,
upgrade existing networks, and to design the electronics that are used in such networks. The AVB system can
include the talkers and listeners such as video cameras, radars, broadcast systems, displays, and Electronic
Control Units. The network can include AVB interfaces, bridges, switches and gateways.

7.1 Library

The AVB library is available as feature in VisualSim. The AVB library is located in Interfaces and Buses 
Audio_Video_Bridging.

101117 Page 238 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 4 AVB Modeling Library

The library contains the six modeling blocks and the Ethernet Traffic block. The following blocks are located in
the Application Interfaces and Buses  Audio_Video_Bridging directory.

1. StreamRP- This block manages the Talker_Advertise functionality at the Source Nodes. This is only
required at the Source Nodes.

2. AVB_Node- This block connects the AVB Node to the Network. It performs the AVB Reservation
protocol, traffic shaping, and clock synchronization.

3. AVB_Bridge- This block connects to both Nodes and other Bridges. It handles the Routing, traffic
shaping, multicast, AVB stream reservation, and broadcast of clock synchronization messages to all
the links. Note: The current implementation of the AVB Bridge can handle a maximum of eight (8) links
only.

4. AVB_Stats- This is a convenient block that displays the latency plot for all streams form all the Nodes,
writes the information and warning messages to a file in the model directory, and computes the latency
jitters and writes it to a separate file in the Model Directory.

5. AVB_Network_Setup- One instance of this block is required in all AVB Models. This processes all the
Tables in the model.

6. AVB_Config_Tables- This is a block that contains the sample of all the configuration tables required for
AVB.

101117 Page 239 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

7. Ethernet_Traffic- This is a traffic generator that can handle both Ethernet traffic and AVB talker request
message.

7.2 Tutorial System

Multiple demonstration systems are provided with documentation to guide a user to learn the AVB modeling
environment and create executable models.
A demonstration system is provided with explanation on the use of this library. The block diagram is provided
below:

Figure 5 Block Diagram of a AVB Network

Nodes 1, 2 and 3 are Talkers. Each Node has one Ethernet, three Class A streams and one Class B stream.
All the Talkers transmit to a single Listener- Node 5. All the 4 Nodes are connected to a single Bridge 1.
The VisualSim model of this design is at- VS_AR/demo/networking/AVB/AVB_Example_System.xml.
Each node consists of one Ethernet_Traffic, StreamRP and Node block. The Bridge uses the AVB_Bridge
block. As Node 5 is the Listener, the output of this block is connected to the AVB_Stats. The
AVB_Network_Setup and the AVB_Config_Table are added to this block diagram to define the model
attributes. The single parameter- Routing_Table_Name is to ensure that the Nodes, Bridges,
AVB_Network_setup and the AVBP_Config_Table refer to the same Routing Table block. The Digital
simulation is added with a stop time linked to both the Simulator and the AVB_Stats block.
When you run the simulation, there are four outputs. There are two plots- one displaying the latency for all the
streams and the other is Histogram of the latency. There are two text files that are written at the end of the
simulation- one contains information and warning messages, and the other contains the latency statistics for
each stream.

101117 Page 240 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

8 Fibre Channel

8.1 Introduction to Fibre Channel

Fibre Channel is a technology for transmitting data between computer devices at data rates of up to 4 Gbps
(and 10 Gbps in the near future). Fibre Channel is especially suited for connecting computer servers to shared
storage devices and for interconnecting storage controllers and drives. Since Fibre Channel is three times as
fast, it has begun to replace the Small Computer System Interface (SCSI) as the transmission interface
between servers and clustered storage devices. Fibre channel is more flexible; devices can be as far as ten
kilometers (about six miles) apart if optical fiber is used as the physical medium. Optical fiber is not required for
shorter distances, however, because Fibre Channel also works using coaxial cable and ordinary telephone
twisted pair.

There are three major fibre channel topologies, describing how a number of ports are connected together. A
port in fibre channel terminology is any entity that actively communicates over the network, not necessarily a
hardware port. This port is usually implemented in a device such as disk storage, an HBA on a server or a fibre
channel switch.

• Point-to-point (FC-P2P). Two devices are connected directly to each other. This is the
simplest topology, with limited connectivity.

• Arbitrated loop (FC-AL). In this design, all devices are in a loop or ring, similar to token ring
networking. Adding or removing a device from the loop causes all activity on the loop to be interrupted.
The failure of one device causes a break in the ring. Fibre Channel hubs exist to connect multiple
devices together and may bypass failed ports. A loop may also be made by cabling each port to the
next in a ring.

o A minimal loop containing only two ports, while appearing to be similar to FC-P2P, differs
considerably in terms of the protocol.

o Only one pair of ports can communicate concurrently on a loop.
o Maximum speed of 8GFC.

• Switched fabric (FC-SW). All devices or loops of devices are connected to fibre channel
switches, similar conceptually to modern Ethernet implementations. Advantages of this topology over
FC-P2P or FC-AL include:

o The switches manage the state of the fabric, providing optimized interconnections.
o The traffic between two ports flows through the switches only; it is not transmitted to any other

port.
o Failure of a port is isolated and should not affect operation of other ports.
o Multiple pairs of ports may communicate simultaneously in a fabric.

8.2 About VisualSim Fibre Channel Library Package

Fibre Channel library is provided as a standard library in VisualSim Architect modeling environment. Using this
configurable library, designers can architect next generation networking system for high performance and
mission assurance systems by conducting early design space exploration, power and performance analysis.
Fibre Channel library is built to the specifications and supports Fibre Channel Arbitrated Loop and Fibre
Channel Switch Fabric topologies. Fibre Channel library also extends its functionality as Fibre Channel
Framing and Signaling (FC-FS) and Fibre Channel - Avionics Environment – Anonymous Subscriber Message
standards.

https://en.wikipedia.org/wiki/Ethernet

101117 Page 241 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

8.3 Library Blocks

Fibre Channel Library package composed of mainly 4 library components, namely
2. FC_N_Port
3. FC_Switch
4. FC_Link
5. FC_Config

Each library components are built to Fibre Channel Specification and meets performance requirements.

8.4 FC_N_Port

FC_N_Port interfaces to the device on one side and the Fibre Chanel switch on the other
side. This block handles end-to-end acknowledgement for Class 1 and 2. In addition, it
handles the ack between the Ingress Port of the switch and this N_Port. Make sure to
connect an I_O block on the device side to handle all the routing requirements.

Current version of Fibre Channel Library requires each N_Port ID should be given as 1,2,3....16. N_Port with ID
1 should be connected to Master Device/Slave Device with name "Device_1", N_Port with ID 2 should be
connected to Master Device with name "Device_2" and so on.

8.4.1 Flow Diagram

8.4.2 Data Structure Fields
N_Port requires few mandatory fields included in the A_Source, A_Destination, A_Command, A_Message (initialized
with Class1, Class2 or Class3), A_Response are the required fields. These fields must be added to the incoming data
structure, typically using a Processing or Decision block
Example:
input.A_Source = "Device_1"

101117 Page 242 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

input.A_Destination = "Device_9"
input.A_Command = "Read" /*"Write"*/
input.A_Message = "Class1" /*"Class2" or "Class3" */
input.A_Response = "false"
input.A_Bytes = 15000 /* Bytes */

8.4.3 Parameters

Name Type Description

ID Integer Unique Identifier for the Node Port

Enable_Debug Boolean Enable or Disable Debug Messages

Architecture_Name String
Ex: “Architecture_1”

This is the name of the Architecture_Setup
block that this Block is associated. The
Architecture_Setup block maintains the routing
table and statistics collection

8.5 Fibre Channel Switch

The purpose of switch block is to support fragmentation, assembly and quick data movement.
Fibre Channel Switch will Fragment the incoming frame to the fragment size and forward it to ingress buffer.
Each fragment is acknowledged by the Ingress Buffer before the next fragment is sent out. The Fibre Channel
Switch can support up to 16 or 96 F Ports to connect N_Port and 4 E Ports to connect to Swicthes . There is a
unique fragmenter block per port. Ingress buffer has a dedicated queue for each connections and forwards
transactions from respective queue to Egress buffer based on the flow control. Class1 messages will be sent
out as soon as the egress buffer is available, however class2 and class3 implements buffer-to-buffer flow
control. Each port will have a dedicated counter that monitors the number of transactions sent. This counter is
used to test for available buffer space in the Egress Buffer. For every transaction sent, counter will be
incremented by one. For class 2 and Class 3, ingress buffer will wait for an acknowledgement from the egress
buffer. On receiving the Acknowledgement counter will be decremented by one for the corresponding port.
Crossbar switch has 16*16 or 96*96 dedicated channels to make sure that there are no collisions. The
Crossbar has a delay associated with it. The delay is based on the fragment size and Switch_Speed_MHz.
Egress Buffer acknowledges every fragment sent from ingress buffer. If the transaction arrived is to a device
connected to the current fabric block, then the transactions will be assembled else transactions will be sent to
corresponding switch via E_Ports. Once all fragments are received at the Egress port, the fragments will be
assembled into the original transaction. Egress receives the Ack from the Ingress of the next switch or the
Destination N_Port. Once it receives Ack from next switch or destination N_Port, it transmits the next
transaction

101117 Page 243 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

8.5.1 Flow Diagram

8.5.2 Flow Control
Flow control depends on class of service.
Flow control is unique for each Class. Class 1 and Class 2 keep track of the number of buffer locations
available at the destination before transmitting the next transaction. Class 3 does not require any end-to-end
Ack. Class 1 will transfer from Ingress to Egress within a Switch. Class 2 and 3 requires buffer-to-buffer flow
control.

8.5.3 Data Structure Fields
FC_Switch requires few mandatory fields included in the A_Source, A_Destination, A_Command
("Read"/"Write"), A_Message (initialized with Class1, Class2 or Class3), A_Bytes, A_Bytes_Remaining,
A_Bytes_Sent are the required fields.

Example:
input.A_Source = "Device_1"
input.A_Destination = "Device_9"
input.A_Command = "Write" /*"Write"*/
input.A_Message = "Class1" /*"Class2" or "Class3" */
input.A_Response = "false"
input.A_Bytes = 15000 /* Bytes */
input.A_Bytes_Sent = 2112
input.A_Bytes_Remaining = 12888
A_Sourcce field represents the name of Source device, A_Destination field represents Destination device
name, A_Command is to identify whether the transaction is a Read/Write transfer. A_Message helps one to set
type of service, please note that the Field values can be either "Class1", "Class2" or "Class3". Purpose of
A_Response field is to indentify if a transaction is a response from Destination device or a transaction from
Source device. A_Bytes field has total size of the packet, A_Bytes_Sent field get updated with Fragment Size
plus Overhead Bytes in Fibre Channel Switch. A_Bytes_Remaining has the details about remaining fragment
size waiting for transmission.

8.5.4 Parameters

Name Type Description

Switch_Name String
Ex: “FC_Fabric_1”

Name of Fibre Channel Switch

Ingress_Buffer_Size Integer Size of Ingress Buffer at each port

101117 Page 244 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Egress_Buffer_Size Integer Size of Egress Buffer at each port

Architecture_Name String Name of Arch_Setup

Fragment_Size Integer Size of Frame Fragment

Overhead_Bytes Integer Overhead Bytes

Enable_Debug Boolean Enable or Disable Debug Message

Switch_ID Integer Unique Identifier for Fabric Switch

8.6 FC_Link

FC_Link block models the physical communication medium. User can define the length in meters and also
delay associated with the type of communication medium.

8.6.1 Parameters
Name Type Description
Length_In_Mtrs Integer

Ex: 2
Length of Communication
Medium in Meters

Dly_Per_Mtr Double
Ex: 5.0e-9

Fibre Channel Delay per
meter

FC_Link_Dly Double
Ex: Length_In_Mtrs *
Dly_Per_Mtr

Computed Fibre Channel
Link Delay. Do not Change
this parameter

8.7 FC_Config

FC_Config block is part of Fibre Channel library. Block handles routing information between one end system to
another. By default Source and Destination Device names are defined as Device_1, Device_2…Device_16.

8.7.1 Parameters

Name Type Description
Device_Configs Data Structure.

Type: String

The content can be placed
directly in the window, in a file
(TXT or CSV) or a reference to
another database block
(extern).
Each row defines which
Destination device
connected to which
Fabric Switch

Switch_Configs Data Structure.
Type: String

Number of rows will be based
on number of Fabric Switches
used in the System.
Switch_Idx defines the Switch

101117 Page 245 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

ID, the field
Connected_Switches is a two
dimensional array. As Switch
supports upto 4 Switches
connected to a Switch block,
max length of the array would
be 4. If there are multiple
switches are connected to a
single E-Port by cascading,
then the connected switches
are defined here. Ex is shown
below

Switch_IDx
Connected_Switches
 E_Port_Address ;

2 {{1,3}} {{4,1}}
 ;

1 {{2},{3}} {{1,1},{4,1}} ;

3 {{1}} {{1,1}} ;

8.8 Tutorial

Multiple demonstration system models are provided with documentation to guide a user to adopt VisualSim
Fibre Channel Library for conducting early system exploration of Fibre Channel based system. Purpose of the
following tutorial is to introduce VisualSim Fibre Channel libraries and understanding basic rules that needs to
be followed during model construction.
Block diagram of a simple Fibre Channel based system with single Fibre Channel Switch and two end systems
is shown below

Figure 1.0: System Block Diagram

Here we have two end systems, Node-1 and Node-2 connected over a Fibre Channel network. Node-1 acts as
the source (Ex: Host) and Node-2 acts as a destination device (Ex: Storage). Requests can be either Read
request or Write request, can be Class1, Class2 or Class3 type of service. Fiber can be either single-mode or
multi-mode variant and based on the type of variant user can define the length and delay associated with fiber.
Once the model construction is over, user can vary the type of service, packet size, Request type, Link
distance, Switch Speed etc and analyze system behavior under different configurations.
VisualSim model of the proposed system model is shown in figure below

101117 Page 246 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 2.0: VisualSim Model

8.8.1 Basic Rules
1. All the Source and Destination FC_N_Port ID’s should be in accordance to the connected port number

of FC_Switch. If Device_1 is connected to FC_Switch port number 1, then FC_N_Port ID should be
configured as 1.

2. Each Source Device should have following Data Structure fields. Processor_DS Data Structure is
recommended

o input.A_Source = "Device_1"
input.A_Destination = "Device_9"
input.A_Command = "Write" /*"Write"*/
input.A_Message = "Class1" /*"Class2" or "Class3" */
input.A_Response = "false"
input.A_Bytes = 15000 /* Bytes */

3. FC_Config block should be present in all Fibre Channel related models. Source and Destination Names
should be updated in End_Point_Table if the names are others than Device_1, Device_2….Device_16.

4. Architecture_Setup block should be present

8.8.2 Construction Steps
To construct a Fibre Channel Network model, there are five steps

1. Instantiate Config and Update the Device_Configs and Switch_Configs tables
2. Instantiate and configure FC_TG, FC_N_Port, FC_Link and FC_Switch blocks
3. Connect FC_TG block to the N_Port. Configure FC_TG block, N_Port, Switch and Config blocks
4. Run simulations and Analyze Reports

8.8.2.1 Step1

1. Instantiate FC_Config block from Hardware_Modeling  Emerging Bus Standards  Fibre Channel 
FC_Config
Please update Device_Configs and Switch Configs as shown below

101117 Page 247 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

8.8.2.2 Step2

1. In this step we shall add FC_N_Port, Switch and Link blocks
2. Drag two instances of FC_N_Port from the library pane Interfaces and Buses  Fibre_Channel 

FC_N_Port
3. Drag two instances of FC_Link from the library Interfaces and Buses  Fibre_Channel  FC_Link
4. Drag one instance of FC_Switch from the the library pane Interfaces and Buses  Fibre_Channel 

FC_Switch
5. Connect the Blocks as shown below

101117 Page 248 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

6. Double Click on N_Port (N-Port4 in the above figure) block and set ID as 1, double click on N_Port2

(N_Port3 in the above figure) block and set ID as 9.
7. Double Click on FC_Switch block and configure the block as below

8.8.2.3 Step3

In this step we will be connecting traffic generator and modeling destination devices using VisualSim basic
building blocks.

1. Instantiate FC_TG from the library pane Interfaces and Buses  Fibre_Channel  FC_TG
2. Double Click on FC_TG block

o Configure the block parameter Device_Name as “Device_1”

101117 Page 249 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

o Configure the parameter Frame Details as below table
ID A_Source A_Destination A_Message A_Bytes Trig_Start_Time
Stop_Time A_Command A_Response Mbps ;
1 Device_Name "Device_9" "Class1" 6600 0.0 1.0e-
3 "Write" false 1000.0 ;
2 Device_Name "Device_9" "Class1" 6600 1.0e-3
 10.0e-3 "Write" false 1000.0 ;
3 Device_Name "Device_9" "Class2" 6600 10.0e-3
 15.0e-3 "Write" false 1000.0 ;
4 Device_Name "Device_9" "Class3" 6600 15.0e-3
 20.0e-3 "Write" false 1000.0 ;

3. Instantiate Delay block from the library pane Delay and Utilities  Delay. Double click on the block

and enter Delay_Value as 5.0e-8
4. Instantiate Expression_List or Processing block from the library pane. Define the expression as below

under Expression
input.A_Command = (input.A_Command == "Read")?"Write":"Read"

5. Connect Delay block to output port of I_O2 block and input port of Expression_List or Processing
block to Delay block and output port of Processing block to input port of I_O2 block.

6. Connect to_bus and frm_bus ports of I_O2 block to Device_In and Device_Out ports of FC_N_Port2
block.

7. Once all the connections are successful, VisualSim model will be as below

8.8.2.4 Step4

In this step we will configure model for capturing statistics and end-to-end latency
1. Connect data_out port of FC_TG block to a Decision block and configure the Decision block as below

101117 Page 250 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

2. Instantiate xTime_yData Plotter from the library pane Results Plotter  xTime_yData plotter
3. Connect output port of Decision block to input port of plotter

101117 Page 251 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

8.8.2.5 Reports

Throughput Statistics

8.8.2.6 End-to-End Latency

101117 Page 252 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

8.8.2.7 Analysis

1. Change type of service by changing Class1  Class2  Class3
2. Increase/Decrease Packet size by changing A_Bytes value
3. Vary FC_Link Dly_Per_Mtr and Length_In_Mtrs
4. Modify FC_Switch Switch_Speed_MHz, Buffer Size, Overhead_Bytes

101117 Page 253 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

9 TTEthernet

9.1 Introduction

TTEthernet is a scalable, open real-time Ethernet platform used for safety-related applications primarily in
transportation industries and industrial automation. TTEthernet sets new standards for flexibility, modularity and
scalability in Ethernet-based systems. It is compatible to IEEE 802.3 Ethernet and integrates transparently with
Ethernet network components.
TTEthernet has been designed for safe and highly available real-time applications, cyber-physical systems and
unified networking. This technology offers deterministic real-time communication and TCP/IP Ethernet traffic in
parallel on the same network. TTEthernet simplifies the design of fault-tolerant and high availability solutions.
Its innovative technology consolidates experiences and proven mechanisms from aerospace system design,
automotive electronics and industrial automation.
Three message types are provided:

1. Time-Triggered - Messages are sent over the network at predefined times and take precedence over
all other message types. The occurrence, temporal delay and precision of time-triggered messages
are predefined and guaranteed. The messages have as little delay on the network as possible and
their temporal precision is as accurate as necessary. However, "synchronized local clocks are the
fundamental prerequisite for time-triggered communication".

2. Rate-Constrained – Messages are used for applications with less stringent determinism and real-time
requirements. These messages guarantee that bandwidth is predefined for each application and
delays and temporal deviations have defined limits.

3. Best-Effort – Messages follow the usual Ethernet policy. There is no guarantee whether and when
these messages can be transmitted, what delays occur and if messages arrive at the recipient. Best-
effort messages use the remaining bandwidth of the network and have lower priority than the other
two types.

VisualSim TTEthernet library is completely compliant with TTEthernet specification. TTEthernet library package
includes TTEthernet node, Traffic Generators, TTEthernet Bridge and Statistic generators. In addition to the
standard library modules VisualSim also has a preconfigured TTEthernet Configuration tables which includes
routing table, Bandwidth allocator, stream table, VLAN table and Traffic generator table.
VisualSim TTEthernet library can be used to design a completely new TTEthernet based system or integrate
with a system in which multiple different protocols are existing.

9.2 About TTEthernet Library

TTEthernet implements time-triggered communication mechanisms to provide a deterministic communication
service over Ethernet. These time-triggered mechanisms establish and maintain a global time, which is realized
by the synchronization of the local clocks of all TTEthernet devices. The global time is used as basis for
implementing temporal partitioning, precise diagnosis, efficient resource utilization, or composability. The global
time service of TTEthernet can be compared with the IEEE 1588 Precision Time Protocol, but uses multiple
active “grandmaster clocks” to form a fault tolerant synchronization group with no need for reelection in case of
an active grandmaster clock failure.
In order to support integration of applications with different real-time and safety requirements in a single
network, TTEthernet supports three different traffic classes:

101117 Page 254 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

• Time-Triggered (TT) traffic – is sent in a time-triggered way, i.e. each TTEthernet sender node has a
transmit schedule, and each TTE-Switch has a receive and forward schedule. This traffic is sent over
the network with constant communication latency and small and bounded jitter.

• Rate-Constrained (RC) traffic – is sent with a bounded latency and jitter ensuring lossless
communication. Each TTEthernet sender node gets a reserved bandwidth for transmitting messages
with the RC traffic. No clock synchronization is required for RC message exchange.

• Best-Effort (BE) traffic – traffic with no timing guarantees. BE traffic class compatible with the IEEE
802.3 standard Ethernet traffic.

The TTEthernet frame format is compatible with the standard Ethernet (IEEE 802.3) frame format. TTEthernet
operates at the OSI model Layer 2, and allows the usage of existing layer 3 and upper layer protocols on top of
TTEthernet.

TT messages are used for deterministic communication. All TT messages are sent over the network at
predefined times and take precedence over all other traffic types. TT messages are optimally suited for
communication in distributed real-time systems, specifically for safety related by-wire systems that require
running of tight control loops over the network. TT messages allow designing of strictly deterministic distributed
systems, where the timing properties of data flows are known in advance. Switches in TTEthernet have the
central role of handling of communication data. TT messages are handled in the switch according to a
predefined schedule. Precise planning at the time of system design precludes resource conflicts at runtime.
Due to the predefined transmission time of a message, it is possible to reserve the medium and avoid even
minimal delays of transmission if this is required for a specific TT message.

RC messages are used for applications with less stringent determinism and real-time requirements. RC
messages limit the usage of bandwidth for each application (sender), and thus allow determining upper bounds
for message delays and jittering. RC messages can be used for critical applications that depend on highly
reliable communication and have moderate communication latency and jitter requirements. Typically, RC
messages are also used for audio/video (streaming) applications.

In contrast to TT messages, RC messages are not sent with respect to a system-wide synchronized time base.
Hence, different communication controllers may send RC messages at the same point in time to the same
receiver. As a consequence, the RC messages may queue up in the network switches, leading to increased
transmission jitter. As the transmission rate of the RC messages is bound a priori and controlled in the network
switches, an upper bound on the transmission jitter can be calculated off-line and message loss due to buffer
overflow or message timeouts is prevented.
If TT messages are to be transmitted via the same outgoing port of a switch at the same time, the TT
messages take priority over the RC messages. TT messages can delay RC messages. RC messages are
transmitted when no planned transmission of TT messages is pending and the sender observes the minimal
transmission distance. The switch is responsible for arranging RC messages queued at an outgoing port. BE
messages follow a method that is well-known in classical Ethernet networks. The network handles the
messages in the best-effort manner, and therefore there is no guarantee whether and when these messages
will be transmitted. BE messages use the remaining bandwidth of the network and have less priority than TT
and RC messages. All legacy Ethernet traffic (e.g. internet protocols) can be mapped to this service class. RC
and TT messages take precedence over BE messages at the same outgoing port of a switch. The switch uses
the remaining bandwidth for BE messages if no TT or RC messages are to be transmitted. BE messages are
transmitted after all pending RC messages, thus the remaining bandwidth is exploited in an optimal way. Tools
are used to design and verify a TTEthernet system in advance. This ensures that the bandwidth for TT and RC
messages is always sufficient according to the requirements of the application and interrupts are reduced to a
minimum. Later incremental changes of the system configuration are possible.

101117 Page 255 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

9.3 Synchronization

Clock synchronization among all participants is crucial for the transmission of TT messages. TTEthernet
components always transmit clock synchronization messages to keep the clocks of the end systems and
switches in synchronization. For this purpose TTEthernet relies on a redundant hierarchical master-slave
method that has a distributed fault-tolerant majority of master nodes and master switches to provide the time in
the system. This method is unique for TTEthernet and can be combined with other mechanisms such IEEE
1588. TTEthernet takes a two-step approach to synchronization. In the first step, the synchronization masters
send protocol control frames to the compression masters. The compression masters then calculate an
averaging value from the relative arrival times of these protocol control frames and send out a new protocol
control frame in a second step. This new protocol control frame is then also sent to synchronization clients.
TTE_Node block acts as the synchronization master and TTE_Bridge block acts as compression master block
in the network.

9.4 System Level Model

System Level Simulation model of a TTEthernet based system can be classified as three subsystems. A
Subsystem that defines the TTEthernet End System, a subsystem that defines the TTEthernet Switch and a
Subsystem to capture analysis reports to make design decisions. VisualSim TTEthernet Library package
provides these subsystem modules as preconfigured parameterized library blocks to quickly assemble complex
network architecture with multiples of End Systems and Switches. To illustrate this here we have a graphical
Representation of a TTEthernet based system is shown in figure1.

Figure 1: Block Diagram of a TTEthernet based System

VisualSim model of the proposed system architecture as defined in figure 1 is shown in figure 2 below.

101117 Page 256 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 2: VisualSim Model

Please note that TTE_Node and TTE_Bridge blocks are connected virtually using named mapping.

9.5 Model Parameters

During model construction, TTE libraries require few Model Parameters to define Bandwidth, Base Period,
Jitter and Shuffle percent. List of parameters are provided below
TT_MTU = 1518
Ether_MTU = 1518
Ethernet_Mbps = 100.0
TT_Shuffle_Percent =100.0
Link_Dist = 1000.0
BasePERIOD = 2.0e-3
Header_Bytes = {0,0}
Clock_Jitter = 1.0e-9
TT_MTU :– TT Ethernet Maximum Transmission Unit. TT MTU is the is the size (in bytes) of the largest TT
protocol data unit that the layer can pass onwards. Here we have set the maximum size as 1518 Bytes
Ether_MTU:- Ethernet Maximum Transmission Unit. Ethernet MTU is the is the size (in bytes) of the largest
protocol data unit that the layer can pass onwards. Here we have set the maximum size as 1518 Bytes
Ethernet_Mbps :- Data rate for Ethernet is set to 100 Mbps
TT_Suffle_Percent: - Suffle percentage for TT Messages.
Link_Dist :- TTEthernet Link distance in feet
BasePERIOD:- Base period determines the communication cycle for the slots
Header_Bytes:- TTEthernet and Ethernet header bytes. First array position is for TTEthernet and the second
position is for Ethernet.
 Clock_Jitter:- Clock Jitter value

101117 Page 257 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

9.6 TTEthernet Node

TTEthernet Node block models TTEthernet End Systems and Synchronization master in the network. This
block manages triple redundancy, multicast, MAC and Phy layers. Time-Triggered Ethernet functionality is
implemented based on the SAE AS6802 specification of the Layer 2 Quality-of-Service (QoS) enhancement for
Ethernet networks. The library provides capability for deterministic, synchronous, and congestion-free
communication, unaffected by any asynchronous Ethernet traffic load. The block supports the isolation of the
synchronous time-critical dataflows from other asynchronous Ethernet dataflows. This implementation of the
standard enables designers to test, define the topology and validate their architecture for performance latency,
throughput, jitters and other intrusions such as large, high priority packets, rate-controlled data streams and
virtual LANs. This means that distributed applications with mixed time-criticality requirements (e.g., real-time
command and control, audio, video, voice, data) can be integrated and coexist on one Ethernet network.
Traffic generators can be connected to TTE Node to model an end system connected to network.
TTE Node block can be configured using its three parameters namely; Node_Name, Synchronization_Master
enable/Disable, Redundant Nodes. Node name must always start with Node_ superseded with integer value.
Name of the Node must be unique. Designer can enable or disable synchronization master using the check
box or Boolean conditions. As TTE Supports Redundancy, designer can select how many redundant
connections a Node can have with a Bridge, ViusalSim TTE Node block supports upto 3 levels of redundancy.
Sample Configuration window of TTE_Node block is shown below

Time Triggered or Rate Constrained or Best Effort traffic generators can be connected to TTE Node as below.

9.7 TTE Bridge

TTEthernet Bridge is responsible for performing partitioning among time-triggered, rate-constrained, and best-
effort Ethernet traffic. High-priority time-triggered messages are routed through the bridge according to a
predefined schedule with pre-definable constant latency and jitter in the sub-microsecond range. Rate-
constrained messages are passed on according to the respective guaranteed bandwidth reservations. Finally,
best-effort Ethernet messages are forwarded when bandwidth is available.
Based on the contents of the Type Field of an incoming message, the Bridge decides whether an incoming
message is a standard Ethernet (BE) message or TT Ethernet message. BE Ethernet messages and TT
Ethernet messages are handled differently by the bridge. Arriving standard Ethernet (BE) messages are stored
in a BE-message queue of the bridge. The message, which is at the end of the message queue, is forwarded
to the specified receiver address whenever the outgoing channel to this receiver is free. If an outgoing BE
message is in the way of an incoming TT message, then the bridge immediately clears the channel (preempts
the BE message) for the pending TT message. Immediately after the TT message has terminated, the bridge
retransmits the (previously preempted) BE message, and, if the transmission was successful, releases the
message buffer occupied by this message for a new incoming BE message. This autonomous TTEthernet

101117 Page 258 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

protocol mechanism uses any bandwidth that becomes free for the immediate transmission of BE-messages. It
optimizes the throughput without any need for an explicit scheduling action and thus simplifies the schedule
design and the system operation.
Arriving TT Ethernet messages are not stored in the bridge. They are delayed by the bridge for a defined
number of µseconds (clearance delay, which is the time needed to clear the transmission path in the case of a
preempted BE message) and then forwarded in to the addressed receivers.

If the TTE Bridge block is configured as compression master, then the compression master calculate an
averaging value from the relative arrival times of these protocol control frames and send out a new protocol
control frame in a second step. This new protocol control frame is then also sent to synchronization clients.
TTE_Bridge is provided with an option to consider itself as a compression master or not. Compression master
consolidates all the timing signals sent by Synchronization masters and then it sends the message back to all
the nodes connected to it on the timing. This ensures that all devices and switches on the network have the
same clock.
Name of the TTE Bridge block should be unique and it should always begin with Bridge_ and superseded with
integer value. This block takes three parameters, Bridge Name, Compression Master (Enable/Disable),
Routing Table Name and Number of End System Connections. Maximum of 16 nodes can be connected.
Configuration window for TTE Bridge is shown below

9.8 TTE Config

TTE Config block contains required Configuration Tables and local memory variables to setup a successful
TTEthernet network and. Designer can add this block to the model and modify the values of each Table.
Designer can also add as many of the Traffic Table blocks to generate TT or BE or RC traffic.
While configuring the configuration table users must edit these tables by performing Open Instance on
TT_Config block as opposed to Open Block. For Detailed explanation of each configuration tables please refer
the tutorial section

9.9 TTE_Setup

TTE Setup block is required to processes all the data and transfers within each Node and Bridge block. Block
has just two parameters, parameter RT should be configured with the name of the Routing Table available in
TTE_Config block and the parameter Traffic_Tables should have the list of Traffic tables as a array. Sample
configuration of TTE_Setup block is shown below

101117 Page 259 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

9.10 TTE_Stats

This block provides the statistics for all streams terminating at this Node. This block can be connected either to the Node
block or the Traffic Generator.
This block provides 2 types of statistics- two files that contain the trace and statistics for all the streams, and 3 possible
plots- latency of all streams, histogram of all the streams and a single stream plot.
Both text files are written into the directory containing the model. The first text file is named;
TTE_Example_Stream_Plot.Stats.Node_5_Stream_Latency.txt and the second is Information_Warning.txt. The first file
contains the minimum, maximum, mean and standard deviation of the latency, and the throughput for all the streams
terminating at this Node.
The all stream latency is displayed by default. The legend on right is of the format- Start Node, End Node and Stream or
Ethernet number. The Ethernet number is the order in the Traffic Table. The stream number is the ID. The histogram plot
shows the histogram for each stream. The single stream latency plot can be enabled by setting Enable_Second_Plot
parameter to true. The second plot will plot a single stream that is set in Second_Plot_Contains parameter.
Sample configuration window for TTE_Stats block is shown below

9.11 TTE_Traffic

The block accepts a traffic table and uses this to generate data. If the Identifier field contains Ethernet for Best
Effort Traffic,"TT1" or "TT2" or "TT3" and so on for Time Triggered Traffic and RC1, RC2, RC3 and so on for
Rate Constrained traffic, all data structures after the first one are sent out without waiting for a response. If the
Identifier field has any other value, the block sends a data structure, waits for a response and then starts
transmitting. After this first acknowledgment, no additional packets need to be acknowledged. All traffic is sent
out via the net_tg_out port. All responses and traffic destinated for this Node are sent to the net_tg_in port.
 The data_out port sends out all data structure that terminate at this block. This can be connected to a plotter
for latency plotting. This block will also support UDP Multicast traffic generation.
For Detailed explanation TTE_Traffic block please refer the tutorial section

101117 Page 260 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

9.12 Tutorial

Multiple demonstration systems are provided with documentation to guide a user to learn the TTEthernet
modeling environment and create executable models.
A demonstration system is provided with explanation on the use of this library. The block diagram is provided
below:

Figure 1.0 Block Diagram of Simple TTEthernet Network

Node 1 and Node 2 are the synchronization masters, Node 5 acts as a Synchronization client and Bridge acts
as a compression master in figure 1.0. Each Source node’s (Node1 & Node2) or Synchronization masters can
generate messages of Time-Triggered (TT), Rate-Constrained (RC) or Best-Effort (Ethernet). Node 1 and
Node 2 transmit messages to a single client Node5 which is connected by a Bridge in between.
The VisualSim model of this design is at VS_AR/demo/networking/TTEthernet/TTE_Simple_Example.xml
Each node consists of one traffic generator which can generate messages of TT, RC and Ethernet; and a node
block. The bridge uses the TTE_Bridge block. As Node_5 is a client, we have connected TTE_Stats to it to
generate network statistics and stream latency. The TTE_Config_Table and TTE_Setup blocks are added to
this block diagram editor to define network attributes. Users have to define few top level model parameters and
are given below
Ethernet_Mbps = 100.0
Link_Dist = 1000.0 /* Link Distance in Feet, user can modify this */
BasePeriod = 2.0e-3
Header_Bytes={0,0}
TT_Shuffle_Percent = 100.0
Ethernet_MTU=1518
TT_MTU=1518
The Digital simulation is added with a stop time. When you run the simulation, there are four outputs. There are
two plots- one displaying the latency for all the streams and the other is Histogram of the latency. There are
two text files that are written at the end of the simulation- one contains information and warning messages, and
the other contains the latency statistics for each stream.

101117 Page 261 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 2.0 VisualSim Model

9.12.1 Basic Rules
1. All the Source and Destination node names must start with Node_ followed by a number
2. All Bridges must start with Bridge_ followed by a number
3. Each Traffic Generator will have a separate Traffic Table
4. Bandwidth credit and Class type for all streams from all nodes are listed in a single Stream Table
5. TTE_Setup block must be present in all models using TTEthernet libraries
6. The TTE_Config_Table is only an example of the required Tables. The user must modify all the Tables

to setup the required configuration. Additional Traffic Tables must be added to cover all the Nodes
and need to make sure TT_Config_Table is configured correctly.

9.12.2 Construction Steps
To construct a TTEthernet model, there are five steps

1. TTE_Config_Table configuration
2. Pre-Process block called TTE_Setup
3. Instantiate Nodes and Bridges
4. Add the traffic for each Nodes and define mode of message transmission.
5. Attach Statistics block to each of the nodes that are receiving the data.

9.12.2.1 Step 1- Model Configuration1

1. Drag Interfaces and Buses ->TimeTriggeredEthernet -> TTE_Config_Table into block diagram editor
this provides the list of sample Tables that are required for the TTEthernet model.

101117 Page 262 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 3: TTE_Config_Tables

1.1 Roting_Table (RT): Configure based on your network requirements. This is required to handle the
routing between nodes, compute latency on the links and maintain statistics. For this tutorial
configure RT as below

Figure 4: Routing Table Configuration

1.2 Buffer_ClkSync: No change required. Buffer_ClkSync is a Memory_Init block. This contains a set of
required parameters for TTE. The following is the list of variables.

Percent_BW global 0.75 ; ---Maximum allocation to Class A or B of the total bandwidth for
that Type
Default_ProcTime global 1.0E-06; Default Processing time for node processing.
Max_Buffer_Pkts global 256 ; Maximum buffer packet size.
Max_Pkt_Bytes global 1500 ; ---Maximum packet size Max_Buffer_Pkts global 256 Maximum
number of buffers at each Node. Each buffer can hold one Data Structure or packet

101117 Page 263 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Grand_Master global "Node_1" ; ---Node Name of the Master for the Clock Sync.
Grand_Master_Rate global 200.0E-03 ; ---Rate of Clock Synchronization messages from the
Grand Master Node

1.3 Multicast_List: Please make sure that you have required source and destination names in the table

1.4 Traffic Table: One table is required for each Node. Enter the list of TT, RC and Ethernet streams. One
sample table is provided. Copy this instance to generate the required number of traffic tables. Make sure
to give each Table a unique Name for the Linking_Table_Name. The list of all the Traffic_Tables must be
provided to the TTE_Setup block.

ID Identifier Task_Source Task_Destination Mbps Task_Size Start_Time Stop_Time
Protocol VLAN Type ;

 1 "TT1" Node_1 Node_5 TT_Mbps TT_Bytes 3.0e-12 0.5
UDP 1 7 ;

 2 "RC1" Node_1 Node_5 0.5 64 1.5E-03 0.5
UDP 2 6 ;

 3 "RC2" Node_1 Node_5 0.5 128 2.0E-03 0.5
UDP 3 6 ;

 4 "Ethernet" Node_1 Node_5 0.3 64 2.5E-03 0.5 UDP 4 5 ;

ID: Increasing sequence number
Identifier: This determines the message stream type
Task_Source: Name of this Source Node.
Task_Destination: Name of the final destination or listener.
Mbps: Generation rate of this traffic stream
Task_Size: Packet data size. Does not include headers or tailers
Start_Time: Time in seconds after the start of the simulation
Stop_Time: Time in seconds after the start of the simulation
Protocol: UDP or TCP
VLAN: This is VLAN ID and it enables users to select BAG
Type: Type of Class. Can be 0 to 7.

1.5 Stream: This table contains the Class and the requested bandwidth for all TTEthernet stream from all the
nodes.

ID Mac_ID Identifier SR_Class Mbps ;
 1 "a0:36:9f:0c:77:38" "TTE1" A 0.2 ;
 2 "a0:36:9f:0c:77:38" "RC1" A 0.2 ;
 3 "a0:36:9f:0c:77:38" "RC2" B 0.5 ;
 4 "a0:36:9f:0c:77:38" "Ethernet" A 0.3 ;
 5 "a0:36:9f:0c:77:39" "TTE2" A 0.2 ;

101117 Page 264 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

 6 "a0:36:9f:0c:77:39" "RC3" A 0.2 ;
 7 "a0:36:9f:0c:77:39" "RC4" B 0.5 ;
 8 "a0:36:9f:0c:77:39" "Ethernet" A 0.3 ;
 9 "a0:36:9f:0c:77:3A" "TTE3" A 0.2 ;
 10 "a0:36:9f:0c:77:3A" "RC5" A 0.2 ;
 11 "a0:36:9f:0c:77:3A" "RC6" B 0.5 ;
 12 "a0:36:9f:0c:77:3A" "Ethernet" A 0.3 ;

ID: Increasing sequence number
MAC_ID: Physical address of the Node
Identifier: Unique ID for each TTE stream. This must match the Identifier in the Traffic Table.
SR_Class: Stream Reservation class of this TTE stream- A or B.
Mbps: Requested bandwidth

1.6 Type_to_BW: For each Bridge and Node in the model, the amount of bandwidth allocated to each Type is
specified in this Table. Top Level parameter Bandwidth_Mbps determines Ethernet Speed and is common
for all nodes.
Sample Format is as below

ID Type Mbps ;

 0 0 0.0 ;

 1 1 0.0 ;

 2 2 0.0 ;

 3 3 1.0 ;

 4 4 1.0 ;

 5 5 33.0 ;

 6 6 25.0 ;

 7 7 40.0 ;

ID: Increasing sequence number starting from 1.
Type: Type of Class. The values are 0 to 7
Mbps: Bandwidth allocation. The sum of all the rows of this column must not exceed the total
bandwidth of the links.
Full Format is:
ID Type Node_1 Node_2 Node_3 Bridge_4 Bridge_5 Node_5 ;
0 0 0.0 0.0 0.0 0.0 0.0 0.0 ;
1 1 0.0 0.0 0.0 0.0 0.0 0.0 ;
2 2 0.0 0.0 0.0 0.0 0.0 0.0 ;
3 3 1.0 1.0 1.0 1.0 1.0 1.0 ;
4 4 1.0 1.0 1.0 1.0 1.0 1.0 ;
5 5 25.0 25.0 25.0 33.0 33.0 33.0 ;
6 6 25.0 25.0 25.0 25.0 25.0 25.0 ;

101117 Page 265 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

7 7 40.0 40.0 40.0 40.0 40.0 40.0 ;

ID: Increasing sequence number starting from 1.
Type: Type of Class. The values are 0 to 7.
Node_1, Bridge_1...: Bandwidth allocation. The sum of all the rows of each column must not exceed
the total bandwidth of the link.

Please make sure that you have included all the available nodes in the model

1.7 Class_to_Type- For each Bridge and Node in the model, the mapping of Type to Class and B.
Sample table is as shown below
Common Format:

ID Class Type ;
0 A 4 ;
1 B 3 ;

ID: Increasing sequence number starting from 1
Class: A or B
Type: Type of Class. The values are 0 to 7. Common to all Nodes and Bridges in the model.

Full Format is:

ID Class Node_1 Node_2 Node_3 Bridge_4 Bridge_5 Node_5 ;

 0 A 4 4 4 4 4 4 ; /* Background */

 1 B 3 3 3 3 3 3 ; /* Best Effort */

ID: Increasing sequence number starting from 1
Class: A or B
Type: Type of Class. The values are 0 to 7. Common to all Nodes and Bridges in the model.

1.8 TT_Config_Table: TT_Config table provides the timing precision for Time-Triggered messages. StartTime is
computed based on the task size and the Network Speed. User should enter details for the complete flow,
for example if Source node is Node_1 and the destination is Node_5 then all the Nodes and bridges
involved in communication flow should be defined in the table.

Sample TT_Config_Table is shown below

Node TTName StartTime BasePeriod ProcTime ;

"Node_1" "TT1" 1.25E-03 BasePERIOD ProcTIME ;

"Node_2" "TT1" 2.0E-03 BasePERIOD ProcTIME ;

"Node_3" "TT3" 3.0E-03 BasePERIOD ProcTIME ;

"Bridge_4" "TT1" 2.5E-03 BasePERIOD ProcTIME ;

"Bridge_4" "TT2" 3.0E-03 BasePERIOD ProcTIME ;

101117 Page 266 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

"Bridge_4" "TT3" 3.5E-03 BasePERIOD ProcTIME ;

"Bridge_5" "TT1" 3.0E-03 BasePERIOD ProcTIME ;

"Bridge_5" "TT2" 3.5E-03 BasePERIOD ProcTIME ;

"Bridge_5" "TT3" 4.0E-03 BasePERIOD ProcTIME ;

 "Node_5" "TT1" 3.5E-03 BasePERIOD ProcTIME ;

1.9 VLAN: No change is required. In this table based on the VLAN ID BAG is allocated. For the Rate
Constrained traffic stream this table decides the allocated bandwidth for a given VLAN. User can have as
many VLAN’s and associated with BAG and LMax time. Sample VLAN table is shown below;

ID VLAN BAG LMax ;

 1 1 1.0e-6 256 ;

 2 2 1.5e-6 512 ;

 3 3 2.0e-6 1024 ;

 4 4 2.0e-6 1024 ;

 5 5 2.0e-6 1024 ;

9.12.2.2 Step2 – Model Configuration 2

In this step we will add the blocks required for pre-processing the tables. This block must be added to all TTE
models or models that use the TTE blocks. This block does require the existence of the Traffic tables, Routing
Table, Link Setup table, Type_to_BW table, Class_to_Type, TT_Config_Table table and Multicast Memory_Init
block.
a. Instantiate the Interfaces and Buses ->TimeTriggeredEthernet->TTE_Setup block.
b. Link the Routing_Table_Name parameter to the top-level. This ensures that all blocks will use the same
name. Example name is “RT”
c. In the parameter ‘Traffic_Tables’, list all the traffic tables names as strings in array.

9.12.2.3 Step3- End Systems and Switches

Each transmitting node or synchronizing master node requires two blocks – TTE_Traffic_Gen and Node
block. The assembly of the two blocks is as below

Figure 5: Assembly of Source Node

At the receiver side or client side only Node block is sufficient. To collect network activities and statistics one
can connect TTE_Stats to the client node block. The assembly of the two blocks is as shown below

101117 Page 267 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 6: Assembly of Client Node/ Destination only node

9.12.2.4 Step4 – Defining Network Connectivity

The Bridge connects the Nodes to the network and also connects to other Bridges. The bridge block handles
the Routing, broadcast of clock synchronization. A model can have a single bridge with all the Nodes
connected to it.

Figure 7 Single Bridge Network

If a model has multiple bridges, instantiate as many TTE_Bridge blocks and update the Link_Setup. The
topology of the network is determined by the Link_Setup table. The Block Diagram shows the number of
Bridge and Node instances.

Figure8 Multiple Bridge Network

The following is the sequence:
a. Add as many Interfaces and Buses ->TimeTriggeredEthernet ->TTE_Bridge blocks as you have defined
in the Link Configuration table
b. Assign a unique name to each Bridge block. The rule here is that the name must be Bridge_ followed by a
number. No two Bridges can have the same
c. For the parameter, add the Routing_Table_Name. For now it is just “RT”.

9.12.2.5 Step5 - Reports

The TTE_Stats block can be connected directly to the Node out for a Destination-only or the data_out port of
the TT_Traffic_Gen block for a Source+Destination block.
The TTE_Stats generates 3different pieces of information. They are:

101117 Page 268 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

1. The latency statistics and through for all the streams arriving at Node to which this TTE_Stats is
connected.

Time-Triggered Rate Constraint

N1_to_N5_TT1_1

Latency

 Minimum: 2.5061367090 ms

 Mean: 2.5061367090 ms

 Std Dev: 29.1 ps

 Maximum: 2.5061367090 ms

Throughput

 Mbps: 0.0328661952051

N2_to_N5_RC2_3

Latency

 Minimum: 24.5134240 us

 Mean: 494.2624945 us

 Std Dev: 571.1953459 us

 Maximum: 2.0779767120 ms

Throughput

 Mbps: 0.5011401721222

Ethernet

N1_to_N5_Ether_4

Latency

 Minimum: 14.2734240 us

 Mean: 519.6828018 us

 Std Dev: 617.3499543 us

 Maximum: 2.8099000580 ms

 Throughput

 Mbps: 0.3010222764019

Here

N1_to_N5- Node_1 to Node_5
TT_1- Time Triggered stream with ID 1 in the Traffic Table
RC2_3- Rate Constrained stream with ID 3 in the Traffic Table
Ether_4- Ethernet stream with ID 4 in the Traffic Table
Minimum- Lowest latency recorded during the simulation
Maximum- Highest latency recorded during the simulation
Mean- Average of all the latencies recorded
Std Dev- Standard Deviation of the latencies

2. Graphical plot showing the Latency for all the streams arriving at the Node to which this TTE_Stats

block is connected.

101117 Page 269 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 9: Stream Latency Plot

3. Histogram of the Latency for all the streams arriving at the Node to which this TTE_Stats block is

connected.

Figure 10 Histogram Latency plot

The following is the connection sequence:
a. Connect an Interfaces and Buses ->TimeTriggeredEthernet ->TTE_Stats block to the output of each
of the Nodes. This will capture all the statistics including the activity traces, latency and histogram

101117 Page 270 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

plots. You can see a unique latency graph at each Listener of Destination Node. We only need this
block for Nodes that will receive data.
b. Enter the name of the Node that this block is connected.

9.12.2.6 Step6 – Analyzing System

Now the model has been constructed. The next step is to run the simulation. Each simulation run can have
different setup values- such as Network Toplogy (Link_Setup file), traffic streams from each node (Traffic
table), number of TT/RC/Ethernet streams (stream table) and allocation of bandwidth to each Type at each
Bridge (Type_to_BW).
For each run, the statistics are provided in a combination of files and graphical plots. View Step 6 to see the list
of plots and reports.

9.13 Advanced Tutorial

9.13.1 TTEthernet model with 8 Source Nodes
Let us make use of TTEthernet_Simple_Example.xml model to extend the system with additional 6 Nodes or
total of 8 Nodes.

9.13.1.1 Extending System with Additional Nodes

1. Instantiate additional TT_Node’s and provide unique name. Connect TT_Traffic_Gen blocks for each
TT_Node’s and provide unique name.

9.13.1.2 Step2: Configure TTE_Config_Table

1. Open TT_Config_Table block, create additional Traffic_Table’s for all Source Nodes.
2. Update Routing Table (RT) with additional node details
3. Update additional node details to Type_to_BW and Class_to_Type blocks.
4. Update TT_Config table with updated Traffic_Table details (TT1, TT2, TT3…) and timing precision

based on the network speed and task size.
5. VLAN Table – No modification is required
6. Stream Table – No modifications required

9.13.1.3 Step3: TTE_Setup

1. Update Traffic_Tables parameter with all additional Traffic_Table’s names

9.13.1.4 Step4: Run Simulation

101117 Page 271 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

9.13.2 TTEthernet Model with 8 nodes and 3 Destination Nodes
In this tutorial we shall extend the model developed in advanced tutorial part 1.

9.13.2.1 Step1:

Open the model developed in Part-1 and instantiate additional destination nodes and TTE_Stats blocks.
Provide unique names for TTE destination nodes.

9.13.2.2 Step2:

Open TTE_Config_Table block and update Routing Table(RT), Type_to_BW, Class_to_Type, TT_Config and
Traffic Table. With Regards to Traffic table, user can decide which is the Destination node should be selected.

9.13.2.3 Step4: Run Simulation

Note: Final version of the model is available in
VS_AR\doc\Training_Material\Tutorial\WebHelp\Tutorial\Networking\TTE_8_Nodes_3dest_Nodes.xml

9.13.3 TTEthernet Model with 8 Nodes, 2 Bridges and 3 Destination Nodes
In this tutorial we shall extend the model developed in advanced tutorial Part2.

9.13.3.1 Step1:

Open the model developed in Part-1 and instantiate additional 1 TTE_Bridge block. Provide unique name.

9.13.3.2 Step2:

Open TTE_Config_Table block and update Routing Table(RT), Type_to_BW, Class_to_Type, TT_Config and
Traffic Table. In the RT table one can select the flow, sample RT table is shown below

ID Source_Node Destination_Node Distance
Speed_Mbps Duplex ;
 1 Node_1 Bridge_4 Link_Dist 100.0 true ;
 2 Node_2 Bridge_5 Link_Dist 100.0 true ;
 3 Node_3 Bridge_4 Link_Dist 100.0 true ;
 4 Node_4 Bridge_5 Link_Dist 100.0 true ;
 5 Node_5 Bridge_4 Link_Dist 100.0 true ;
 6 Node_6 Bridge_5 Link_Dist 100.0 true ;
 7 Node_7 Bridge_4 Link_Dist 100.0 true ;
 8 Node_8 Bridge_4 Link_Dist 100.0 true ;
 9 Bridge_4 Node_10 Link_Dist 100.0 true ;
 10 Bridge_5 Node_10 Link_Dist 100.0 true

101117 Page 272 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

;
 11 Bridge_5 Node_11 Link_Dist 100.0 true
;
 12 Bridge_4 Node_12 Link_Dist 100.0 true
;

9.13.3.3 Step3:

Run Simulation
Note: Final version of the model is available in
VS_AR\doc\Training_Material\Tutorial\WebHelp\Tutorial\Networking\TTE_8_Nodes_3dest_Nodes_2Brid
ge.xml

101117 Page 273 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

10 IEEE1394/Firewire
10.1 Introduction

Mirabilis Design Inc provides IEEE 1394 or FireWire as a standard library in VisualSim Architect modeling
environment. Using this configurable library, designers can architect next generation networking system for
high performance systems by conducting early design space exploration, power and performance analysis.
 FireWire Modeling library enables system designers and architects to conduct early design explorations of
FireWire based System Architecture. Library is preconfigured to generate network statistics and understand
network activities to analyze network behavior by varying workload and network configurations. As the FireWire
library package includes Node, Link and also Integrated Traffic generator, designers can assemble simulation
model of the proposed system very quickly. For example, if a designer wants to evaluate performance of
FireWire network with a Camera with a resolution of 800x600 8‐ bits per pixel at 30 fps. Typical challenges that
a designer may come across at this stage would be, how many such cameras can be connected to the
network, Bandwidth allocation percentage for isochronous transfers, available bandwidth after connecting
second camera with the same format, possible bottlenecks. VisualSim FireWire library enables designers to
address these questions and also enables designers to evaluate system behavior with custom network
configurations as well.
FireWire library is built to the specifications and is compliant with IEEE Std 1394™-2008 revision. Data
transmission rates of S100, S200, S400, S800, S1600 and S3200 are supported.

10.2 About FireWire

The 1394 protocol is a peer-to-peer network. Every node of the network is a device equipped with the
necessary functionality to perform configuration and control actions. Each network node may have multiple
ports that act as a repeater. That means that packets received on some port of a node are forwarded to all
other ports of the same node. The maximum number of devices on the bus is 63. According to the spec
P1394.1 if there is a need to add more devices, then bridges can be used, raising the total number of
supported connected devices on a 1394 network to 65536 (64 nodes on each bus and up to 1024 buses).
Data transfers between connected devices can be realized in two ways: isochronous or asynchronous.
Isochronous transfers are always broadcast with either a transmitter and a single receiver or a transmitter and
numerous receivers. During an isochronous transfer no error correction or retransmission is performed. Up to
80% of the available bandwidth can be used for this kind of transfers.
Asynchronous transfers, on the other hand, are not broadcasted but always target a specific network node
using an explicit address. These transfers do not have a guaranteed bandwidth on the bus, but when
asynchronous transfers are allowed, fair access on the bus is provided. For each asynchronous transfer, there
is always confirmation for the integrity of data sent from the receiver to the transmitter.

10.3 About FireWire Library

VisualSim FireWire Library models details of Physical layer, link layer, transaction layer and Application layer.
Application layer is responsible for bus management and bandwidth allocation activities. The library is
classified into three parts, FireWire Node, FireWire Link and FireWire Config. FireWire Node block can behave
as a Root Node, Intermediate node or a leaf node based on the position of node is a network topology.
FireWire Link models the communication link between one node to another, parameters are provided to select
type of communication medium and also the length. FireWire Config block holds details on the network
configurations and routing.
Each FireWire node has a traffic generator and the parameters are provided to define destination node,
start/inter-arrival time for generating arbitration request and data packets. Parameters are also provided to
define the size of the data and transfer type (Isochronous or Asynchronous). This enables the designer to
emulate network behavior and also to capture end-to-end latency, throughput and system bottlenecks.
Graphical representation of a sample FireWire network model structure in VisualSim will be as shown in figure
1.0

101117 Page 274 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 1.0

10.4 Model Parameters

During model construction, FireWire libraries require few Model Parameters to define FireWire network speed,
Bandwidth Allocation Percentage and Name of the Root Node. Parameter is defined as below
Network_Speed = 400.0 /* Mbps */
ISO_BW_Perecent = 80.0
Root_Node = “Root_5”

Parameter Network_Speed is used to determine the selected network data rate. VisualSim supports different
transfer modes, S100, S200, S400, S800, S1600 and S3200
Parameter ISO_BW_Percent defines the Bandwidth Percentage allocated for Isochronous transfers.

10.5 Assumptions

FireWire Model has few of assumptions as these factors will not affect system performance. We assume that
topology is already defined and identification of Leaf Nodes, branch and Root nodes are completed and finally
Self-Identification process is complete.
The self-identification phase begins with the root node sending an arbitration grant signal to its lowest
numbered port. That port will assign itself ID 0 and propagate a self-ID packet up the chain to the root node. As
it does, each node updates its internal ID counter by 1. After getting the ID, the root node will then continue to
signal an Arbitration Grant signal to the currently lowest numbered port, and the process repeats itself. It
continues until all ports on the root node have indicated a self-ID done condition. The root node then assigns
itself a physical ID number 1 higher than the last number issued, always making itself the highest numbered
device on the bus. During the self-ID process, parent and children nodes exchange their maximum speed
capabilities.

10.6 FireWire Node

FireWire Node block can behave as a root, branch or leaf node based on the node position in a network
topology; Configurable parameter is provided to select the Node type. Each node will be assigned with a
unique identifier and the root node must be provided with highest identifier number.

101117 Page 275 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

10.6.1 Flow Diagram for Isochronous Transfers

101117 Page 276 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

10.6.2 Flow Diagram for Asynchronous Transfers

10.6.3 Block Details
Current version of FireWire Library considers that the topology is already defined and associated identifiers are
provided for all Leaf nodes, Branch nodes and Root Node. Leaf node will have only one connection to the node
with the port identified as parent, where as branch node will have more than one connections with the ports
types as both parent and child connections. Root node will have only child connections and there will be no
parent connections to it. FireWire Root node will be assigned with a highest identifier number. Root Node
initiates Cycle Start signal and is broadcasted to all nodes down the stream and waits for acknowledgement
from the leaf/branch nodes. The delay associated with Cycle Start signal will be reused for consecutive
transactions. Right after the transmission of the cycle start packet, the devices that wish to transmit
isochronous packets may arbitrate for the bus. According to the arbitration scheme used on the 1394 standard,
whenever a device wishes to gain access to the bus, it sends a signal to its parent-node, which in turn forwards
it to the upper layers of the bus's tree structure, till it reaches the root node. The root node decides which node
will gain access to the bus on a first come first serve basis. It becomes obvious that the device located closest
to the root node wins the arbitration.

101117 Page 277 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Each device that wishes to transmit isochronous packets is assigned a logic channel by the Isochronous
Resource Manager in Root Node. A channel may be used only once in every bus cycle. This ensures on one
hand, that each device that has been granted a channel will transmit at some point during every cycle and on
the other, that the devices located near the root node won't monopolize the bus. If a device has significant
bandwidth requirements and there are available channels, then the IRM may grant this device more than one
channels, enabling it to transmit multiple packets per clock cycle.
When the data of an isochronous channel have been streamed, the bus remains idle waiting for another
isochronous channel to begin arbitration. If no other isochronous channel wishes to transmit data, the bus will
remain idle for more time than the isochronous gap (the time interval between two isochronous transmissions
with duration from 40 to 50 nsec). If the bus idle time exceeds the subaction gap of 11.2micro seconds, the
devices that wish to transmit asynchronous data may arbitrate for the bus.
The bandwidth in 1394 parlance is described in a time unit called the "Bandwidth Allocation Unit". One unit
stands for the amount of time required to transmit one quadlet of data (4 bytes) at the S1600 data rate
(1.6Gbps). This is the same time required to transmit 2 bytes of data at S800 (800Mbps) or 1 byte of data at
S400 (400Mbps).

One unit is 2 bytes at S800, so 6144 units in a cycle mean 12288 bytes per cycle at S800. Multiplying this
by 8000 cycles per second we get 98,304,000 bytes per second, or 786,432,000 bits per second, which is
the nominal value of the S800 data rate (786.432 Mbps).
IEEE 1394 states that only 4915 out of the 6144 bandwidth units can be used for isochronous traffic. This is
equivalent to 100 microseconds or 80 percent of the 125 microsecond cycle. The other 20 percent (or 1229
bandwidth units) should be left available for asynchronous traffic.

The Bus is divided into 125 micro seconds as all operations on the bus are synchronised using an 8kHz clock
signal produced by the cycle master. Structure of isochronous transfer is shown in figure 2.0

Figure 2.0

In contrast to the isochronous transfers, for the asynchronous transfers there is not a manager to assign
transmission channels. As a result, the devices that wish to transmit multiple packets during the duration of a
cycle, may arbitrate more than once for the bus. This may lead to unfairness for the devices that are located far
from the root node, as the closest to the root devices are favored. To alleviate this problem, the standard
defines the fairness interval and the arbitration rest gap. Each device that transmits asynchronous packets has
a bit named arbitration enable bit. Depending on the value of this bit, the device is entitled or not to arbitrate for
the bus during the current cycle. Initially, the bit is set to 1 and when the device completes an asynchronous
transaction, it is cleared and the device may not participate in any arbitration process. This scheme ensures a
fair access to the bus even for devices located far away from the root.

101117 Page 278 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

If the data being sent is time-critical and error-tolerant (like a video or audio stream), then choose isochronous
mode to transfer the data. If the data being sent isn’t time-critical and error-tolerant, then asynchronous mode
is the right choice.

10.6.4 Block Parameters
Block parameters are provided to configure the FireWire Node library block for design requirements. FireWire
Node block also has a internal traffic generator that generates Arbitration request messages and transfer data
packets once arbitration is granted for the node. Block parameters available for FireWire Node block is as
below

Node_Type – Type of the node must be set to either Root or Leaf or Branch based on the position of the Node
in the Network.
Node_ID – Unique Identifier for the Node, Root node must be set to highest number
Destination_Node – Destination Node name
Arb_Req_Start_Time – Set the Start time for generating Arbitration Request message. Note that, this
parameter will not be utilized if the Node Type is set to “Root”
Arb_Re_Interarrival_Time - Set the Inter-arrival time for generating Arbitration Request message. Note that,
this parameter will not be utilized if the Node Type is set to “Root”
Transfer_Type – Transfer_Type must be set to either ISO or ASY, ISO defines Isochronous traffic while ASY
defines Asynchronous Traffic
Task_Size_Bytes – Size of the Transmission Data
Enable_Debug – This parameter enables or disables capturing debug information and network Statistics
Number_Of_Stats_Samples – Parameter to select number of Statistics generated.
Sim_Time – Simulation Time. Must be mapped to top level digital simulator

10.7 FireWire Link

FireWire Link is a simple delay block that computes link delay based on the link type and distance between on
e node to another. FireWire is available in wireless, fiber optic, and coaxial versions using the isochronous
protocols.

10.7.1 Block Parameters
Link_Type = “Optical”
Link_Distance = 3.0 /* in Meters */

101117 Page 279 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

10.8 FireWire Config

FireWire Config block is responsible for maintaining routing information, Maximum Bytes per cycle for a
selected Network Speed.
Example Routing Table is shown below
ID Source_Node Destination_Node Distance Speed_Mbps ;
 1 Leaf_1 Branch_3 10.0 400.0 ;
 2 Branch_3 Root_5 10.0 400.0 ;
 3 Leaf_2 Branch_4 10.0 400.0 ;
 4 Branch_4 Root_5 10.0 400.0 ;
 5 Root_5 Branch_3 10.0 400.0 ;
 6 Branch_3 Leaf_1 10.0 400.0 ;
 7 Root_5 Branch_4 10.0 400.0 ;
 8 Branch_4 Leaf_2 10.0 400.0 ;

10.8.1 Block Parameters
RT_Table – Routing Table defining the connectivity between nodes.
BW_Table – Do not edit this table. This table has details on Bandwidth Allocation Units for different network
speeds (S100 to S3200)
ISO_BW_Perecent – This parameter defines bandwidth allocated for Isochronous transfer. By default this
parameter is set to 80%.
Network_Speed – Speed of the network

10.9 Reports

FireWire Library blocks are preconfigured to generate various reports and debug information. Configuring
Enable_Debug parameter to “true” in Root node generates the reports and statistics. Activity graph is
generated to debug network behavior and it captures details such as Arbitration Request arrival time,
Arbitration Grant time and arrival data packet at Root Node for both Isochronous and Asynchronous transfers.
Textual report on Network Statistics helps designer to understand the bandwidth for each link and source to
destination nodes. Debug messages are generated in textual format and is saved in the same directory where
the model is located.

10.10 Example

Multiple demonstration system models are provided with documentation to guide a user to adopt VisualSim
FireWire Library for conducting early system exploration of FireWire based system. Purpose of the following
tutorial is to introduce VisualSim FireWire libraries and understanding basic rules that needs to be followed
during model construction.
Block diagram of a simple FireWire based system with single FireWire Root Node a Leaf Node is as below

Figure 1.0: System Block Diagram

Here we have a single Leaf node generating Isochronous or Asynchronous transactions and it can be
considered as a camera or an audio source connected to a Computing resource or a Root node. Root Node
generates a special packet called “Clock Start” every 125.0us. Leaf node can request for Arbiter control by
sending a Arbiter Request message across the network to Root node. As we have only one device connected
to Root Node, Leaf Node will always win the arbitration, else arbitration will be granted based on first come first
serve order. Once the Arbitration is granted for a Leaf node, leaf node can send a data packet per cycle, if the

101117 Page 280 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

bandwidth is available multiple packets can be transmitted. Modeling a FireWire System as shown in figure 1.0
using VisualSim requires FireWire Library package. FireWire Library package includes FireWire Node, to
model Root/Branch/Leaf nodes; FireWire Link, to model connectivity medium between two nodes; FireWire
Config, to define the network setup and Bandwidth allocation.
VisualSim model of the proposed system is shown below

Figure 2.0 VisualSim Model

10.10.1 Basic Rules
1. While constructing the Simulation model of a FireWire based system, we assume that the topology

has been identified and self-identification process is complete. As this doesn’t impact on total System
performance, this process is left out.

2. Always Start providing Unique identifier for nodes from Leaf Nodes and move up the ladder. Always
Leaf Nodes will have the lowest identification numbers and Root nodes will have highest
identification number.

3. User must determine if the transactions are Isochronous or Asynchronous based on the type of the
device modeled using FireWire Node block.

4. Parameter called Root_Node with the name of Root node must be instantiated into the Block
Diagram Editor.

10.10.2 Construction Steps
To Construct a FireWire network model, there are four steps

1. Instantiate FireWire Node, Link and FireWire Config blocks
2. Configuration of FireWire Node and FireWire Config blocks based on design requirements
3. Connect Nodes based on the Network Topology
4. Run Simulation and Analyze reports

10.10.2.1 Step 1:

1. Open a New Block Diagram Editor from File  New  Block Diagram Editor
2. Instantiate Digital Simulator from the Library Menu Model Setup  Digital Simulator
3. Instantiate Parameter from the Library menu Model Setup  Parameter. Rename the Parameter as

“Sim_Time” and assign the value as 40.0e-4.
4. Double Click on Digital Simulator and enter Sim_Time for stopTime Parameter

101117 Page 281 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

10.10.2.2 Step 2:

1. Instantiate FireWire_Node from the Library pane Interfaces and Buses  FireWire  FireWire_Node
Updating the parameter Node_Type to Root transforms the FireWire Node block to behave as a root
in the network. As this is a Root node, identifier for the node must be provided with highest identifier
number. For "Root" Node, user can ignore parameters; Arb_Req_Start_Time, Destination_Node,
Transfer_Type, Task_Size_Bytes and Arb_Req_Interarrival_Time.

Configure the Block as below

2. Instantiate one more FireWire_Node from the Library pane Interfaces and Buses  FireWire 

FireWire_Node

Updating the parameter Node_Type to Root transforms the FireWire Node block to behave as a root
in the network. Node must be provided with a unique identifier and the root node must be provided
with highest identifier number and Leaf Nodes will have must have least identifier number. FireWire
Node is provided with a facility to generate Isochronous or Asynchronous transfers, Parameter
"Transfer_Type" must be set to "ISO" for Isochronous and "ASY" for Asynchronous transfers.
Parameter "Arb_Req_Start_Time" tells Leaf/Branch node to initiate Arbitration Request;
Arb_Req_INterarrival_Time parameter allows user to set mean time to generate Arbitration Request.
In this example as we have only 2 nodes, destination node for Leaf_1 is set to Root_2. Arbitration
Request message will be generated every 100 us and the packet size of 1000 bytes is sent as an
isochronous transfer.

Configure the Block as below

101117 Page 282 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

3. Instantiate FireWire_Link Node from the Library pane Interfaces and Buses  FireWire 

FireWire_Link

FireWire Link is a simple delay block that computes link delay based on the link type and distance
between on e node to another. FireWire is available in wireless, fiber optic, and coaxial versions using
the isochronous protocols.

4. Instantiate FireWire_Config Node from the Library pane Interfaces and Buses  FireWire 
FireWire_Config

FireWire Config block is responsible for maintaining routing information, Maximum Bytes per cycle for
a selected Network Speed.
As we have just two nodes, routing table will have connection defining Leaf_1 to Root_2 and Root_2
to Leaf_1. Distance is considered as 10 meters, user can modify this parameter. The Link Leaf_1 to
Root_2 is running at 400 Mbps and is mapped to the block Parameter. User can modify the network
speed and ISO_BW_Percent during explorations.

Configure the block parameters as below

101117 Page 283 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

5. Connect Nodes as shown in figure below

10.10.2.3 Reports

FireWire Library blocks are preconfigured to generate various reports and debug information. Configuring
Enable_Debug parameter to “true” in Root node generates the reports and statistics. Activity graph is
generated to debug network behavior and it captures details such as Arbitration Request arrival time,
Arbitration Grant time and arrival data packet at Root Node for both Isochronous and Asynchronous transfers.

101117 Page 284 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Textual report on Network Statistics helps designer to understand the bandwidth for each link and source to
destination nodes. Debug messages are generated in textual format and is saved in the same directory where
the model is located.
Activity Plot

Activity plot provide time stamp details on when a Arbitration is granted for Isochronous transfers or
Asynchronous transfers, time stamp for clock start packet and arrival of data packet at Root Node. This plot is
useful to monitor the network behavior.
Network Statistics
Network Statistics shows that each link connected to a node can capture the Mbps and min,
mean, stdev, max of the link utilization. Network Statistics shown below tells us that the link
Leaf_1 to Root_2 is having a bandwidth of 384.191 Mbps and the mean Bytes transferred
across this link is 873 bytes while the maximum Bytes transferred across the link is 1000
Bytes. This also shows that the Link utilization is of 96.047%. This tells us the if the designer
has to consider adding additional links to the network, care must be taken to make sure that
the packets drop is avoided.

101117 Page 285 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Debug Statistics
Debug Statistics provides information on when a Clock Start signal is sent to a node, Node that received
Arbitration Grant message, details on active channel, Available Bandwidth for Isochronous and Asynchronous
Transfers. These debug messages helps designers to understand System behavior and make sure that the
activity across the network is free from errors.

10.11 Understanding Common Errors

1. VisualSim.kernel.util.IllegalActionException:
Problem performing RegEx Script Line (27) Result: {"none"}
Solution: This error appears when the parameter Network_Speed is set to speed apart from 100, 200,
400, 800, 1600 and 3200. Please make sure that parameter Network_Speed is provided with one of
the above six values.

2. VisualSim.kernel.util.IllegalActionException:
Problem performing RegEx Script Line (11) Result: {"Root_2"}
Solution: This error tells that the parameter Root_Node = “Root_2” (or the Name of the Root node in
your case) is missing. Please add a parameter called Root_Node and provide the value as “Root_2” (or
the name of the Root Node in your system model)

3. VisualSim.kernel.util.IllegalActionException: Routing Table returned null for Next Hop, check
Task_Destination (Root_3) field matches Dest Node Name
Solution: Name of the Root Node given for the Parameter Root_Node is wrong or the Root Node
name entered in FireWire_Config block RT_Table is wrong. Please provide the correct Root Node
name

101117 Page 286 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Application and Algorithm Library

1 Networking
The Networking blocks perform a variety of networking functions, including simple model routing, complex
model routing, OSI layer modeling, and channel related modeling. In addition, the Networking blocks inter-
operate with the Scheduler Resource blocks, using a common data structure. This means processor oriented
models can be combined with network related models without data structure translators, or additional model
processing.

The NODE, Routing_Table Blocks constitute the basic networking building blocks that allow connected or
virtual connection nodes within a network. This provides the user with either a more conventional network of
ports, and nets connection NODEs in the network, or a virtual connection network of mapped NODEs. The
Routing_Table Block provides a routing table, plus common routing parameters for a network of NODEs. The
user can have a variety of small networks in the same model, just requiring separate Routing_Table for each
network topology.

101117 Page 287 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

Examples: The blocks in this library can be used to quickly construct a network of nodes or a channel with a
preset capacity. This can be an IT network or a network on a chip/board. The network models can be used to
create a verification environment around architecture or can be used to evaluate a protocol design. It can also
be interfaced with external tools such as Satellite Toolkit (STK) to create complex satellite networks. Using the
Channel_* blocks, a wireless network could be constructed with full effects of the error recovery and
retransmission, for example.

Figure 1-1 VisualSim Networking and Channel Blocks

The Node blocks define nodes in a user-defined topology. A number of Layer_Protocol blocks can be setup
as parents of each node to indicate the number of layers required by a protocol stack. The basic parameters of
each layer type is provided in the Layer_Table block. The Layer_Table and Layer_Protocol are mapped by
using the Layer_Table_Name of the Layer_Protocol block. The ds_dn_output is used to connect to the lower
layer and the ds_up_output is used to connected to the upper layer. The ds_dn_input is used to receive data
from the upper layer and the ds_up_input is used to receive data from the lower layer. The output ports from
the Layer_Protocol blocks can be connected to a FSM or other blocks to create define processing specific to
the layer, such as MPLS, Ethernet etc. The routing of the data through this model is determined using the
Routing_Table block. A single model can have multiple Routing_Table blocks but must be referenced in
independent networks or inconsistency will occur. The Node_Master can be used to modify the operation of
the network such as recomputing the routing table and adding/removing a link. The Layer_Complete block
completes the Protocol Layer process by calling back the appropriate Layer_Protocol block signalling the
completion of either an up or down protocol layer process. The use of this block assumes 'Layer_Table' Block
is set to 'Layer_Configuration' menu attribute and 'External_Delay' for this block to be necessary. The Layers
handle fragmentation and assembly using the standard "session' convention of TCP/IP. There is a fragment

101117 Page 288 of 364 VisualSim Application
 Mirabilis Design, Inc. confidential. Do Not Distribute

size for the upward and downward progression of the packets. Each layer has a frame size it will propagate.
 When enough packets have arrived for that packet size, then the incoming packet(s) are sent on to the next
layer. The model does not wait for the entire message, similar to the OSI stack operation. The block delays
the arriving fragments from the same session until this fragment size is reached and then transmitted. If the
incoming size is larger than the fragment number, then incoming packet are broken down into multiple packets.
 All the data from a session are considered in the fragmenting and assembly process. A session is identified
using the Task_Number as the unique identifier.

List of Blocks

1. Layer_Protocol accepts data structures from a NODE block or intermediate Protocol Layer.
2. Layer_Complete block completes the Protocol Layer process by calling back the appropriate

Layer_Protocol block signaling the completion of either an up or down protocol layer process. Assumes
'Layer_Table' Block set to 'Layer_Configuration' menu attribute and 'External_Delay' for this block to be
necessary.

3. Layer_Table block provides for common parameters for an OSI modeling layer.
4. Model_List operates in the same way as the Model_List_DS. The Model_List can access the database

used to store the routing information by the Routing_Table block of the Networking Library.
5. Node can model a network using connected or connectionless methods.
6. Node_Master can operate in a variety of modes: (1) Add Link, (2) Remove Link, and (3) Recompute the

Routing Table.
7. Routing_Table operates in two modes: (1) Connected Routing Table Mode, and (2) Wireless Routing

Table Mode

101117 Page 289 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

2 Wireless and Sensor Network System

Introduction

VisualSim Wireless is a modeling and simulation framework for wireless and sensor networks that builds on
and leverages VisualSim. Modeling of wireless networks require sophisticated modeling of communication
channels, sensors, ad-hoc networking protocols, localization strategies, media access control protocols,
energy consumption in sensor nodes, etc. This modeling framework is designed to support a component-
based construction of such models. It supports actor-oriented definition of network nodes, wireless
communication channels, physical media such as acoustic channels, and wired subsystems. The software
architecture consists of a set of base classes for defining channels and sensor nodes, a library of
subclasses that provide certain specific channel models and node models, and an extensible visualization
framework. Custom nodes can be defined by sub-classing the base classes and defining the behavior in
Java or by creating composite models using any of several VisualSim modeling libraries. Custom channels
can be defined by sub-classing the WirelessChannel base class and by attaching functionality defined in
VisualSim models. It is intended to build models that include sophisticated elements from several aspects.
In this document, we begin by explaining the basic components in this framework: the simulator, the channel
model and the sensor node model, and how to build sensor network models graphically. This document
provides a tutorial that will enable the reader to construct elaborate sensor network models and to have
confidence in the results of a simulation of those models.
The intended audience for this document is an engineer or researcher who is interested in wireless and
sensor network systems and wishes to build models of such systems.
VisualSim Wireless is built on top of VisualSim, a framework supporting the construction of such domain-
specific tools.

Installation and Quick Start

VisualSim Wireless libraries blocks are located in the Interfaces and buses->Wireless sensor Folder of the
Library structure.

Modeling Wireless Networks

In this section, we explain how to read, construct and execute models of wireless sensor networks. We
begin by examining a demonstration system that is accessible from the “Models in BDE” page, the wireless
sound detection model. These demonstration systems are meant to illustrate capabilities, not necessarily to
serve as accurate or useful models of physical systems.

Running a Pre-Built Model
The wireless sound detection model can be accessed by clicking on the link in the welcome window

(figure 1), which results in the window shown in Figure 2. This is a highly simplified (even naïve) model of a
sound localization system that uses a field of sensor nodes that detect a sound and report by radio to a hub
that triangulates the location of the sound. Figure 2 shows the elements of the model, which include a
Wireless_Simulator, which defines this as a wireless model, two channel models (a radio channel model
and a sound channel model), a number of annotations (text explaining the model) and actors in the model.
Each of these components plays a role in the model. The director mediates execution of the model. The
channel models handle communication between the actors. The actors send and receive signals via the
channel.
The model is executable. Clicking on the red triangle in the toolbar results in the SoundSource actor
(represented by concentric transparent circles) beginning to move in a circular pattern, as indicated by the

101117 Page 290 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

blue arrow in figure 3. The SoundSource actor emits events via the SoundChannel channel model. These
events propagate with a time delay dependent on distance to the blue circular nodes. When these nodes
detect the sound, they emit a radio signal via the RadioChannel model and turn their icons red to indicate
visually that they have done so. The radio signals include a time stamp of the detected sound event. The
Triangulator actor in the center (shown with a green icon) receives these

FIGURE 2. The VisualSim Wireless representation of a wireless sound detection model.

radio signals (if it is in range of the transmitter), and uses the time stamps to estimate the position of the
sound source. It then plots that position, resulting in the plot shown in figure 3.

Changing Parameters
The model has parameters that you can experiment with. The parameters of two components, SoundSource
and SoundChannel, are shown in figure 4. To obtain these parameter screens, you can double click on the
actor, or right click and select “Configure.” The SoundSource has a single parameter, called soundRange. If
you change the value from 300 (meters) to, say, 500, then the circular icon for the actor increases in size,
and re-running the model results in more of the trajectory of the sound source being triangulated. In the
SoundChannel parameters, you could set a non-zero value for the lossProbability, in which case only some
of the sound events will be detected. Setting the seed to a non-zero value results in repeatable experiments,
meaning that each execution will yield the same sequence of random numbers (the type is a long, so the
value should be an integer followed by the letter “L”). Leaving the seed at the default “0L” yields a new
experiment on each run.

101117 Page 291 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Structure of a Pre-Built Model

Let us examine how the model in figure 2 is constructed.

FIGURE 3. Animation as the model executes. The SoundSource actor moves in a circle through a field of Sound-Sensor actors.
When these actors detect a sound, they transmit a radio signal to a Triangulator node, which estimates and plots (at the upper right)
the position of the sound source.

Visual Representations (Icons)
Consider first the SoundSource actor. First, consider how its visual representation (its “icon”) changed

when we changed the soundRange parameter. The definition of the icon can be viewed (and edited) by right
clicking on the icon and selecting “Edit Custom Icon.” Note that to select this actor, you must place the
mouse over one of the concentric circle outlines. The resulting window is shown in figure 5. Note that only
the center portion of the icon is visible. Click on “Zoom Fit” in the toolbar (as shown in figure 5) to get the full
image, as shown in figure 6. The navigation window at the lower left can be used to move the view around
(to “pan” the view). The library at the left can be used to add items to the icon.
Consider the outer circle, which changed size when we changed the soundRange parameter. Double
clicking on it (or right clicking and selecting Configure) reveals the parameter window in figure 7. Notice that
the width and height parameters are given by expressions with values “soundRange*2”. The expression
language that can be used here is rich, and will be described below. For now, it is sufficient to realize that
arithmetic expressions that reference parameters of the actor or of the model can be used to extensively
customize the visual representation of an actor, making it depend on parameter values. For more
information on Expression, refer to RegEx section in Chapter 2.

101117 Page 292 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

FIGURE 4. Parameters of the SoundSource actor (left) and SoundChannel channel model (right).

FIGURE 5. View resulting from selecting “Edit Custom Icon” after right clicking on the SoundSource in figure 2.

For example, we could fill the outer circle with a translucent color where the degree of translucency
depends on the soundRange parameter, as shown in figure 8. In that figure, the color selector (shown at the
right) was used to select a red color, and the alpha value of the color, which is the fourth element of the
array defining the color, was manually set to “soundRange/1000.0”. The result is shown in figure 9.

101117 Page 293 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

FIGURE 6. View resulting from clicking Zoom Fit in the toolbar of figure 5.

FIGURE 7. Parameters of the outer circle of the SoundSource actor icon in figure 5.

FIGURE 8. Setting the fill color of the outer circle of SoundRange to depend on its soundRange parameter.

Feel free to experiment with this icon by moving components, changing their colors, or adding new
components. You can add GIF or JPEG images defined in a file using the Image component, and you can
add lines, circles, polygons, or rectangles.

Note that as of this writing, the icon editor is fairly primitive. The interactors for the various shapes are
not customized, so defining a shape can be a tedious matter of defining the vertex points. Also, the order in
which items in the icon are drawn is the order in which they are created. Thus, the only mechanism currently
to put an object in the foreground is to select it, delete it, and then re-add it. We expect this editor to improve
over time.

Channels
The model shown in figure 2 has two channel models, shown in figure 10 along with their parameters.

You can see that the only difference between these two channels (besides their names) is the value of the
propagationSpeed parameter. For the RadioChannel, it is set to “Infinity,” whereas for the SoundChannel, it
is set to “340.0” (meters/second).

Note that both channels have a parameter called defaultProperties with value “{range=Infinity}.” This
expression defines a record with one field named “range” with value “Infinity.” The fields of the
defaultProperties parameter of a channel define the ways in which a particular transmission can be
individually customized. In this case, a particular transmission through either channel can optionally specify
a range. If it is not specified, then the default is used, which is Infinity, indicating that there is no range
limitation. A transmission will succeed in reaching the receiver no matter how far away the receiver is.

101117 Page 294 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

FIGURE 9. Result of changing the color of the outer circle of SoundRange as shown in figure 8.

Wireless Hierarchical Blocks
We have seen how to customize the visual representation of an actor. How can we define its behavior?

The SoundSource actor in figure 2 is actually a hierarchical block whose behavior is defined by a VisualSim
model. To find this definition, simply right click on the actor and select Look Inside. The inside model is
shown in figure 11.

The SoundSource composite shown in figure 11 has a Digital Simulator, which defines this model as a
VisualSim discrete event model. Digital models work well with wireless models, so it is common to see
Digital models used to define wireless nodes. The soundRange parameter is shown next to the Digital
Simulator with its default value, 300. The model itself consists of two parts, an upper part that sends a
sound event, and a lower part that moves the icon.
Consider first the upper part. It has a Clock and a port named “soundPort,” as shown in figure 12. The
parameters of both the Clock and the port are obtained by double clicking on them (or right clicking and
selecting Configure), and are also shown in the figure. Notice that the period of the Clock is set to 2.0, and
the values are set to {1}, an array with one element, the integer 1. This indicates that the clock should
produce a sound every two seconds. The value produced is simply the integer 1, which has no particular
meaning. Any value would have the same effect.

101117 Page 295 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

The soundPort component also has parameters, as shown in figure 12. The outsideChannel parameter

is a string-valued parameter with value “SoundChannel.” This is the name of the channel that this port will
use for transmission, and must correspond with the name of the channel shown in figure 10. The
outsideTransmitProperties parameter has value “{range=soundRange}” which is a record with one field
named “range” with value given by the expression “soundRange,” which simply obtains the value from the
soundRange parameter of the hierarchical block. Notice that this will override the default value of Infinity
given for this field in figure 10. Thus, the soundRange parameter controls not just the visual appearance of
the icon, but also the range of transmission.

For the purposes of determining whether a receiver is in range, all of the demos included with VisualSim
Wireless use the location of the icon as a (two dimensional) representation of the location of the node. The
units are arbitrary, but in these models are taken to represent meters. A scale is shown at the lower right of
figure 2, indicated by a line of length “100,” which represents 100 meters.

Although these demos all use two-dimensional locations, the underlying software infrastructure supports
three dimensional locations. The visual editor, however, does not offer a mechanism for directly defining
those locations, so for illustration purposes, the demos constrain themselves to two-dimensional locations.

Controlling the Execution

The Wireless_Simulator in figure 2 is the component that controls the execution of the model. As with
most components, it too has parameters. Its parameters are shown in figure 13. Notice that the stop time is

101117 Page 296 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

set to “MaxDouble,” which is a very large number 1.7976931 × 10
308

. This specifies that the model should
run forever.

Notice also that the synchronizeToRealTime parameter of the director is checked. This means that when
executing the model, the Clock actor that produces a sound every two seconds will not be allowed to
produce events at a faster rate than that in real time even if the model can execute faster. This parameter is
used to get realistic time scales when animating an execution. Usually, this parameter should be checked
for animated models. The other director parameters have to do with tuning the performance of the discrete-
event simulator. They are beyond the scope of this document.

Building a New Model

We now proceed to build a new wireless network model from scratch. In any VisualSim Wireless window,
select File→New→Block Diagram Editor. This results in a window like that shown in figure 14. Drag in the
Wireless_Simulator from the Full Library Application→Wireless folder. Drag in a PowerLossChannel from
the WirelessChannels library at the left, as shown in figure 15.
Notice the parameters of this channel, which are also shown in figure 15. Notice that the default-Properties
parameter contains a record with two fields, {range = Infinity, power = Infinity}. This channel can be used to
model variations in transmit power and also power loss as a function of distance. We will construct a simple
model that achieves communication if the receiver gets enough power, and does not achieve
communication otherwise.

Documentation for the PowerLossChannel actor (and any other actor) can be obtained by right clicking
on the actor and selecting Get Documentation. In this example, we get the screen shown in figure 16, which
shows the documentation of this channel. The top of this display shows the inheritance chain for the actor,
which indicates that this actor extends LimitedRangeChannel, which extends DelayChannel, which extends
ErasureChannel, which extends AtomicWirelessChannel. Each of these channels adds a small amount of
functionality, and source code for each one is provided as an illustration of how to define channel models.
You can view the source code by right clicking and selecting Open Block, which results in the screen shown
in figure 17. In the case of both the source code and the documentation, you have to scroll down some to
get to the interesting part. For example, this documentation explains the powerPropagationFactor parameter
as follows:

101117 Page 297 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

101117 Page 298 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

“The power propagation is given as an expression that is evaluated and then multiplied by the power field of
the transmit properties before delivery to the receiver. For convenience, a variable named “distance” is
available and equal to the distance between the transmitter and the receiver when the power propagation
formula is evaluated. Thus, the expression can depend on this distance. The value of the power field should
be interpreted as power at the transmitter but power density at the receiver. A receiver may multiply the
power density with its efficiency and an area (typically the antenna area). A receiver can then use the
resulting power to compare against a detectable threshold, or to determine signal-to-interference ratio, for
example.

The default value of powerPropagationFactor is

 1.0 / (4 * PI * distance * distance).

This assumes that the transmit power is uniformly distributed on a sphere of radius distance. The result of
multiplying this by a transmit power is a power density (power per unit area). The receiver should multiply
this power density by the area of the sensor it uses to capture the energy (such as antenna area) and also
an efficiency factor which represents how effectively it capture the energy.

101117 Page 299 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

The power field of the transmit properties can be supplied by the transmitter as a record with a power field of
type double. The default value provided by this channel is Infinity, which when multiplied by any positive
constant will yield Infinity, which presumably will be above any threshold. Thus, the default behavior is to
encounter no power loss and no limits to communication due to power.”

Hopefully, this makes it reasonably clear how to use these parameters. Let us build a model that uses
them.

Begin by dragging in two instances of WirelessComposite from the Application→Wireless library at the
left. Rename them Transmitter and Receiver by right clicking on them and selecting Customize Name, to get
the result shown in figure 18. These components now need ports. To create these, right click on each icon
and select Configure Ports. Click on the Add button and create an output port named output for the
Transmitter, and an input port named input for the Receiver, as shown in figure

19. To specify that these ports use the PowerLossChannel, right click on each port and select Configure,
and specify the outsideChannel to be “PowerLossChannel” (this must match exactly the name of the
channel).

We start by populating the transmitter and receiver with simple models of the nodes. To do this, look
inside the transmitter, which yields the window shown in figure 20. Note that the output port is (rather poorly)
placed at the upper left. Move it to a more reasonable place, and connect to it an instance of the
PoissonClock actor from the Sources→Clocks library to get the model shown in figure 21. To make a
connection, either click and drag from the output port of the Poisson-Clock actor, or control-click and drag
from output port of the Transmitter to the output port of the PoissonClock actor.

The PoissonClock actor will produce events at random times, where the time between events is
obtained from an exponential random variable with mean given by the meanTime parameter of the
PoissonClock. The default value is 1.0, which is fine for our purposes. If you return to the top-level window
and double click on the Wireless_Simulator to set its synchronizeToRealTime parameter, then the
transmitter will produce events at an average rate of one per second.

101117 Page 300 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Look inside the Receiver actor and build the model shown in figure 22. The Ramp actor is found in the
Actors library under Sources→Clocks, and the Display actor is found under Results→Plotter, as shown on
the left in the figure. The model is now ready to execute. Clicking on the red triangle in the toolbar will result
in the display shown in figure 23. The Ramp produces a count of arrivals. If you remembered to set the
synchronizeToRealTime parameter of the Wireless_Simulator, then the count numbers will appear at
random times with an average interval of one second.
You may want to save your model using the File→Save menu command. Use the file extension .xml (or
.moml) to ensure that VisualSim Wireless will recognize this as a model file. Notice that the title bar on the
window now reflects the name of your model, which is the same as the name of the file.

Let us modify this model so that the power loss of the channel as a function of distance is observed. To
do this, find the GetProperties actor in the Full Library  Application→Wireless library, and replace

101117 Page 301 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

the Ramp block inside the Receiver as shown in figure 24. Running the model now results in the display
shown in figure 25. Notice that the received power is always Infinity, which is not very useful.

101117 Page 302 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Indeed, the Transmitter has not specified a transmit power, and the PowerLossChannel has a default power
of Infinity, as shown in figure 15. The power loss introduced by the channel becomes irrelevant because in
this model, the transmit power is infinite, which when multiplied by any non-zero loss, still yields infinite
power.

To get a more reasonable model of power loss, set the transmit power by right clicking on the output
port of the Transmitter and setting the outsideTransmitProperties parameter to “{power = 1.0}” as shown in
figure 26. Re-running the model now results in a display like that shown in figure 27, where the variability in
power level was obtained by moving the Receiver towards and over the Transmitter while the model was
running.

101117 Page 303 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Notice in figure 27 that one of the displays shows a received power of Infinity. This occurred when the

Transmitter and Receiver were directly on top of one another. Recall from the documentation for
PowerLossChannel that the value of the power field in the received properties is a power density (power per
unit area), not an absolute power. Hence, indeed, if the receiver and transmitter occupy the same physical
space, and the transmitter is a point source, then the power density at the receiver is infinite. Typically, a
receiver model will multiply this power density by an effective antenna area and an antenna efficiency to get
an absolute received power level.

The received power density can be used to decide at the receiver whether transmission is successuful.
To do this, modify the Receiver model to get the structure shown in figure 28. The blocks used here are
found as follows:
• RecordDisassembler: Actors→FlowControl→Aggregators

101117 Page 304 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

� Expression: Math
� BooleanSwith: Actors→FlowControl→BooleanFlowControl The RecordDisassembler actor extracts
fields from a record. To use it, you must create output ports that have the same name as the field, in this
case, power. To use the Expression actor, you must create

input ports, using whatever names you like (“power” in figure 28), and then give an expression that defines
the output in terms of the inputs (“power > 1.0E-6” in figure 28). The output of this Expression actor will be

true if the received power is greater than 1.0 × 10
–6

, and false otherwise. That boolean signal drives the
control port of the BooleanSwitch, which sends its input to one of two output ports depending on the value of
the control input. In this case, we observe only the true output, which will be the received power values that

exceed 1.0 × 10
–6

.
Notice that in figure 28, some connections involve a small black diamond. This is the visual mechanism

for routing a signal to multiple places. To create the diamond (which is called a vertex), you can either
control click on the background of the editor, or click on the black diamond in the toolbar. To link wires to the
vertex, hold the control key while clicking and dragging to draw the connection.

101117 Page 305 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Using the Plot Blocks

Often, it is more useful for a model to graph data rather than display it in textual form. Modify the model
of figure 28 as shown in figure 29, where the Display actor has been replaced by a XTime_YData_Plotter
from Results->Plotter. The result of a run is shown in figure 30, where the Receiver was moved during the
execution so it passed very close to the Transmitter.

This plot display can be improved considerably. In the plot window, click on the format button at the
upper right, as shown in figure 30, to get the window shown in figure 31. Setting the parameters as indicated
in that window results in the plot in figure 32, which is a more appealing rendition of the data.

Notice that you can zoom into a region of the plot by simply clicking and dragging out the region of
interest. You can zoom out by clicking and dragging upwards or leftwards rather than downwards or
rightwards. You can zoom fit by clicking on the zoom fit button at the upper right.

Modeling Capabilities

VisualSim Wireless is an extension of the Digital modeler of VisualSim. It largely preserves the discrete-
event semantics, but changes the mechanism for connecting components so that explicit wires are not
required. In the models constructed in the previous section, wired and wireless models were combined
hierarchically. Indeed, all of VisualSim, which includes a very rich set of modeling mechanisms, can be used
to construct very elaborate models of sensor nodes and propagation effects.

In this section, we explain the channel model that is used to decide connectivity in sensor nets and the
hierarchical component model for each sensor node. We then illustrate capabilities by discussing some of
the examples that are provided as demos with the system.

101117 Page 306 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Channel Models

A channel model in VisualSim Wireless is itself a block. When a transmitter produces an event on a
wireless port that references the channel by name, the event is delivered to the channel for transformation.
The channel may alter the properties that are supplied by the transmitter, and may delay delivery of the
event to a receiver to model propagation delay. In VisualSim Wireless, the responsibility of the channel ends
there. Other components are used to model terrain effects, antenna gains, etc. Some of these are described
below.

Wireless Node Models

Sensor nodes themselves can be modeled in Java, or more interestingly, using more conventional
Digital models (as block diagrams) or other VisualSim models (such as dataflow models, finite-state
machines or continuous-time models). For example, a sensor node with modal behavior can be defined by
sketching a finite-state machine and providing refinements to each of the states to define the behavior of the
node in that state. This can be used, for example, to model energy consumption as a function of state.

101117 Page 307 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Sophisticated models of the coupling between energy consumption and media access control protocols
become possible.

Examples of Modeling Capabilities

Packet Structure
VisualSim includes a sophisticated type system that includes Data Structures. Above, we showed how

Data Structures can be used for transmit properties. They can also be used to construct packets with
arbitrary payloads.

Packet Losses
The ErasureChannel model, which is a base class for most of the channel models, offers
a parameter lossProbability that can be used to model independent, identically distributed
packet losses.

Battery Power
Since nodes in a wireless network can be defined by arbitrary VisualSim models, it is easy to incor-

porate models of energy or power consumption. A simple example is given in the quick tour under “Circular
Range Channel,” shown in figure 34, where on the right you can see that the Transmitter uses a
PoissonClock to decrease the range of transmission at random times to model the transmission range
degradation over time as its battery is depleted. When this model executes, the size of the circular icon
representing the transmitter decreases as its range decreases.

Power Loss
The quick tour includes a model called “Power Loss Channel” that illustrates power variability at the

receiver as a function of distance. The top-level model, receiver implementation, and a plot resulting from its
execution are shown in figure 33. The model uses the same principles as the tutorial example described
above.

Collisions
In the underlying discrete-event semantics of VisualSim Wireless, events occur instantaneously at a

particular time. That is, they do not have a duration. To model collisions of messages that take time and
share a common channel, the model must explicitly include the message duration.

A simple example of such a model is shown in figure 35. In this model, two transmitters share the same
channel and transmit messages of fixed duration at random times. As the model executes, one of the
transmitters moves in a circular pattern, starting far from the receiver, coming close, then moving away
again. At the start, when it is far from the receiver, its messages get through to the receiver only if the other
transmitter does not transmit a message that overlaps in time. Whether the message from the other
transmitter gets through in the event of a collision depends on how far away the first transmitter is. If it is
sufficiently far away, then the interfering power is not sufficient to prevent communication, so the message
gets through. If it is closer, then the interfering power will be sufficient that neither message gets through.

Two plots are shown in figure 35. The upper plot shows the messages that are transmitted (in red and
blue), giving a visual indication of when overlap occurs. The magnitude in the plot represents the received
power. For the transmitter that is stationary, the receiver power is constant. For the transmitter that moves,
the received power starts low, then rises to nearly equal the power of the stationary transmitter, then drops
again. The lower plot indicates whether messages are lost. In the figure, a total of seven messages are lost,
all but one of them from the mobile transmitter (shown in red, if you have a color copy of this document).
The duration of a message in this model is represented by an extra field added to the transmit properties by
the channel. The parameters of the channel are shown at the lower right in figure 35. Notice that the

101117 Page 308 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

defaultProperties parameter has value “{range=Infinity, power=Infinity, duration=1.0}”. The duration field in
this record represents the duration of a message. Individual transmitters can override this by setting the
outsideTransmitProperties parameters of their ports to give any desired duration.
The Receiver implementation is shown in figure 36. In this model, the value of the received signal is a
boolean with value false if the originator is the fixed transmitter and value true if the originator is the mobile
transmitter. The GetProperties actor is used to extract the received properties, which will include the
received power and the message duration. The power and duration fields of the properties record are
extracted by the RecordDisassembler actor and fed into the CollisionDetector actor, which determines which
of the messages are received and which are lost. The rest of the model is devoted to constructing
meaningful plots so that we get a visual rendition of the behavior.

The CollisionDetector actor is fairly sophisticated. Its documentation is shown in figure 37. This actor

assumes that the duration of messages is short relative to the rate at which the actors move. That is, the
received power (and whether a receiver is in range) is determined once, at the time the message starts, and
remains constant throughout the transmission.

101117 Page 309 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Transmit Antenna Gain
A transmitter for a wireless channel may have a directional antenna. This introduces a significant

complication in modeling because, although the directionality is a local property of the transmitter, its effect
depends on the location of the receiver. We have seen above the use of transmit properties to model
propagation losses. Transmit properties are also used to model antenna gains. The transmitter registers
with the channel a property transformer, which is an actor that will modify the transmit properties for any
particular transmission. Before the channel delivers an event to a receiver, it executes the property
transformer, informing it of the location of the transmitter and receiver, and permitting it to modify the
transmit properties.

An example of a model that includes a directional transmit antenna is shown in figure 38. This model is
visible in the quick tour under “Transmit Antenna Gain.” When this model executes, the receiver moves in a
circular pattern around the transmitter and measures and plots the received power. The transmitter has an
8-element phased-array antenna with steering.

The design of the transmitter is quite sophisticated, as is shown in figure 39. It illustrates how the full
modeling power of VisualSim can be used in VisualSim Wireless. At the top left of the figure, the Trans-

101117 Page 310 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

CollisionDetector: This actor models a typical physical layer front end of a wireless receiver. It models a receiver
where messages have a non-zero duration and messages can collide with one another, causing a failure to receive. A
message is provided to this actor at the time corresponding to the start of its transmission. Along with the message (an
arbitrary token), the inputs must provide the duration of the message and its power. The message spans an interval of
time starting when it is provided to this actor and ending at that time plus the duration. If another message overlaps
with a given message and has sufficient power, then the given message will be sent to the collided output. Otherwise it
is sent to the received output. In both cases, the message appears at the corresponding output at the time it is received
plus the duration (i.e. the time at which the message has been completed).

The inputs are:
� message: The message carried by each transmission.
� power: The power of the received signal at the location of this receiver.
 • duration: The time duration of the transmission. The power and duration are typically delivered by the
channel in the “properties” field of the transmission. The power is usually given as a power density (per unit area) so
that a receiver can multiply it by its antenna area to determine the received power. It is in a linear scale (vs. DB),
typically with units such as watts per square meter. The duration is a non-negative double, and the message is an
arbitrary token.
 The outputs are:
� received: The message received. This port produces an output only if the received power is sufficient and
there are no collisions. The output is produced at a time equal to the time this actor receives the message plus the value
received on the duration input.
� collided: The message discarded. This port produces an output only if the received message collides with
another message of sufficient power. The output is produced at a time equal to the time this actor receives the message
plus the value received on the duration input. The value of the output is the message that cannot be received.

This actor is typically used with a channel that delivers a properties record token that contains power and duration

101117 Page 311 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

fields. These fields can be extracted by using a GetProperties actor followed by a RecordDisassembler. The
PowerLossChannel, for example, can be used. However, in order for the type constraints to be satisfied, the
PowerLossChannel's defaultProperties parameter must be augmented with a default value for the duration. Each
transmitter can override that default with its own message duration and transmit power.

Any message whose power (as specified at the power input) is less than the value of the powerThreshold
parameter is ignored. It will not cause collisions and is not produced at the collided output. The power-Threshold
parameter thus specifies the power level at which the receiver simply fails to detect the signal. It is given in a linear
scale (vs. DB) with the same units as the power input. The default value is zero, i.e. by default it won't ignore any
received signal.

Any message whose power exceeds powerThreshold has the potential of being successfully received, of failing to
be received due to a collision, and of causing a collision. A message is successfully received if throughout its duration,
its power exceeds the sum of all other message powers by at least SNRThreshold-InDB (which as the name suggests, is
given in decibels, rather than in a linear scale, as is customary for power ratios). Formally, let the message power for
the i-th message be p

i
()tat time t. Before the message is received and after its duration expires, this power is zero. The i-

th message is successfully received if

p
i
()t≥P∑p

j
()t(1) j ≠i for all t where p

i
()t>0 , where P =

10^(SNRThresholdInDB/10), which is the signal to interference ratio in a
linear scale.

FIGURE 37. Documentation for the CollisionDetector actor used in figure 36.
mitPropertyTransformer actor models the transmitter antenna. Its firing behavior is very simple: when
presented with an input token, it simply produces that same input token, unchanged, on the output port.
However, in addition to this firing behavior, this actor registers itself with the channel used by the port that
its output is connected to as a property transformer. When wireless communication occurs through that
output port to some receiver, the channel calls back the TransmitPropertyTransformer once for each
receiver, provides the location of the receiver, and executes the model contained by the Transmit-
PropertyTransformer actor.

The model contained by the TransmitPropertyTransformer actor is shown in figure 39. At the top right
is the top level of this model. It shows that when it is executed (on request by the channel, once for each
transmission), it is provided with three values, senderLocation, receiverLocation, and properties. The
properties value is a record that in this case includes a power field that is to be modified by the model to
account for the antenna gain in the direction from the transmitter to the receiver. This model calculates the
angle of the transmission, calculates the antenna gain in that direction, and then scales the power field of the
properties record. Notice that this model has an Un-Timed Simulator rather than the usual
Wireless_Simulator or Digital Simulator used most commonly in VisualSim Wireless. This is because the
calculation of antenna gain is essentially a signal processing function, something that the Untimed Digital
Simulator handles very well.

101117 Page 312 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

The antenna gain is calculated using the model shown in the middle of figure 39. This model uses two

IterateOverArray actors (named “ArrayElements” and “Steering”) to model the antenna array elements and
application of the steering vector. These actors are hierarchical blocks that execute their contained models
once for each element of an input array. These actors are examples of higher-order components, and in this
case enable the definition of a model where the number of antenna elements is given by a parameter rather
than hardwired into the diagram. The same mechanism can be used to model the antenna gain pattern of the
receiver.

101117 Page 313 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

If there are multiple property transformers that are applicable to a particular transmission, then they are

executed in an arbitrary order, so the operations they perform on the properties must be commutative.
Typically, they select a field and multiply it by a constant.

101117 Page 314 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Algorithmic

I Analog
This library contains a set of continuous-time blocks designed specifically for use in the CT domain. The
continuous time directory of the Model Builder block library contains subdirectories named “event generators
and “waveform generators”.
1. ContinuousClock: Generate a piecewise-constant signal with instantaneous transitions between levels.
2. TriggeredContinuousClock: Generate a piecewise-constant signal with instantaneous transitions

between levels, where two input ports are provided to start and stop the clock.
3. ContinuousSinewave: Generate a continuous-time sinusoidal signal.

Event Generator

The actors in this sub-library produce discrete event signals, which are signals that only have values at
discrete points in time.
1. EventSource: Output a set of events at discrete set of time points.
2. LevelCrossingDetector: An event detector that converts continuous signals to discrete events when

the continuous signal crosses a level threshold.
3. PeriodicSampler: Sample the input signal with the specified rate, producing discrete output events.
4. TriggeredSampler: Sample the input signal at times where the trigger input has discrete input events.
5. ThresholdMonitor: Output true if the input value is in the interval [a, b], which is centered at

thresholdCenter and has width thresholdWidth. This block controls the integration step size so that the
input does not cross the threshold without producing at least one true output.

6. ZeroCrossingDetector: When the trigger is zero (within the specified errorTolerance), then output the
value from the input port as a discrete event. This block controls the integration step size to accurately
resolve the time at which the zero crossing occurs.

Waveform generators

The blocks in this sub-library convert discrete event signals into continuous-time signals.
1. ZeroOrderHold: Convert discrete events at the input to a continuous-time signal at the output by

holding the value of the discrete event until the next discrete event arrives.
2. FirstOrderHold: Convert discrete events at the input to a continuous-time signal at the output by

projecting the value with the derivative.

Control-Analog Functions

The blocks in this sub-library have continuous-time dynamics (i.e., they involve integrators, and hence must
coordinate with the differential equation solver).
1. CTCompositeActor: Composite block to use when a continuous-time model is created within a

continuous-time model.
2. Integrator: Integrate the input signal over time to produce the output signal. That is, the input is the

derivative of the output with respect to time. This block can be used to close feedback loops in CT to
define interesting differential equation systems.

3. LaplaceTransferFunction: Filter the input with the specified rational Laplace transform transfer
function. Note that this actor constructs a submodel, so it might be interesting to look inside the actor
after it is initialized.

4. LinearStateSpace: Filter the input with a linear system. Note that this actor constructs a submodel, so it
might be interesting to look inside the actor after it is initialized.

101117 Page 315 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

5. DifferentialSystem: Filter the input with the specified system, which can nonlinear, and is specified
using the expression language. Note that this actor constructs a submodel, so it might be interesting to
look inside the actor after it is initialized.

6. RateLimiter: Limit the first derivative of the input signal, and produce the result as an output sequence.

101117 Page 316 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

II Control Systems
This library contains a set of continuous-time blocks designed specifically for use in the CT domain. The
continuous time directory of the Model Builder block library contains subdirectories named “event generators
and “waveform generators”.
1. ContinuousClock: Generate a piecewise-constant signal with instantaneous transitions between levels.
2. TriggeredContinuousClock: Generate a piecewise-constant signal with instantaneous transitions

between levels, where two input ports are provided to start and stop the clock.
3. ContinuousSinewave: Generate a continuous-time sinusoidal signal.

Event Generator

The actors in this sub-library produce discrete event signals, which are signals that only have values at
discrete points in time.
1. EventSource: Output a set of events at discrete set of time points.
2. LevelCrossingDetector: An event detector that converts continuous signals to discrete events when

the continuous signal crosses a level threshold.
3. PeriodicSampler: Sample the input signal with the specified rate, producing discrete output events.
4. TriggeredSampler: Sample the input signal at times where the trigger input has discrete input events.
5. ThresholdMonitor: Output true if the input value is in the interval [a, b], which is centered at

thresholdCenter and has width thresholdWidth. This block controls the integration step size so that the
input does not cross the threshold without producing at least one true output.

6. ZeroCrossingDetector: When the trigger is zero (within the specified errorTolerance), then output the
value from the input port as a discrete event. This block controls the integration step size to accurately
resolve the time at which the zero crossing occurs.

Waveform generators

The blocks in this sub-library convert discrete event signals into continuous-time signals.
1. ZeroOrderHold: Convert discrete events at the input to a continuous-time signal at the output by

holding the value of the discrete event until the next discrete event arrives.
2. FirstOrderHold: Convert discrete events at the input to a continuous-time signal at the output by

projecting the value with the derivative.

Control-Analog Functions

The blocks in this sub-library have continuous-time dynamics (i.e., they involve integrators, and hence must
coordinate with the differential equation solver).
1. CTCompositeActor: Composite block to use when a continuous-time model is created within a

continuous-time model.
2. Integrator: Integrate the input signal over time to produce the output signal. That is, the input is the

derivative of the output with respect to time. This block can be used to close feedback loops in CT to
define interesting differential equation systems.

3. LaplaceTransferFunction: Filter the input with the specified rational Laplace transform transfer
function. Note that this actor constructs a submodel, so it might be interesting to look inside the actor
after it is initialized.

4. LinearStateSpace: Filter the input with a linear system. Note that this actor constructs a submodel, so it
might be interesting to look inside the actor after it is initialized.

5. DifferentialSystem: Filter the input with the specified system, which can nonlinear, and is specified
using the expression language. Note that this actor constructs a submodel, so it might be interesting to
look inside the actor after it is initialized.

6. RateLimiter: Limit the first derivative of the input signal, and produce the result as an output sequence.

101117 Page 317 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

II Petri Net
1. PetriNetActor: As defined in the PetriNet Simulator, a PetriNetBlock is a directed and weighted graph G

= (V, E) containing three kinds of nodes: Places p_i, Transitions t_i, and PetriNetBlockss PA_i, i.e., V =
{p_i} union {t_i} union {PA_i} , where each PA_i itself is again defined as a PetriNetBlock. Each node of
V is called a component of the PetriNetBlock G. A PetriNetBlock is implemented as an extension of
TypedCompositeActor. The current file contains two main methods: fire() and prefire(). More details of
PetriNetBlock can be found in PetriNet Simulator.

2. PetriNetDirector: This Simulator implements the Petri Net model where Places and Transitions form a
bipartite graph and enabled Transitions can fire randomly. It also allows Transitions to be replaced by
any other block in VisualSim. It implements two forms of Hierarchical and compositional Petri nets. The
first form of hierarchical and compositional Petri net semantics comes from the fact that a Transition can
contain a sub-Petri-net which is invisible to the director of the container of the Transition. The second
form of hierarchical and compositional Petri net semantics comes from a new blockcalled PetriNetBlock
which is a collection of Places and Transitions, and those Places and Transitions are visible to the
director of the container of the PetriNetBlock. The users can choose which form of models to use,
and/or mix them together.

3. Place: A Petri net place is a basic component of the Petri Net model. Another basic component is the
Transition. A place is connected to transitions. It contains an integer as the marking of the place, which
represents the number of tokens in the place. The operation of the Petri net is controlled by the marking
and the weights of arcs connecting places and transitions. The methods here are used to manipulate
the integer marking. The TemporaryMarking is used for checking whether a transition is ready or not.

III Image Processing

Basic

1. Image Reader: This block reads an Image from a File location, and outputs it as an AWTImageToken.
2. Image Display (Object): Display an image on the screen. For a sequence of images that are all the

same size, this block will continually update the picture with new data. If the size of the input image
changes, then a new Picture object is created. This block will only accept an ImageToken on its input.

3. Image Display (Matrix): Display an image on the screen. For a sequence of images that are all the
same size, this block will continually update the picture with new data. If the size of the input image
changes, then a new Picture object is created. This block will only accept a IntMatrixToken on its input,
and assumes that the input image contains grayscale pixel intensities between 0 and 255 (inclusive).

4. URL To Image: This block reads a String input token naming a URL and outputs an Object Token that
contains a java.awt.Image.

5. Image To String: This block reads an ObjectToken that is a java.awt.Image from the input and writes
information about the image to the output as a StringToken.

6. HTVQ Encode: This block encodes a matrix using Hierarchical Table-Lookup Vector Quantization. The
matrix must be of dimensions that are amenable to this method. (i.e. 2x1, 2x2, 4x2, 4x4, etc.) Instead of
performing a full-search vector quantization during execution, all the optimal encoding vectors are
calculated before hand and stored in a lookup table. (This is known as Table-lookup Vector
Quantization).

7. VQ Decode: This block decompresses a vector quantized signal. This operation is simply a table lookup
into the codebook.

8. Image Contrast: This block changes the contrast of an image i.e. if the input image has a lot of pixels
with the same or similar color. This block uses gray scale equalization to redistribute the value of each
pixel between 0 and 255.

9. Image Rotate: The amount of rotation in degrees. This parameter contains an IntegerToken, initially
with value 90.

101117 Page 318 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

10. Image Sequence: Load a sequence of binary images from files, and create a sequence of
IntMatrixTokens from them.

11. Image Partition: Partition an image into smaller sub-images.
12. Image Unpartition: Combine sub-images into a larger image.
13. PSNR: This block consumes an IntMatrixToken from each input port, and calculates the Power Signal to

Noise Ratio (PSNR) between them. The PSNR is output on the output port as a DoubleToken.

Advanced (Using Java Advanced Imaging)

1. Adaptive Median
2. Double Matrix To JAI
3. Image To JAI
4. JAI Band Combine
5. JAI Band Select
6. JAI Border
7. JAI Box Filter
8. JAI BMP Writer
9. JAI Constant
10. JAI Convolve
11. JAI Crop
12. JAI Data Convert
13. JAI DCT
14. JAI DFT
15. JAI Edge Detection
16. JAI IDCT
17. JAI IDFT
18. JAI Image Reader: Supports BMP, FPX, GIF, JPEG, PNG, PBM, PGM, PPM, and TIFF file formats.
19. JAI Invert
20. JAI JPEG Writer
21. JAI Log
22. JAI Magnitude
23. JAI Median Filter
24. JAI Periodic Shift
25. JAI Phase
26. JAI Polar To Complex
27. JAI PNM Writer
28. JAI PNG Writer
29. JAI Rotate
30. JAI Scale
31. JAI TIFF Writer
32. JAI To Double Matrix
33. JAI Translate
34. JAI Transpose
35. Salt And Pepper

Media Interfaces (Using Java Media Framework)

The list of media supported include: aiff, avi, gsm, hotmedia, midi, MPEG 1, MPEG II, Sun Audio and wav
formats.
1 Audio Player: This actor accepts an ObjectToken that contains a DataSource. This is typically

obtained from the output of the StreamLoader actor. This actor will play Datasources containing a MP3,
MIDI, and CD Audio file. After the model is run, a window will pop up allowing control of playing, rate of
playback, and volume control.

2 Color Finder: A block that searches for a color in a Buffer.

101117 Page 319 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

3 Image To JMF:
4 Movie Reader: Media formats supported are listed on the Sun Web Site.
5 Movie Writer: Media formats supported are listed on the Sun Web Site.
6 Play Sound:
7 Stream Loader:
8 Video Camera:
9 Video Player:

IV Signal Processing

Sources

1. Ramp (extends SequenceSource): Produce a sequence that begins with the value given by init and is
incremented by step after each iteration. The types of init and step are required to support addition.

2. Sinewave (composite actor): Output successive samples of a sinusoidal waveform. This is a sequence
actor.

3. TimedSinewave: Timed version of the Sinewave from above.
4. InteractiveShell (extends TypedAtomicActor): This actor creates a command shell on the screen,

sending commands that are typed by the user to its output port, and reporting strings received at its input
by displaying them. Each time it fires, it reads the input, displays it, then displays a command prompt
(which by default is ">>"), and waits for a command to be typed. The command is terminated by an
enter or return character, which then results in the command being produced on the output

5. Interpolator (extends SequenceSource): Produce an output sequence by interpolating a specified set of
values. This can be used to generate complex, smooth waveforms.

6. Pulse (extends SequenceSource): Produce a sequence of values at specified iteration indexes. The
sequence repeats itself when the repeat parameter is set to true. This is similar to the Clock actor, but it
is not timed. Whenever it is fired, it progresses to the next value in the values array, irrespective of the
current time.

7. SampleDelay- Produce a set of initial tokens
8. SketchedSource (implements SequenceActor): Output a signal that has been sketched by the user on

the screen.

Audio

The audio library provides actors that can read and write audio files, can capture data from an audio input
such as a CD or microphone, and can play audio data through the speakers of the computers.
1. AudioCapture (extends Source): Capture audio from the audio input port of the computer, or from its

microphone, and produce the samples at the output.
2. AudioReader (extends Source): Read audio from a URL, and produce the samples at the output.
3. AudioPlayer (extends Sink): Play audio samples on the audio output port of the computer, or from its

speakers.
4. AudioWriter (extends Sink): Write audio data to a file.

Communications

The communications library collects actors that support modeling and design of digital communication
systems.
1. ConvolutionalCoder (extends Transformer): Encode an input sequence of bits using a convolutional

code.

http://java.sun.com/products/java-media/jmf/2.1.1/formats.html
http://java.sun.com/products/java-media/jmf/2.1.1/formats.html

101117 Page 320 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

2. DeScrambler (extends Transformer): Descramble the input bit sequence using a feedback shift register.
3. HadamardCode (extends Source): Produce a Hadamard codeword by selecting a row from a Hadamard

matrix.
4. Interleaver: This block interleaves a sequence of binary bits.
5. LineCoder (extends SDFTransformer): Read a sequence of booleans (of length wordLength) and

interpret them as a binary index into the table, from which a token is extracted and sent to the output.
6. LMSAdaptive (extends FIR): Filter the input with an adaptive filter, and update the coefficients of the

filter using the input error signal according to the LMS (least mean-square) algorithm.
7. RaisedCosine (extends FIR): An FIR filter with a raised cosine frequency response. This is typically

used in communication systems as a pulse shaper or a matched filter.
8. Scrambler (extends Transformer): Scramble the input bit sequence using a feedback shift register.
9. ViterbiDecoder (extends Transformer): Decode inputs using (hard or soft) Viterbi decoding.

Statistical

A small number of statistical analysis blocks are provided.
1. Autocorrelation (extends SDFTransformer): Estimate the autocorrelation by averaging products of the

input samples.
2. PowerEstimate (extends Transformer): Estimate the power of the input signal.

Filtering

1. DelayLine (extends SDFTransformer): In each firing, output the n most recent input tokens collected
into an array, where n is the length of initialValues. In the beginning, before there are n most recent
tokens, use the tokens from initialValues.

2. DownSample (extends SDFTransformer): Read factor inputs and produce only one of them on the
output.

3. FIR (extends SDFTransformer): Produce an output token with a value that is the input filtered by an
FIR filter with coefficients given by taps.

4. IIR (extends Transformer): Produce an output token with a value that is the input filtered by an IIR
filter using a direct form II implementation.

5. Lattice (extends Transformer): Produce an output token with a value that is the input filtered by an FIR
lattice filter with coefficients given by reflectionCoefficients.

6. LinearDifferenceEquationSystem (extends Transformer): Linear system given by an [A, b, c, d]
statespace model.

7. LMSAdaptive (extends FIR): Filter the input with an adaptive filter, and update the coefficients of the
filter using the input error signal according to the LMS (least mean-square) algorithm.

8. RecursiveLattice (extends Transformer): Produce an output token with a value that is the input filtered
by a recursive lattice filter with coefficients given by reflectionCoefficients.

9. UpSample (extends SDFTransformer): Read one input token and produce factor outputs, with all but
one of the outputs being a zero of the same type as the input.

10. VariableFIR (extends FIR): Filter the input sequence with an FIR filter with coefficients given on the
newTaps input port. The blockSize parameter specifies the number of successive inputs that are
processed for each set of taps provided on newTaps.

11. VariableLattice (extends Lattice): Filter the input sequence with an FIR lattice filter with coefficients
given on the newCoefficients input port. The blockSize parameter specifies the number of successive
inputs that are processed for each set of taps provided on newCoefficients.

101117 Page 321 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

12. VariableRecursiveLattice (extends Lattice): Filter the input sequence with a recursive lattice filter with
coefficients given on the newCoefficients input port. The blockSize parameter specifies the number of
successive inputs that are processed for each set of taps provided on newCoefficients.

Spectrum

1. DB (extends Transformer): Produce a token that is the value in decibels (k*log10(z)) of the token
received, where k is 10 if inputIsPower is true, and 20 otherwise. The output is never less than min (it is
clipped if necessary).

2. FFT (extends SDFTransformer): A fast Fourier transform of size 2order.
3. IFFT (extends SDFTransformer): An inverse fast Fourier transform of size 2order.
4. LevinsonDurbin (extends SDFTransformer): Calculate the linear predictor coefficients (for both an FIR

and Lattice filter) for the specified autocorrelation input.
5. MaximumEntropySpectrum (composite actor): A fancy spectrum estimator that uses the Levinson-

Durbin algorithm to calculate linear predictor coefficients, and then uses those as a parametric model for
the random process.

6. Periodogram (composite actor): A spectrum estimator calculates a periodogram.
7. PhaseUnwrap (extends Transformer): A simple phase unwrapper.
8. Quantizer: Produce an output token with the value in levels that is closest to the input value.
9. SmoothedPeriodogram (composite actor): A spectrum estimator called the Blackman-Tukey

algorithm, which estimates an autocorrelation function by averaging products of the input samples, and
then calculates the FFT of that estimate.

10. Spectrum (composite actor): A simple spectrum estimator that calculates the FFT of the input. For a
random process, this is called the periodogram spectral estimate.

101117 Page 322 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

VisualSim Custom Development

1 Custom-Coded Blocks using Java
1.1 Overview

VisualSim is a component-based design. The simulators define the semantics of the
interaction between components. This chapter explains the common, simulator-
independent principles in the design of components that are blocks. Blocks are
components with input and output that at least conceptually operate concurrently with
other blocks.

The functionality of blocks in VisualSim can be defined in a number of ways. The most
basic mechanism is hierarchy, where a block is defined as a composite of other blocks.
But composites are not always the most convenient. Defining the blocks in an advanced
language like the SmartMachine can reduce the overhead burden of definition, threads
and dealing with complex debuggers. Using Expression block, for instance, is often
more convenient for involved mathematical relations. The functionality is defined using
the expression language explained in an earlier chapter. Alternatively, you can use the
MatlabExpression block and give the behavior as a MATLAB script (assuming you have
MATLAB installed). You can also define the behavior of an block in Python, using the
PythonActor or PythonScript actor. But the most flexible method is to define the actor in
Java.

Some blocks are designed to be simulator polymorphic, meaning that they can operate
in various simulators. Others are simulator specific. This chapter explains how to design
blocks so that they are maximally simulator polymorphic. As also explained in the
previous chapter, many blocks are also data polymorphic. This means that they can
operate on a wide variety of token types. Simulator and data polymorphism help to
minimize the amount of duplicated code when writing blocks.

Code duplication can also be avoided using object-oriented inheritance. Inheritance can
also be used to enforce consistency across a set of classes. Three base classes,
Source, Sink, and Transformer, exist to ensure consistent naming of ports and to avoid
duplicating code associated with those ports. Since most blocks in the library extend
these base classes, users of the library can guess that an input port is named “input”
and an output port is named “output,” and they will probably be right. Using base classes
avoids input ports named “in” or “inputSignal” or something else. This sort of consistency
helps to promote re-use of blocks because it makes them easier to use. Thus, we
recommend using a reasonably deep class hierarchy to promote consistency.

1.2 Anatomy of an Block

Each block consists of a source code file (or, rarely, a class file) written in Java. Sources
are compiled to Java byte code as directed by the Ant- Build.XML script in the user
directory. When creating a new block, the Ant function can be used to compile the Java

101117 Page 323 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

code. ModelBuilder, described fully in its own chapter, is the graphical design tool
commonly used to compose blocks and other components into a complete program, a
“VisualSim model.” To facilitate use of a block in ModelBuilder, it must appear in one of
the block libraries. This permits it to be dragged from the library palette onto the design
canvas. The libraries are XML files. The user block libraries are located in
$VS/User_Library/lib directory. The basic structure of a block is shown in figure 1. In that
figure, keywords in bold are features of VisualSim that are briefly described here. Italic
text would be substituted with something else in an actual block definition.
We will go over this structure in detail in this chapter. The source code for existing
VisualSim blocks, located in $VS/VisualSim/simulators/(de, ct, sdf, fsm)/lib, should also
be viewed as a key resource.

1.2.1 Ports
By convention, ports are public members of blocks. They represent a set of input and
output channels through which tokens may pass to other ports. Figure 1 shows a single
port portName that is an instance of TypedIOPort, declared in the line

public TypedIOPort portName;

Most ports in blocks are instances of TypedIOPort, unless they require simulator-specific
services, in which case they may be instances of a simulator-specific subclass, such as
DEIOPort. The port is actually created in the constructor by the line

portName = new TypedIOPort(this, "portName", true, false);

The first argument to the constructor is the container of the port, this block. The second
is the name of the port, which can be any string, but by convention, is the same as the
name of the public member. The third argument specifies whether the port is an input (it
is in this example), and the fourth argument specifies whether it is an output (it is not in
this example). There is no difficulty with having a port that is both input and output, but it
is rarely useful to have one that is neither.
Multiports and Single Port. A port can be a single port or a multiport. By default, it is a
single port. It can be declared to be a multiport with a statement like

portName.setMultiport(true);

All ports have a width, which corresponds to the number of channels the port represents.
If a port is not connected, the width is zero. If a port is a single port, the width can be
zero or one. If a port is a multiport, the width can be larger than one.

/** Javadoc comment for the class. */
public class ClassName extends BaseClass implements MarkerInterface {
 /** Javadoc comment for constructor. */
 public ClassName(CompositeEntity container, String name)
 throws NameDuplicationException, IllegalActionException {
 super(container, name);
 // Create and configure ports, e.g. ...
 portName = new TypedIOPort(this, "portName", true, false);
 // Create and configure parameters, e.g. . . .
 parameterName = new Parameter(this, "parameterName");
 parameterName.setTypeEquals(BaseType.DOUBLE);
 }

///
//// ports and parameters ////
/** Javadoc comment for port. */

101117 Page 324 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

public TypedIOPort portName;
/** Javadoc comment for parameter. */
public Parameter parameterName;
///
//// public methods ////
/** Javadoc comment for fire method. */
public void fire() {

 super.fire();
 ... read inputs and produce outputs ...
 }

/** Javadoc comment for initialize method. */
public void initialize() {
 super.initialize();
 ... initialize local variables ...
}
/** Javadoc comment for prefire method. */
public boolean prefire() {
 ... determine whether firing should proceed and return false if not ...
 return super.prefire();
}
/** Javadoc comment for postfire method. */
public boolean postfire() {
 ... update persistent state ...
 ... determine whether firing should continue to next iteration and return false if not ...
 return super.postfire();
}
/** Javadoc comment for wrapup method. */
public void wrapup() {
 super.wrapup();
 ... display final results ...
}

}

Figure 1-1 Anatomy of a Block/ Library Block

Reading and Writing. Data (encapsulated in a token) can be sent to a particular channel
of an output multiport with the syntax

portName.send(channelNumber, token);

where channelNumber is the number of the channel (beginning with 0 for the first
channel). The width of the port, the number of channels, can be obtained with the syntax

int width = portName.getWidth();

If the port is unconnected, then the token is not sent anywhere. The send() method does
not complain.
Note that in general, if the channel number refers to a channel that does not exist, the
send() method does not complain.
A token can be sent to all output channels of a port (or none if there are none) with the
syntax

portName.broadcast(token);

You can generate a token from a value and then send this token by

portName.send(channelNumber, new IntToken(integerValue));

A token can be read from a channel with the syntax

Token token = portName.get(channelNumber);

101117 Page 325 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

You can read from channel 0 of a port and extract the contained value (if you know its
type) with the syntax

double variableName = ((DoubleToken)portName.get(0)).doubleValue();

You can query an input port to see whether such a get() will succeed (whether a token is
available or can be made available) with the syntax

boolean tokenAvailable = portName.hasToken(channelNumber);

hasToken() has been updated to check for zero width, hence getWidth() is no longer
necessary. You can also query an output port to see whether a send() will succeed
using

boolean spaceAvailable = portName.hasRoom(channelNumber);

although with most current simulators, the answer is always true. Note that the get(),
hasRoom() and hasToken() methods throw IllegalActionException if the channel is out of
range, but send() just silently returns.

VisualSim includes a sophisticated type system, described fully in the Type System
chapter. This type system supports specification of type constraints in the form of
inequalities between types. These inequalities can be easily understood as representing
the possibility of lossless conversion. Type a is less than type b if an instance of a can
be losslessly converted to an instance of b. For example, IntToken is less than
DoubleToken, which is less than ComplexToken. However, LongToken is not less than
DoubleToken, and DoubleToken is not less than LongToken, so these two types are
said to be incomparable.
Suppose that you wish to ensure that the type of an output is greater than or equal to the
type of a parameter. You can do so by putting the following statement in the constructor:

portName.setTypeAtLeast(parameterName);

This is called a relative type constraint because it constrains the type of one object
relative to the type of another. Another form of relative type constraint forces two objects
to have the same type, but without specifying what that type should be:

portName.setTypeSameAs(parameterName);

These constraints could be specified in the other order,

parameterName.setTypeSameAs(portName);

which obviously means the same thing, or

parameterName.setTypeAtLeast(portName);

which is not quite the same.
Another common type constraint is an absolute type constraint, which fixes the type of
the port (i.e. making it monomorphic rather than polymorphic),

portName.setTypeEquals(BaseType.DOUBLE);

101117 Page 326 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

The above line declares that the port can only handle doubles. Another form of absolute
type constraint imposes an upper bound on the type,

portName.setTypeAtMost(BaseType.COMPLEX);

which declares that any type that can be losslessly converted to ComplexToken is
acceptable. By default, for any input port that has no declared type constraints, type
constraints are automatically created that declares its type to be less than that of any
output ports that have no declared type constraints.
If there are input ports with no constraints, but no output ports lacking constraints, then
those input ports will be unconstrained. Conversely, if there are output ports with no
constraints, but no input ports lacking constraints, then those output ports will be
unconstrained. Of course, you can declare a port to be unconstrained by saying

Portname.setTypeAtMost(BaseType.GENERAL);

Examples. To be concrete, consider first the code segment shown in figure 2, from the
Transformer class in the VisualSim.actor.lib package. This block is a base class for
blocks with one input and one output.
The code shows two ports, one that is an input and one that is an output. By convention,
the Javadoc1 comments indicate type constraints on the ports, if any. If the ports are
multiports, then the Javadoc comment will indicate that. Otherwise, they are assumed to
be single ports. Derived classes may change this, making the ports into multiports, in
which case they should document this fact in the class comment. Derived classes may
also set the type constraints on the ports.

An extension of Transformer is shown in figure 3, the SimplerScale block, which is a
simplified version of the Scale block which is defined in
$VS/VisualSim/actor/lib/Scale.java. This block produces an output token on each firing
with a value that is equal to a scaled version of the input. The block is polymorphic in
that it can support any token type that supports multiplication by the factor parameter. In
the constructor, the output type is constrained to be at least as general as both the input
and the factor parameter.
Notice in figure 3 the fire() method uses hasToken() to ensure that no output is produced
if there is no input. Also, only one token is consumed from each input channel, even if
there is

101117 Page 327 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

public class Transformer extends TypedAtomicActor {
/** Construct a block with the given container and name.
* @param container The container.
* @param name The name of this block.
* @exception IllegalActionException If the block cannot be contained
* by the proposed container.
* @exception NameDuplicationException If the container already has an
* block with this name.
*/
public Transformer(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
input = new TypedIOPort(this, "input", true, false);
output = new TypedIOPort(this, "output", false, true);
}
///
//// ports and parameters ////
/** The input port. This base class imposes no type constraints except
* that the type of the input cannot be greater than the type of the
* output.
*/
public TypedIOPort input;
/** The output port. By default, the type of this output is constrained
* to be at least that of the input.
*/
public TypedIOPort output;

Figure 1-2 Code segment showing the port definitions in the Transformer class.

101117 Page 328 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

import VisualSim.actor.lib.Transformer;
import VisualSim.data.IntToken;
import VisualSim.data.expr.Parameter;
import VisualSim.data.Token;
import VisualSim.kernel.util.*;
import VisualSim.kernel.CompositeEntity;
public class SimplerScale extends Transformer {
...
public SimplerScale(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
factor = new Parameter(this, "factor", new IntToken(1));
// set the type constraints.
output.setTypeAtLeast(input);
output.setTypeAtLeast(factor);
}
///
//// ports and parameters ////
/** The factor.
* This parameter can contain any token that supports multiplication.
* The default value of this parameter is the IntToken 1.
*/
public Parameter factor;
///
//// public methods ////
/** Clone the block into the specified workspace. This calls the
* base class and then sets the type constraints.
* @param workspace The workspace for the new object.
* @return A new block.
* @exception CloneNotSupportedException If a derived class has
* an attribute that cannot be cloned.
*/
public Object clone(Workspace workspace)
throws CloneNotSupportedException {
SimplerScale newObject = (SimplerScale)super.clone(workspace);
newObject.output.setTypeAtLeast(newObject.input);
newObject.output.setTypeAtLeast(newObject.factor);
return newObject;
}
/** Compute the product of the input and the <i>factor</i>.
* If there is no input, then produce no output.
* @exception IllegalActionException If there is no simulator.
*/
public void fire() throws IllegalActionException {
 if (input.hasToken(0)) {
 Token in = input.get(0);
 Token factorToken = factor.getToken();
 Token result = factorToken.multiply(in);
 output.send(0, result);
}

Figure 1-3 Code segment from the SimplerScale block, showing the handling of ports and
parameters.

more than one token available. This is generally the behavior of simulator-polymorphic
blocks. Notice also how it uses the multiply() method of the Token class. This method is
polymorphic. Thus, this scale block can operate on any token type that supports
multiplication, including all the numeric types and matrices.

Note: To create ports and their specified types in such a way as the type of port can be
changed in the VisualSim GUI, the "_type" of the port must be defined as a
“VisualSim.actor.TypeAttribute”. If you use the type parameter from the default class
“VisualSim.data.expr.Parameter”, the type cannot be changed from the VisualSim GUI.

101117 Page 329 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

1.2.2 Port Rates and Dependencies between Ports
Many VisualSim simulators perform analysis of the topology of a model for the purposes
of scheduling. SDF, for example, constructs a static schedule that sequences the
invocations of actors. DE and CT all examine data dependencies between blocks to
prioritize reactions to events that are simultaneous. In all these cases, the director of the
simulator requires some additional information about the behavior of blocks in order to
perform the analysis. In this section, we explain what additional information you can
provide in a block that will ensure that it can be used in all these domains.

Suppose you are designing a block that does not require a token at its input port in order
to produce one on its output port. It is useful for the director to have access to this
information. For example, the TimedDelay actor of the DE simulator declares that its
output port is independent of its input port by defining this method:

public void pruneDependencies() {
super.pruneDependencies() ;
removeDependency(input, output);

}

An output port has a function dependency on an input port if in its fire() method, it sends
tokens on the output port that depend on tokens gotten from the input port. By default,
blocks declare that each output port depends on all input ports. If the block writer does
nothing, this is what a scheduler will assume. By overriding the pruneDependencies()
method as above, the block writer is asserting that for this particular block, the output
port named output does not depend on the input named input in any given firing.

The scheduler can use this information to sequence the execution of the blocks and to
resolve causality loops. For domains that do not use dependency information (such as
SDF), it is harmless to include the above the method. Thus, by making such
declarations, you maximize the reuse potential of your blocks. Some domains (notably
SDF) make use of information about production and consumption rates at the ports of
actors. If the block writer does nothing, the SDF will assume that a block requires and
consumes exactly one token on each input port when it fires and produces exactly one
token on each output port. To override this assumption, the block writer only needs to
include a parameter (an instance of VisualSim.data.expr.Parameter) in the port that is
named either “tokenConsumptionRate” (for input ports) or “tokenProductionRate” (for
output ports). The value of these parameters is an integer that specifies the number of
tokens consumed or produced in a firing. As always, the value of these parameters can
be given by an expression that depends on the parameters of the actor. Including these
parameters in the ports is harmless for domains that do not make use of this information,
but including them makes such blocks useful in SDF, and hence improves their
reusability.

In addition to production and consumption rates, feedback loops in SDF require that at
least one actor in the loop produce tokens in its initialize() method. To make the SDF
scheduler aware that an block does this, include a parameter in the output port that
produces these tokens named “tokenInitProduction” with a value that is an integer
specifying the number of tokens initially produced. The SDF scheduler will use this
information to determine that a model with cycles does not deadlock.

101117 Page 330 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

1.2.3 Parameters
Like ports, by convention, parameters are public members of blocks. Figure 3 shows a
parameter factor that is an instance of Parameter, declared in the line

public Parameter factor;

and created in the line

factor = new Parameter(this, "factor", new IntToken(1));

The third argument to the constructor, which is optional, is a default value for the
parameter. In this example, the factor parameter defaults to the integer one.
Alternatively, the default value of the parameter can be set via an expression, as in

factor = new Parameter(this, "factor");
factor.setExpression("2*PI");

As with ports, you can specify type constraints on parameters. The most common type
constraint is to fix the type, using

parameterName.setTypeEquals(BaseType.DOUBLE);

In fact, exactly the same relative or absolute type constraints that one can specify for
ports can be specified for parameters as well. But in addition, arbitrary constraints on
parameter values are possible, not just type constraints.

An block is notified when a parameter value changes by having its attributeChanged()
method called. Consider the example shown in figure 4, taken from the PoissonClock
block. This block generates timed events according to a Poisson process. One of its
parameters is meanTime, which specifies the mean time between events. This must be
a double, as asserted in the constructor.

The attributeChanged() method is passed the parameter that changed. (Typically the
user changes it via the Configure dialog.) If this is meanTime, then this method checks
to make sure that the specified value is positive, and if not, it throws an exception. This
exception is presented to the user in a new dialog box. It shows up when the user
attempts to commit a non-positive value.

The new dialog requests that the users choose a new value or cancel the change.
A change in a parameter value sometimes has broader repercussions than just in the
local block. It may, for example, impact the schedule of execution of blocks. An block
can call the invalidateSchedule() method of the simulator, which informs the simulator
that any statically computed schedule (if there is one) is no longer valid. This would be
used, for example, if the parameter affects the number of tokens produced or consumed
when a block fires.

When the type of a parameter changes, the attributeTypeChanged() method in the block
containing that parameter will be called. The default implementation of this method in
TypedAtomicActor is to invalidate type resolution. So parameter type change will cause
type resolution to be performed in the model. This default implementation is suitable for
most blocks. In fact, most of the blocks in the block library do not override this method.

101117 Page 331 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

However, if for some reason, a block does not wish to redo type resolution upon
parameter type change, the attributeTypeChanged() method can be overridden. But this
is rarely necessary.

1.2.4 Constructors
We have seen already that the major task of the constructor is to create and configure
ports and parameters. In addition, you may have noticed that it calls

super(container, name);

and that it declares that it throws NameDuplicationException and IllegalActionException.
The latter is the most widely used exception, and many methods in blocks declare that
they can throw it. The former is thrown if the specified container already contains an
block with the specified name.

1.2.5 Cloning
All blocks are cloneable. An block clone needs to be a new instance of the same class,
with the same parameter values, but without any connections to other blocks.

public class PoissonClock extends TimedSource {
public Parameter meanTime;
public Parameter values;
public PoissonClock(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
meanTime = new Parameter(this, "meanTime", new DoubleToken(1.0));
meanTime.setTypeEquals(BaseType.DOUBLE);
...
}
/** If the argument is the meanTime parameter, check that it is
* positive.
* @exception IllegalActionException If the meanTime value is
* not positive.
*/
public void attributeChanged(Attribute attribute) throws IllegalActionException {
 if (attribute == meanTime) {
 double mean = ((DoubleToken)meanTime.getToken()).doubleValue();
 if (mean <= 0.0) {
 throw new IllegalActionException(this,
 "meanTime is required to be positive. meanTime given: " + mean);
 }
 } else if (attribute == values) {
 ArrayToken val = (ArrayToken)(values.getToken());
 _length = val.length();
 } else {
 super.attributeChanged(attribute);
 }
}

Figure 1-4 Code segment from the PoissonClock block, showing the attributeChanged()
method.

101117 Page 332 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Consider the clone() method in figure 5, taken from the SimplerScale block. This method
begins with:

SimplerScale newObject = (SimplerScale)super.clone(workspace);

The convention in VisualSim is that each clone method begins the same way, so that
cloning works its way up the inheritance tree until it ultimately uses the clone() method of
the Java Object class. That method performs what is called a “shallow copy,” which is
not sufficient for our purposes. In particular, members of the class that are references to
other objects, including public members such as ports and parameters, are copied by
copying the references. The NamedObj and TypedAtomicActor base classes for most
blocks implement a “deep copy” so that all the contained objects are cloned, and public
members reference the proper cloned objects2.

Although the base classes neatly handle most aspects of the clone operation, there are
subtleties involved with cloning type constraints. Absolute type constraints on ports and
parameters are carried automatically into the clone, so clone() methods should never
call setTypeEquals().

public class SimplerScale extends Transformer {
...
public SimplerScale(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
output.setTypeAtLeast(input);
output.setTypeAtLeast(factor);
}
///
//// ports and parameters ////
/** The factor. The default value of this parameter is the integer 1. */
public Parameter factor;
///
//// public methods ////
/** Clone the actor into the specified workspace. This calls the
* base class and then sets the type constraints.
* @param workspace The workspace for the new object.
* @return A new block.
* @exception CloneNotSupportedException If a derived class has
* has an attribute that cannot be cloned. */
public Object clone(Workspace workspace) throws CloneNotSupportedException {
 SimplerScale newObject = (SimplerScale)super.clone(workspace);
 newObject.output.setTypeAtLeast(newObject.input);
 newObject.output.setTypeAtLeast(newObject.factor);
 return newObject;
}

Figure 1-5 Code segment from the SimplerScale block, showing the clone() method.

However, relative type constraints are not cloned automatically because of the difficulty
of ensuring that the other object being referred to in a relative constraint is the intended
one. Thus, in figure 5, the clone() method repeats the relative type constraints that were
specified in the constructor:

newObject.output.setTypeAtLeast(newObject.input);
newObject.output.setTypeAtLeast(newObject.factor);

Note that at no time during cloning is any constructor invoked, so it is necessary to
repeat in the clone() method any initialization in the constructor. For example, the clone()
method in the Expression block sets the values of a few private Variables:

101117 Page 333 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

newObject._iterationCount = 1;
newObject._time = (Variable)newObject.getAttribute("time");
newObject._iteration =
(Variable)newObject.getAttribute("iteration");

1.3 Action Methods

Figure 1 shows a set of public methods called the action methods because they specify
the action performed by the block. By convention, these are given in alphabetical order
in VisualSim Java files, but we will discuss them here in the order that they are invoked.
The first to be invoked is the preinitialize() method, which is invoked exactly once before
any other action method is invoked. The preinitialize() method is often use to set type
constraints. After the preinitialize() method is called, type resolution happens and all the
type constraints are resolved. The initialize() method is invoked next, and is typically
used to initialize state variables in the block, which generally depends on type resolution.
After the initialize() method, the block experiences some number of iterations, where an
iteration is defined to be exactly one invocation of prefire(), some number of invocations
of fire(), and at most one invocation of postfire().

1.3.1 Initialization
The initialize() method of the Average block is shown in figure 6. This data- and
simulator-polymorphic block computes the average of tokens that have arrived. To do
so, it keeps a running sum in a private variable _sum, and a running count of the number
of tokens it has seen in a private variable_count. Both of these variables are initialized in
the initialize() method. Notice that the block also calls super.initialize(), allowing the base
class to perform any initialization it expects to perform. This is essential because one of
the base classes initializes the ports. An block will almost certainly fail to run properly if
super.initialize() is not called.

Note that the initialization of the Average block does not affect, or depend on, type
resolution. This means that the code to initialize this block can be placed either in the
preinitialize() method, or in the initialize() method. However, in some cases an block may
require part of its initialization to happen before type resolution, in the preinitialize()
method, or part after type resolution, in the initialize() method. For example, a block may
need to dynamically create type constraints before each execution. Such an block must
create its type constraints in preinitialize(). On the other hand, a block may wish to
produce (send or broadcast) an initial output token once at the beginning of an execution
of a model. This production can only happen during initialize(), because data transport
through ports depends on type resolution.

101117 Page 334 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

public class Average extends Transformer {
...
public void initialize() throws IllegalActionException {
 super.initialize();
 _count = 0;
 _sum = null;
}

///
//// private members ////
private Token _sum;
private int _count = 0;

Figure 1-6 Code segment from the Average block, showing the initialize() method.

1.3.2 Prefire
The prefire() method is the only method that is invoked exactly once per iteration. It
returns a boolean that indicates to the simulator whether the block wishes for firing to
proceed. The fire() method of an block should never be called until after its prefire
method has returned true. The most common use of this method is to test a condition to
see whether the block is ready to fire.

Consider for example an block that reads from trueInput if a private boolean variable
_state is true, and otherwise reads from falseInput. The prefire() method might look like
this:

public boolean prefire() throws IllegalActionException {
 if(_state) {
 return trueInput.hasToken(0);
 } else {
 return falseInput.hasToken(0);
 }
}

It is good practice to check the superclass in case it has some reason to decline to be fired. The above
example becomes:

public boolean prefire() throws IllegalActionException {
 if(_state) {
 return trueInput.hasToken(0) && super.prefire();
 } else {
 return falseInput.hasToken(0) && super.prefire();
 }
}

The prefire() method can also be used to perform an operation that will happen exactly once per
iteration. Consider the prefire method of the Bernoulli block in figure 7:

public boolean prefire() throws IllegalActionException {
 if (_random.nextDouble() <
 ((DoubleToken)(trueProbability.getToken())).doubleValue()) {
 _current = true;
 } else {
 _current = false;
 }
 return super.prefire();
}

This method selects a new Boolean value that will correspond to the token creating
during each firing of that iteration.

101117 Page 335 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

public class Bernoulli extends RandomSource {
public Bernoulli(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
output.setTypeEquals(BaseType.BOOLEAN);
trueProbability = new Parameter(this, "trueProbability", new DoubleToken(0.5));
trueProbability.setTypeEquals(BaseType.DOUBLE);
}
public Parameter trueProbability;
public void fire() {
 try {
 super.fire();
 output.send(0, new BooleanToken(_current));
 } catch (IllegalActionException ex) {
 // Should not be thrown because this is an output port.
 throw new InternalErrorException(ex.getMessage());
 }
}
public boolean prefire() throws IllegalActionException {
 if (_random.nextDouble() <
 ((DoubleToken)(trueProbability.getToken())).doubleValue()) {
 _current = true;
 } else {
 _current = false;
 }
 return super.prefire();
}
private boolean _current;

Figure 1-7 Code for the Bernoulli block, which is not data polymorphic.

1.3.3 Fire
The fire() method is the main point of execution and is generally responsible for reading
inputs and producing outputs. It may also read the current parameter values, and the
output may depend on them.

Things to remember when writing fire() methods are:
 To get data polymorphism, use the methods of the Token class for arithmetic

whenever possible. Consider for example the Average block, shown in figure 8.
Notice the use of the add() and divide() methods of the Token class to achieve data
polymorphism.

 When data polymorphism is not practical or not desired, then it is usually easiest to
use the setTypeEquals() to define the type of input ports. The type system will
assure that you can safely cast the tokens that you read to the type of the port.
Consider again the Average block shown in figure 9. This block declares the type of
its reset input port to be BaseType.BOOLEAN. In the fire() method, the input token is
read and cast to a BooleanToken. The type system ensures that no cast error will
occur. The same can be done with a parameter, as with the Bernoulli block shown in
figure 9.

 A simulator-polymorphic block cannot assume that there is data at all the input ports.
Most simulator polymorphic blocks will read at most one input token from each port,
and if there are sufficient inputs, produce exactly one token on each output port.

 Some simulators invoke the fire() method multiple times, working towards a
converged solution.

101117 Page 336 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Thus, each invocation of fire() can be thought of as doing a tentative computation with
tentative inputs and producing tentative outputs. Thus, the fire() method should not
update persistent state. Instead, that should be done in the postfire() method, as
discussed in the next section.

1.3.4 Postfire
The postfire() method has two tasks:

 Updating persistent state, and
 Determining whether the execution of an block is complete.

Consider the fire() and postfire() methods of the Average block in figure 8. Notice that
the persistent state variables _sum and _count are not updated in fire(). Instead, they
are shadowed by _latestSum and _latestCount, and updated in postfire(). The return
value of postfire() is a Boolean that indicates to the simulator whether execution of the
block is complete. By convention, the simulator should avoid iterating further an block
that returns false. In other words, the simulator won’t call prefire(), fire(), or postfire()
again during this execution of the model.

Consider the two examples shown in figure 9. These are base classes for source blocks
(those with no input ports). SequenceSource is a base class for blocks that output
sequences. Its key feature is a parameter firingCountLimit, which specifies a limit on the
number of iterations of the block. When this limit is reached, the postfire() method
returns false. Thus, this parameter can be used to define sources of finite sequences.
TimedSource is similar, except that instead of specifying a limit on the number of
iterations, it specifies a limit on the current model time. When that limit is reached, the
postfire() method returns false.

101117 Page 337 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

public class Average extends Transformer {
... constructor ...
///
//// ports and parameters ////
public TypedIOPort reset;
///
//// public methods ////
... clone method ...
public void fire() throws IllegalActionException {
 _latestSum = _sum;
 _latestCount = _count + 1;
 // Check whether to reset.
 for (int i = 0; i < reset.getWidth(); i++) {
 if (reset.hasToken(i)) {
 BooleanToken r = (BooleanToken)reset.get(0);
 if(r.booleanValue()) {
 // Being reset at this firing.
 _latestSum = null;
 _latestCount = 1;
 }
 }
 }
 if (input.hasToken(0)) {
 Token in = input.get(0);
 if (_latestSum == null) {
 _latestSum = in;
 } else {
 _latestSum = _latestSum.add(in);
 }
 Token out = _latestSum.divide(new IntToken(_latestCount));
 output.send(0, out);
 }
}
public void initialize() throws IllegalActionException {
 super.initialize();
 _count = 0;
 _sum = null;
}
public boolean postfire() throws IllegalActionException {
 _sum = _latestSum;
 _count = _latestCount;
 return super.postfire();
}
///
//// private members ////
private Token _sum;
private Token _latestSum;
private int _count = 0;
private int _latestCount;

Figure 1-8 Code segment from the Average block, showing the action methods.

101117 Page 338 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

public class SequenceSource extends Source implements SequenceActor {
public SequenceSource(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
firingCountLimit = new Parameter(this, "firingCountLimit", new IntToken(0));
firingCountLimit.setTypeEquals(BaseType.INT);
}
public Parameter firingCountLimit;
...
public boolean postfire() throws IllegalActionException {
 if (_firingCountLimit != 0) {
 _iterationCount++;
 if (_iterationCount ==
 ((IntToken)firingCountLimit.getToken()).intValue()) {
 return false;
 }
 }
 return true;
}
protected int _firingCountLimit;
protected int _iterationCount = 0;
}
public class TimedSource extends Source implements TimedActor {
 public TimedSource(CompositeEntity container, String name)
 throws NameDuplicationException, IllegalActionException {
 super(container, name);
 stopTime = new Parameter(this, "stopTime", new DoubleToken(0.0));
 stopTime.setTypeEquals(BaseType.DOUBLE);
 ...
 }
}
public Parameter stopTime;
...
public boolean postfire() throws IllegalActionException {
 double time = ((DoubleToken)stopTime.getToken()).doubleValue();
 if (time > 0.0 && getDirector().getCurrentTime() >= time) {
 return false;
 }
 return true;
}

Figure 1-9 Code segments from the SequenceSource and TimedSource base classes.

1.3.5 Wrapup
The wrapup() method is used typically for displaying final results. It is invoked exactly
once at the end of an execution, including when an exception occurs that stops
execution (as opposed to an exception occurring in, say, attributeChanged(), which does
not stop execution). However, when an block is removed from a model during execution,
the wrapup() method is not called.

A block may lock a resource (which it intends to release in wrapup() for example). Or its
designer may have another reason to ensure that wrapup() always is called, even when
the block is removed from an executing model. This can be achieved by overriding the
setContainer() method.

101117 Page 339 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

In this case, the block would have a setContainer() method which might look like this:

public void setContainer(CompositeEntity container)
throws IllegalActionException, NameDuplicationException {
 if (container != getContainer()) {
 wrapup();
 }
 super.setContainer(container);
}

When overriding the setContainer() method in this way, it is best to make wrapup()
idempotent (implying that it can be invoked many times without causing harm), because
future implementations of the simulator might automatically unlock resources of removed
blocks, or call wrapup() on removed blocks.

1.4 Coupled Port and Parameter

Often, in the design of a block, it is hard to decide whether a quantity should be given by
a port or by a parameter. Fortunately, you can design a block to offer both options. An
example of such a block is shown in figure 9a. This block starts with an initial value,
given by the init parameter, and increments it each time by the value of step. The value
of step is given by either a parameter named step or a port named step. To use the
parameter exclusively, the model builder simply leaves the port unconnected.

If the port is connected, then the parameter provides the default value, used before
anything arrives on the port. But after something arrives on the port, that is used. When
the model containing a Ramp block is saved, only the parameter value is stored. No data
that arrives on the port is stored. Thus, the default value given by the parameter is
persistent, while the values that arrive on the port are transient.

public class Ramp extends SequenceSource {
public Ramp(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
init = new Parameter(this, "init");
init.setExpression("0");
step = new PortParameter(this, "step");
step.setExpression("1");
// set the type constraints.
output.setTypeAtLeast(init);
output.setTypeAtLeast(step);
}
public Parameter init;
public PortParameter step;
public void attributeChanged(Attribute attribute) throws IllegalActionException {
 if (attribute == init) {
 _stateToken = init.getToken();
 } else {
 super.attributeChanged(attribute);
 }
}
public Object clone(Workspace workspace) throws CloneNotSupportedException {
 Ramp newObject = (Ramp)super.clone(workspace);
 newObject.output.setTypeAtLeast(newObject.init);
 newObject.output.setTypeAtLeast(newObject.step);
 ...
 return newObject;
}

101117 Page 340 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 1-10. Code segments from the Ramp block

To set up this arrangement, the Ramp block creates an instance of the class
PortParameter in its constructor, as shown in figure 9a. This is a parameter that, when
created, creates a coupled port. There is no need to explicitly create the port. The Ramp
block creates an instance of Parameter to specify the init value, since it makes less
sense for the value of init to be provided via a port. Referring to figure 9a, the
constructor, after creating init and step, sets up type constraints. These specify that the
type of the output is at least as general as the types of init and step. The PortParameter
class takes care of an additional constraint, which is that the type of the step parameter
must match the type of the step port. The clone() method duplicates the type constraints
that are given explicitly.

In the attributeChanged() method, the block resets its state if init is the parameter that
changed. This will work with an instance of Parameter, but it is not recommended for an
instance of PortParameter. The reason is that each time you call getToken() on an
instance of PortParameter, the method checks to see whether there is an input on the
port, and consumes it if there is. Blocks are expected to consume inputs in their action
methods, fire() and postfire(), not in attributeChanged(). Some domains, like SDF, will be
confused by the consumption of the token too early. In the Ramp block in figure 9a, the
fire() method simply outputs the current state, whereas the postfire() method calls
getToken() on step and adds its value to the state. This follows the VisualSim convention
that the state of the block is not modified in fire(), but only in postfire().

When using a PortParameter in an block, care must be exercised to call update() exactly
once per firing prior to calling getToken(). Each time update() is called, a new token will
be consumed from the associated port (if the port is connected and has a token). If this
is called multiple times in a iteration, it may result in consuming tokens that were
intended for subsequent iterations. Thus, for example, update() should not be called in
fire() and then again in postfire(). Moreover, in some simulators (such as DE), it is
essential that if a token is provided on a port, that it is consumed. In DE, the block will be
repeatedly fired until the token is consumed. Thus, it is an error to not call update() once
per iteration.

Public class Ramp extends SequenceSource {
public Ramp(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {
super(container, name);
...
_resultArray = new Token[1];
}
...
public Object clone(Workspace workspace) throws CloneNotSupportedException {
 ...
 _resultArray = new Token[1];
 return newObject;
}
public int iterate(int count) throws IllegalActionException {
 // Check whether we need to reallocate the output token array.
 if (count > _resultArray.length) {
 _resultArray = new Token[count];
 }
 for (int i = 0; i < count; i++) {
 _resultArray[i] = _stateToken;

101117 Page 341 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

 step.update();
 _stateToken = _stateToken.add(step.getToken());
 }

}
output.send(0, _resultArray, count);
if (_firingCountLimit != 0) {
_iterationCount += count;
if (_iterationCount >= _firingCountLimit) {
return STOP_ITERATING;
}
}
return COMPLETED;
}
...
private Token[] _resultArray;
}
Figure 1-11. More code segments from the Ramp block of figure 5.10, showing the
iterate() method.

It is important that the block call getToken() exactly once in either the fire() method or in
the postfire() method. In particular, it should not call it in both, because this could result
in consumption of two tokens from the input port, inappropriately. Moreover, it should
always call it, even if it has no use for the value. Otherwise, in the DE domain, the block
will be repeatedly fired if an input event is provided on the port but not consumed. Time
cannot advance until that event is processed. The way that the PortParameter class
works is as follows. On each call to getToken(), the step instance of PortParameter first
checks to see whether an input has arrived at the associated step port since the last
setExpression() or setToken(), and if so, returns a token read from that port. Also, any
call to get() on the associated port will result in the value of this parameter being
updated, although normally an block writer will not call get() on the port.

1.5 Iterate Method

Some simulators (such as SDF) will always invoke prefire(), fire(), and postfire() in
sequence, one after another, so there is no benefit from having their functionality
separated into three methods. Moreover, in SDF this sequence of method invocations
may be repeated a large number of times. An block designer can improve execution
efficiency by providing an iterate() method. Figure 9b shows the iterate() method of the
Ramp block. Its behavior is equivalent to invoking prefire(), and that returns true, then
invoking fire() and postfire() in sequence. Moreover the iterate() method takes an integer
argument, which specifies how many times this sequence of operations should be
repeated. The return values are NOT_READY, STOP_ITERATING, or COMPLETED, which
are constants defined in the Executable interface of the block package. Returning
NOT_READY is appropriate when prefire() would have returned false. Returning
STOP_ITERATING is appropriate when postfire() would have returned false. Otherwise,
the proper return value is COMPLETED.

1.6 Time

A block whose behavior depends on current model time should implement the
TimedActor interface. This is a marker interface (with no methods). Implementing this

101117 Page 342 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

interface alerts the simulator that the block depends on time. Simulators that have no
meaningful notion of time can reject such blocks.

A block can access current model time with the syntax:

double currentTime = getDirector().getModelTime();
Notice that although the director has a public method setModelTime(), an actor should
never use it. Typically, only another enclosing director will call this method.

A block can request an invocation at a future time using the fireAt(), fireAtCurrentTime(),
or fireAtRelativeTime() method of the simulator. These method returns immediately. The
fireAt() and fireAtRelativeTime() methods each take two arguments, block object and
time. There is also fireAt() method with block object, integer ID, and double time
arguments. This method can be used by blocks to generate events in the future with a
unique ID. The complement to this method in DEDirector:

public void fireAt(Actor actor, int id, double time) { ... }

is a method to cancel an event:

public boolean cancelAt(Object actor, int id, double time) { ... }

The cancelAt() method will return true if event in immediate hierarchical block (if any),
and top DEDirector are removed, else false. Typical use in a user java block would look
like:

Create event
_director.fireAt(this, _evt_id, _TNOW.doubleValue())

Cancel event
_director.cancelAt(this, _evt_id, _event_time)

Where_director is an instance variable of the block representing immediate DEDirector.
The fireAtCurrentTime() method takes only one argument, an block. The simulator is
responsible for performing a iteration of the specified block at the specified time. This
method can be used to get a source block started, and to keep it operating. In its
initialize() method, it can call fireAt() with a zero time. Then in each invocation of
postfire(), it calls fireAt() again. Notice that the call should be in postfire() not in fire()
because a request for a future firing is persistent state.

Note that while fireAt() can safely be called by any of the blocks action methods, code
which executes asynchronously from the simulator should avoid calling fireAt().
Examples of such code include the private thread within the DatagramReader block and
the serialEvent() callback method of the SerialComm block. Because these process
hardware events, which can occur at any time, they instead use the fireAtCurrentTime()
method. When fireAt() was used (before fireAtCurrentTime() was written) exceptions
were occasionally thrown as model time advanced just as a firing was being requested
at the previous (formerly current) model time.

1.7 Icons

101117 Page 343 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

1.7.1 New method
An actor designer can specify a custom icon when defining the actor. A (very primitive)
icon editor is supplied with VisualSim. To create an icon, in the File menu, select New
and then Icon Editor. An editor opens that contains a gray box for reference that is the
size of the default icon that will be supplied if you do not create a custom icon. To create
a custom icon, drag in the visual elements from the library, set their parameters, and
then save the icon in an XML file in the same directory with the actor definition. If the
name of the actor class is Foo, then the name of the file should be FooIcon.xml. That is,
simply append “Icon” to the class name and complete the file name with the extension
“.xml”. One useful feature that is not immediately evident in the user interface is that
when you specify a color to fill a geometric shape or to serve as the outline for the
shape, you can make the color transluscent. To do that, first choose the color using the
color chooser that is made available by the parameter editing dialog for the geometric
shape, then note that the color gets specified as a four-tuple of real numbers that range
from 0.0 to 1.0. The fourth of these numbers is the alpha channel for the color, which
specifies transparency. A value of 1.0 makes the color opaque. A value of 0.0 makes the
color completely transparent (no color will be visible, and the background will show
through). For convenience, you can specify the color to be “none” in which case a fully
transparent color is supplied.

1.7.2 Old Method

An block designer can specify a custom icon when defining the block. The Ramp block,
for instance, specifies the icon shown in 10

Figure 1-12 the Ramp icon.
with the following text:

<svg>
<rect x="-30" y="-20" width="60" height="40" style="fill:white"/>
<polygon points="-20,10 20,-10 20,10" style="fill:grey"/>
</svg>

This is XML, using the schema SVG (scalable vector graphics). The SVG elements that
are supported are shown in figure 11. The positions in SVG are given by real numbers,
where the values are increasing to the right and down from the origin, which is the
nominal center of the figure. The Ramp icon contains a white rectangle and a polygon
that forms a triangle.
Most of the elements in figure 11 support style attributes, as summarized in the table. A
style attribute has value keyword:value. It can also have multiple keyword:value pairs,
separated by semicolons.
For example, the keywords currently supported by the rect element are “fill”, “stroke” and
“stroke-width”. The “fill” gives the color of the body of the figure (for figures for which this
makes sense), while the “stroke” gives the color of the outline. The supported colors are
black, blue, cyan, darkgray, gray, green, lightgray, magenta, orange, pink, red, white,
and yellow, plus any color supported by the Java Color class getColor() method. The

101117 Page 344 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

“stroke-width” is a real number giving the thickness of the outline line, where the default
is 1.0. Images are very slow to load. It is not recommended.

Figure 1-13 The Ramp actor defines a custom icon as shown.

1.8 Code Format

VisualSim software follows fairly rigorous conventions for code formatting. Although
many of these conventions are arbitrary, the resulting consistency makes reading the
code much easier, once you get used to the conventions.
A template that corresponds to these rules can be found in $(VS)/doc/templates. There
are also templates for other common files.

101117 Page 345 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

SVG
element Attributes

rect x: horizontal position of the upper left corner y: vertical
position of the upper left corner width: the width of the
rectangle height: the height of the rectangle style: fill,
stroke, stroke-width

circle cx: horizontal position of the center of the circle cy:
vertical position of the center of the circle r: radius of the
circle style: fill, stroke, stroke-width

ellipse cx: horizontal position of the center of the ellipse cy:
vertical position of the center of the ellipse rx: horizontal
radius of the ellipse ry: vertical radius of the ellipse style:
fill, stroke, stroke-width

line x1: horizontal position of the start of the line y1: vertical
position of the start of the line x2: horizontal position of
the end of the line y2: vertical position of the end of the
line style: stroke, stroke-width

polyline points: List of x,y pairs of points, vertices of line
segments, delimited by commas or spaces style: stroke,
stroke-width

polygon points: List of x,y pairs of points, vertices of the polygon,
delimited by commas or spaces style: fill, stroke, stroke-
width

text x: horizontal position of the text y: vertical position of the
text style: font-family, font-size, fill

image x: horizontal position of the image y: vertical position of
the image width: the width of the image height: the
height of the image xlink:href: A URL for the image

Figure 1-14 SVG subset currently supported by Diva, useful for creating custom icons.

1.8.1 Indentation
Nested statements should be indented 4 characters, as in:

if (container != null) {
Manager manager = container.getManager();

if (manager != null) {
manager.requestChange(change);
}

}

Closing brackets should be on a line by themselves, aligned with the beginning of the
line that contains the open bracket. Tabs are 8 space characters, not a Tab character.
The reason for this is that code becomes unreadable when the Tab character is

101117 Page 346 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

interpreted differently by different programs. Do not override this in your text editor. Long
lines should be broken up into many small lines. The easiest places to break long lines
are usually just before operators, with the operator appearing on the next line. Long
strings can be broken up using the + operator in Java, with the + starting the next line.
Continuation lines are indented by 8 characters, as in the throws clause of the
constructor in figure 1.

1.8.2 Spaces
Use a space after each comma:

Right: foo(a, b);
Wrong: foo(a,b);

Use spaces around operators such as plus, minus, multiply, divide or equals signs, and
after semicolons:

Right: a = b + 1;
Wrong: a=b+1;
Right: for(i = 0; i < 10; i += 2)
Wrong: for(i=0 ;i<10;i+=2)

1.8.3 Comments
Comments should be complete sentences and complete thoughts, capitalized at the
beginning and with a period at the end. Spelling and grammar should be correct.
Comments should include honest information about the limitations of the object
definition.
Comments for base class methods that are intended to be overridden should include
information about what the method does, along with a description of how the base class
implements it.
Comments in derived classes for methods that override the base class should copy the
general description from the base class, and then document the particular
implementation. In general comments with FIXME’s and implementation details should
be used liberally in the code, but never in the interface description. (The interface
description is the sum of all the Javadoc comments. These are the comments that will be
visible in ModelBuilder via the Get Documentation right-click menu choice.) If something
is important to know when using the block, put it in one of the Javadoc comments.
Otherwise, put the comment elsewhere.

1.8.4 Names
In general, the names of classes, methods and members should consist of complete
words separated using internal capitalization. Class names and only class names have
their first letter capitalized, as in AtomicActor. Method and member names are not
capitalized, except at internal word boundaries, as in getContainer(). Protected or private
members and methods are preceded by a leading underscore “_” as in
_protectedMethod().
Static final constants should be in uppercase, with words separated by underscores, as
in INFINITE_CAPACITY. A leading underscore should be used if the constant is
protected or private.
Package names should be short and not capitalized, as in “de” for the discrete-event
simulator.

101117 Page 347 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

In Java, there is no limit to name sizes. Do not hesitate to use long names.

1.8.5 Exceptions
A number of exceptions are provided in the VisualSim.kernel.util package. Use these
exceptions hen possible because they provide convenient arguments of type Nameable
that identify the source f the exception by name in a consistent way.
A key decision you need to make is whether to use a compile-time exception or a run-
time exception.
A run-time exception is one that implements the RuntimeException interface. Run-time
exceptions are more convenient in that they do not need to be explicitly declared by
methods that throw them. However, this can have the effect of masking problems in the
code.
The convention we follow is that a run-time exception is acceptable only if the cause of
the exception be tested for prior to calling the method. This is called a testable
precondition. For example, if a particular method will fail if the argument is negative, and
this fact is documented, then the method will throw a run-time exception if the argument
is negative. On the other hand, consider a method that takes a string argument and
evaluates it as an expression. The expression may be malformed, in which case an
exception will be thrown. Can this be a run-time exception? No, because to determine
whether the expression is malformed, you really need to invoke the evaluator. Making
this a compile-time exception forces the caller to explicitly deal with the exception, or to
declare that it too throws the same exception. In general, we prefer to use compile-time
exceptions wherever possible.
When throwing an exception, the detail message should be a complete sentence that
includes a string that fully describes what caused the exception. For example,

throw IllegalActionException(this,
"Cannot append an object of type: "
+ obj.getClass().getName() + "because "
+ "it does not implement Cloneable.");

Note that the exception not only gives a way to identify the objects that caused the
exception, but also why the exception occurred. There is no need to include in the
message an identification of the “this” object passed as the first argument to the
exception constructor. That object will be identified when the exception is reported to the
user.

1.8.6 Javadoc
Javadoc is a program distributed with Java that generates HTML documentation files
from Java source code files. Javadoc comments begin with “/**” and end with “*/”. The
comment immediately preceding a method, member, or class documents that member,
method, or class. VisualSim classes include Javadoc documentation for all classes and
all public and protected members and methods. Pay special attention to the first
sentence of each method comment. This first sentence is all that will describe the
method in the Javadocs. Private members and methods need not be documented.
Documentation can include embedded HTML formatting. For example, by convention, in
block documentation, we set in italics the names of the ports and parameters using the
syntax

/** In this block, inputs are read from the <i>input</i> port ... */

101117 Page 348 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

By convention, method names are set in the default font, but followed by empty
parentheses, as in

/** The fire() method is called when ... */
The parentheses are empty even if the method takes arguments. The arguments are not
shown. If the method is overloaded (has several versions with different argument sets),
then the text of the documentation needs to distinguish which version is being used.
It is common in the Java community to use the following style for documenting methods:

/** Sets the expression of this variable.
* @param expression The expression for this variable.
*/
public void setExpression(String expression) {
...
}

We use instead the imperative tense, as in

/** Set the expression of this variable.
* @param expression The expression for this variable.
*/
public void setExpression(String expression) {
...
}

The reason we do this is that our sentence is a well-formed, grammatical English
sentence, while the usual convention is not (it is missing the subject). Moreover, calling a
method is a command “do this,” so it seems reasonable that the documentation say, “Do
this.” The use of imperative tense has a large impact on how interfaces are documented,
especially when using the Listener design pattern. For instance, the
java.awt.event.ItemListener interface has the method:

/**
* Invoked when an item has been selected or deselected.
* The code written for this method performs the operations
* that need to occur when an item is selected (or deselected).
*/
void itemStateChanged(ItemEvent e);

A naive attempt to rewrite this in imperative tense might result in:

/**
* Notify this object that an item has been selected or deselected.
*/
void itemStateChanged(ItemEvent e);

However, this sentence does not capture what the method does. The method may be
called in order to notify the listener, but the listener does not “notify this object”. The
correct way to concisely document this method in imperative tense (and with meaningful
names) is:

/**
* React to the selection or deselection of an item.
*/
void itemStateChanged(ItemEvent event);

101117 Page 349 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

The annotation for the arguments (the @param statement) is not a complete sentence,
since it is usually presented in tabular format. However, we do capitalize it and end it
with a period.
Exceptions that are thrown by a method need to be identified in the Javadoc comment.
An @exception tag should read like this:

@exception MyException If such and such occurs.

Notice that the body always starts with "If", not "Thrown if", or anything else. Just look at
the Javadoc output to see why this occurs. In the case of an interface or base class that
does not throw the exception, use the following:

* @exception MyException Not thrown in this base class. Derived
* classes may throw it if such and such happens.

The exception still has to be declared so that derived classes can throw it, so it needs to
be documented as well.
The Javadoc program gives extensive diagnostics when run on a source file. Our policy
is to format the comments until there are no Javadoc warnings.

1.8.7 Code Organization
The basic file structure that we use follows the outline in figure 1, preceded by a one-line
description of the file and a copyright notice. The key points to note about this
organization are:
 The file is divided into sections with highly visible delimiters. The sections contain

constructors, ports and parameters (and other public members, if there are any),
public methods, protected methods, protected members, private methods, and
private members, in that order. Note in particular that although it is customary in the
Java community to list private members at the beginning of a class definition, we put
them at the end. They are not part of the public interface, and thus should not be the
first thing you see.

 Within each section, methods appear in alphabetical order, in order to easily search
for a particular method. If you wish to group methods together, try to name them so
that they have a common prefix.

 Static methods are generally mixed with non-static methods.

1.9 Java Block Template

The Java block template is located in <VisualSim Install directory>/doc/templates and is called
JavaBlockTemplate.java. The Java block will contain the following:

1. Comment- One line definition. All comments are used by javadoc generator
2. Copyright Notice
3. Rating on the quality based on code completion and code tested
4. Package name
5. Import
6. Documentation
7. Class Definition
8. Tooltip
9. Parameters and Ports

101117 Page 350 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

10. Icon in svg format. If you would like to use the IconEditor to create a separate xml file,
then make sure to name the xml file to BlockName+Icon.xml.

11. Public Methods
a. Attribute Changed
b. Preinitialize
c. Initialize
d. Prefire
e. Fire
f. Post File
g. Wrapup

12. Common functions such as adding an event, and rune dependencies
13. Variables definition

1.10 Debugging

The following assumes you know how to develop simple standard Java programs and will focus
on how to debug Java applications in Eclipse.

1.9.1 Eclispe Debugger Setup

Create a new Java Project, to create a new java project click on

File  New  Java Project

Figure 1.9.1

Set the project name and JDK as shown in the figure 1.9.2

101117 Page 351 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 1.9.2

Add all the required external libraries, including any Apache and Java libraries on
“Libraries” tab as shown in the figure 1.9.3

Figure 1.9.3

Using “Order and Export” tab on Eclipse debugger set the proper order of libraries. Source files
should be placed on top.

101117 Page 352 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 1.9.4

Update the VisualSim Start Script with below commands.

1. Add compiled classes to the class path
set CLASSPATH = <path to complied classes>;%CLASSPATH%

2. Prepare Java debug settings
set dbg = -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=n, address=<debug port>

3. Modify java command
java %dbg% … VisualSim.ModelBuilder.ModelBuilderApplication

On Eclipse Java Debugger, Provide full path to compiled classes in “Default Output Folder” as
shown in figure 1.9.5.

101117 Page 353 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 1.9.5

Click on “Ok” button and run VisualSim using VisualSim start script.

1.9.2 Setup Debug Configuration

On Eclipse Debug platform, select “Debug Configurations” (Run Debug Configurations)

Figure 1.9.6

Choose “Remote Java Application”. You can use default settings. Port should correspond to
<debug port> in Java debug options.

Click “Debug”

101117 Page 354 of 364 VisualSim Application Library
 Mirabilis Design, Inc. confidential. Do Not Distribute

Figure 1.9.7

Now you are ready to debug your code!

Figure 1.9.8

20140211 Page 355 of 364 Custom Development Guide- Updating Library
 Mirabilis Design Inc.

2 Adding a Block to ModelBuilder Library List
Below are instructions for adding a block to VisualSim and making it visible in ModelBuilder. For
this example, we are going to take the Ramp block and change the default step from 1 to 2. The
new block will be called Ramp2.

Below are the steps necessary to add a block:

1. Create the new .java file that implements your block:
In this case, we are just copying a Ramp.java to Ramp2.java

cd "$VS/VisualSim/actor/lib"
cp -p Ramp.java $VS/User_Library/lib/Ramp2.java

We have copied the java code from a different directory and we would have to change the
package statement (usually near line 31) in the java code. This is good to keep in mind since
there is no error message to clue you in to this particular error.

2.1 Edit Ramp2.java and change:

1)
package VisualSim.actor.lib

 to
package User_Library.lib

2)

public class Ramp extends SequenceSource {
 to

public class Ramp2 extends SequenceSource {
3)

public Ramp(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {

 to
public Ramp2(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {

4)
step = new Parameter(this, "step", new IntToken(1));

 to
step = new Parameter(this, "step", new IntToken(2));

5)
Ramp newObject = (Ramp)super.clone(workspace);

 to
Ramp2 newObject = (Ramp2)super.clone(workspace);

2.2 Library Palette Addition

After the block has been compiled the next step is to include it in the library palette of the
ModelBuilder. From the Block Diagram menubar, select Instantiate Entity. Enter the complete
path to the class file for the block. This will show up on the screen. Now save this block in the
UserLibrary. It is now available for use directly from this library.

20140211 Page 356 of 364 Custom Development Guide- Updating Library
 Mirabilis Design Inc.

2.3 Testing Addition

Start up ModelBuilder.
In ModelBuilder, click on File->New->Graph Editor
In the Graph Editor window, click on “User Library”. The Ramp2 block will appear.
To test the Ramp2 block:

• Drag the Ramp2 block over to the main canvas on the right
• Clock on Basic library -> Display and drag the Display block over to the main canvas
• Connect the two blocks by left clicking on the output of the ramp2 block and dragging

over to the input of the Display block
• Select simulator library -> SDF and drag the SDF simulator over to the right window
• Select View -> Simulation Cockpit and set the iteration to 10, then hit the GO button.
• You should see the numbers from 0 to 18 in the display.
• The Ramp2 has been added properly.

2.4 Adding a new palette

The palette on the left side of the Graph editor lists the utilities, simulators and blocks available
for use in ModelBuilder.
To add a new set of blocks, we first create a *.xml file that lists the block. In this case, the file is
called $VS/User_Library/lib/myblock.xml, and it contains one block, Ramp2:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE plot PUBLIC "-//Mirabilis Design//DTD MoML 1//EN"
 "http://www.mirabilisdesign.com/xml/dtd/MoML_1.dtd">
<entity name="myblocks" class="VisualSim.moml.EntityLibrary">
 <configure>
 <?moml
 <group>
<doc>My Blocks</doc>
<entity name="Ramp2" class="VisualSim.actor.lib.Ramp2">
<doc>Create a sequence of tokens with increasing value of 2</doc>
</entity>
 </group>
 ?>
 </configure>
</entity>

We want to add our new palettemyblock.xml, to the block library palette so we will add
myblock.xml to $VS/User_Library/lib/main.xml. Note that we want our new palette to be a sub
pallet of the User Library palette, just as the “Display and Probe” palette is. Sub-palettes are
caused by the entity statement in the 4th line of the main.xml file.
To add additional libraries, create a new entity library. This can be used to manage blocks from
different sources such as users, projects or location. The following is a simple mechanism to add
a new library.

In User_Library/lib/main.xml we add

 <doc>User Library</doc>
 <input source="User_Library/lib/myblock.xml"/>

Now restart ModelBuilder, and the “myblocks” sub-palette will appear under “User Library”.

20140211 Page 357 of 364 Custom Development Guide- Updating Library
 Mirabilis Design Inc.

2.5 Hints on Adding Blocks

The VisualSim MoML definition provides some nifty features to enhance the reuse of library
blocks.
♦ Display the value of a key parameter in the center of the icon for a particular block
♦ Make the values of a parameter in the block pull-down as opposed to user created

These two capabilities are handled in the XML file that adds the block to the palette.

2.5.1 Icon Display
In $VS/User_Library/lib, there is a file main.XML for adding user-defined blocks to the palette.
The information for the “Const1” block is provided in it. The following lines define the properties
of the icon:

<property name="_icon" class="VisualSim.ModelBuilder.icon.BoxedValueIcon">
 <property name="attributeName" value="value"/>
 <property name="displayWidth" value="40"/>
 </property>

The first line defines the type of information to be displayed in the block Icon and the class can be
of two types- VisualSim.ModelBuilder.icon.AttributeValueIcon or
VisualSim.ModelBuilder.icon.BoxedValueIcon. The boxed value refers to user input while
attribute value is from a pull-down. Look at the entry for “Queue One” in
$VS/VisualSim/actor/lib/perf/perf.XML.
The display value is the information selected in the attribute name “value”. The property definition
starts with the <property name=”” class=” “> and ends with </property>. There can be multiple
property lines within this single definition and each will start with <property name =”” value=””/>.

2.5.2 Parameter Pull-Down
Attributes of the blocks can be pull-down or user-entered information. To create a pull-down, the
following property needs to be entered in the entity definition of the block. This information is
extracted from the Queue One definition in $VS/VisualSim/actor/lib/perf/perf.XML.

<property name="Initial_Queue_State">
 <property name="style" class="VisualSim.actor.gui.style.ChoiceStyle">
 <property name="First_Token_Flow_Through"
 value="First_Token_Flow_Through"
 class="VisualSim.kernel.util.StringAttribute"/>
 <property name="First_Token_Enqueue"
 value="First_Token_Enqueue"
 class="VisualSim.kernel.util.StringAttribute"/>
 </property>
 </property>

The pull-down options are the property names embedded within the “Initial Queue State”
definition above. The property definition starts with the <property name=”” class=” “> and ends
with </property>. There can be multiple property lines within this single definition and each will
start with <property name =”” value=”” class=” VisualSim.kernel.util.StringAttribute”/>. If the attribute
requires a user-entered value, then the attribute does not have to be defined in the .XML file.
Note: A particular block can have multiple properties in the .XML file.

20140211 Page 358 of 364 Custom Development Guide- Applets
 Mirabilis Design Inc.

3 Creating Applets
3.1 Introduction

VisualSim models can be embedded in applets. In most cases, the MoMLApplet class can
be used. For the MoMLApplet class, the model is given by a MoML file, which can be created
using ModelBuilder. The URL for the MoML file is given by the modelURL applet parameter in the
HTML file.

Occasionally, however, it is useful to create an applet that exercises more control over the
display and user interaction, or constructs or manipulates VisualSim models in ways that cannot
be done in MoML. In such cases, the VisualSimApplet class can be useful. Developers may
either use VisualSimApplet directly or extend it to provide a more sophisticated user interface or a
more elaborate method for model construction or manipulation.
The VisualSimApplet class provides four applet parameters:

 background: The background color, typically given as a hex number of the form "#
rrggbb" where rr gives the red component, gg gives the green component, and bb gives
the blue component.

 controls: This gives a comma-separated list of any subset of the words "buttons",
"topParameters", and "directorParameters" (case insensitive), or the word "none". If this
parameter is not given, then it is equivalent to giving "buttons", and only the control
buttons mentioned above will be displayed. If the parameter is given, and its value is
"none", then no controls are placed on the screen. If the word "topParameters" is
included in the comma-separated list, then controls for the top-level parameters of the
model are placed on the screen, below the buttons. If the word "directorParameters" is
included, then controls for the director parameters are also included.

 modelClass: The fully qualified class name of a Java class that extends NamedObj.
This class defines the model.

 orientation: This can have value "horizontal", "vertical", or "controls_ only" (case
insensitive). If it is "vertical", then the controls are placed above the visual elements of the
Placeable blocks. This is the default. If it is "horizontal", then the controls are placed to
the left of the visual elements. If it is "controls_ only" then no visual elements are placed.

The use of these applet parameters is explained in more detail below. For a visual description of
the usage of these models as Applets, visit the Applet Usage Page.

3.1.1 HTML Files Containing Applets
An applet is a Java class that can be referenced by an HTML file and accessed either locally or
over the web and run in a secure manner on the local machine in a web browser. Unfortunately,
many browsers available today are shipped with an earlier version of Java that does not provide
features that VisualSim requires. The work around is to use Sun's Java Plug-In, which invokes
the 1.4.1_01 version of the Java Runtime Environment (JRE), instead of the default Java runtime
that is shipped with the browser. The Java Plug-in is installed when the JRE or the Java
Development Kit (JDK) is installed. Unfortunately, using the Java Plug-in makes the applet HTML
more complex. There are two choices:

1. Use fairly complex JavaScript to determine which browser is running and then to
properly select one of three different ways to invoke the Java Plug-in. This method works
on the most different types of platforms and browsers. The JavaScript is so complex, that
rather than reproduce it here, please see one of the demonstration html files such as
$VS/ demos/signal/Butterfly/Butterfly.htm. Sun provides a free tool called HTMLConverter
that will automatically generate the html code, see the Java Plug-in home page at
http://java.sun.com/ products/plugin/.

2. Use the much simpler <applet> ...</ applet> tag to invoke the Java Plug-in. This method
works on many platforms and browsers, but requires a more recent version of the Java
Plug-in, and will not work under Netscape Communicator 4. x. However, all is not lost for

20140211 Page 359 of 364 Custom Development Guide- Applets
 Mirabilis Design Inc.

Netscape Communicator 4.x users, since the appletviewer command that is included
with the Java Development kit will display applets written using the simpler format.

For details about the above two choices, see http:// java.sun.com/ products/ plugin/ versions.html.
Sample HTML for the <applet> . . . </ applet> style of custom applet is shown in Table 1. An
HTML file containing the segment shown in Table 1 can be found in $VS/doc/tutorial/.
TutorialApplet1.htm, where $VS is the home directory of the VisualSim installation. Also in that
directory are a number of sample Java files for applets, each named TutorialAppletn.java, where
n is an integer starting with 1. These files contain a series of applet definitions, each with
increasing sophistication that is discussed below. Each applet has a corresponding
TutorialAppletn.htm file.
Since our example applets are in a directory $VS/doc/tutorial, the codebase for the applet is "../.."
in Table 1 which is the directory $VS. This permits the applets to refer to any class in the
VisualSim tree. There are some parameters in the HTML in Table 1 that you may want to change.
The width and the height, for example, specify the amount of space on the screen that the
browser gives to the applet.

VisualSim provides a unique mechanism to embed VisualSim models in documentation. These
models can be simulated within the document environment. The parameters can be modified and
re-simulated. To enable this function, users must have access to a license of the VisualSim
Explorer. The physical documents must have access to the install and must be provided a
relative pointer or URL address.
The document can be created in any preferred Editor including Frame maker, Word and
WordPerfect. Once the document has been created the file must be converted to a HTML
document. This document must be edited in a HTML editor such as Netscape Navigator and
FreeHTML. The specific location of the VisualSim model must be identified. The XML file must
be on a remote location where the software package is installed. It cannot be placed on the local
machine. If the model development is an ongoing process, then provide the relative path to the
library directory/filename.xml.
There are three types of models that can be embedded in the document:
♦ View of the VisualSim model with access to that layer parameters –Figure 12
♦ View of the VisualSim model simulation cockpit window. This includes the top-level

parameters and the analysis windows. This view can be simulated and analyzed. -Figure 13
♦ Combined view of the above two.- Figure 14
The Java script to embed these three variations is provided. The details of the various terms in
this document are provided in the next section- Creating Applets.

3.2 Java Script for embedding the VisualSim Model

The following are the steps to embed the VisualSim models in your HTML document:
1. Identify the location in the document to place the model.
2. Now, copy the appropriate code from below.
3. Modify the following lines to reflect the install of VisualSim Analyzer Server and the

models:
♦ <PARAM NAME = "codebase" VALUE = ".." > \
Change the above “..” to the relative location of the VisualSim Analyzer install.
♦ <PARAM NAME = "NAME" VALUE = "Dual Processor Server" > \
Replace the Dual Processor Server with a suitable name for your model. This will become
the title of the model.
♦ <PARAM NAME = "modelURL" VALUE = "Dual_Processor_MUX1.xml" > \
Name of the model file to be included. Remember to include the .xml extension for the
filename.
♦ MoML specification for this model. \
Name of the model file to be included. Remember to include the .xml extension for the
filename.

20140211 Page 360 of 364 Custom Development Guide- Applets
 Mirabilis Design Inc.

♦ NAME = "Dual Processor Server" background = "#faf0e6" modelURL =
"Dual_Processor_MUX1.xml" \

Modify the name of the model and the filename.
♦ <PARAM NAME = "model" VALUE = "Dual_Processor_MUX1.xml" > \
This is the name of the model file to be included. Remember to include the .xml extension
for the filename.
♦ width = "600" \

height = "650" \
Change the height and width of the model to make sure the entire model is visible in the
window. ON the other hand you can also adjust the size of the model within ModelBuilder.

The model should be visible and execute within the document.
<script language="JavaScript">
<!--
 var _info = navigator.userAgent;
 var _ns = false;
 var _ns6 = false;
 var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0 && _info.indexOf("Windows 3.1") < 0);
//-->
 </script><script language="JavaScript">
<!--
 if (_ie == true) document.writeln('\
 <OBJECT \
 classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" \
 width = "800" \
 height = "600" \
 <codebase="http://java.sun.com/products/plugin/autodl/jinstall-1_4-windows-
i586.cab#Version=1,4,1,mn"> \
 <PARAM NAME = "code" \
 VALUE = "VisualSim.ModelBuilder.MoMLViewerApplet" > \
 <PARAM NAME = "codebase" VALUE = ".." > \
 <PARAM NAME = "archive" \
 VALUE = "VSsupport.jar,diva.jar,ModelBuilderApplet.jar,diva.jar,simulators.jar" > \
 <PARAM NAME = "type" \
 VALUE = "application/x-java-applet;jpi-version=1.4.1_01" > \
 <PARAM NAME = "scriptable" VALUE = "false" > \
 <PARAM NAME = "NAME" VALUE = "Dual Processor Server" > \
 <PARAM NAME = "background" VALUE = "#faf0e6" > \
 <PARAM NAME = "modelURL" VALUE = "Dual_Processor_MUX1.xml" > \
 MoML specification for this model. \
 </OBJECT> \
 ');
 else if (_ns == true && _ns6 == false)
 document.writeln('\
 <COMMENT> \
 <EMBED \
 type = "application/x-java-applet;jpi-version=1.4.1_01" \
 code = "VisualSim.ModelBuilder.MoMLViewerApplet" \
 codebase = ".." \
 archive = "VSsupport.jar,diva.jar,ModelBuilderApplet.jar,diva.jar,simulators.jar" \
 width = "8" \
 height = "600" \
 NAME = "Dual Processor Server" background = "#faf0e6" modelURL = "Dual_Processor_MUX1.xml"
\
 scriptable = "false" \
 pluginspage = "http://java.sun.com/j2se/1.4.1/download.html"> \
 <NOEMBED> \
 MoML specification for this model. \
 </NOEMBED> \
 </EMBED> \
 <COMMENT> \

20140211 Page 361 of 364 Custom Development Guide- Applets
 Mirabilis Design Inc.

 ');
 else document.writeln('\
 <APPLET \
 code = "VisualSim.ModelBuilder.MoMLViewerApplet" \
 codebase = ".." \
 archive = "VSsupport.jar,diva.jar,ModelBuilderApplet.jar,diva.jar,simulators.jar" \
 width = "800" \
 height = "600" \
 > \
 <PARAM NAME = "NAME" VALUE = "Dual Processor Server" > \
 <PARAM NAME = "background" VALUE = "#faf0e6" > \
 <PARAM NAME = "modelURL" VALUE = "Dual_Processor_MUX1.xml" > \
 MoML specification for this model. \
 </APPLET> \
 ');
//-->
 </script><!-- HTML CONVERTER -->

Figure 3-1 Java Script for VisualSim Model

<script language="JavaScript">
<!--
 var _info = navigator.userAgent;
 var _ns = false;
 var _ns6 = false;
 var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0 && _info.indexOf("Windows 3.1") < 0);
//-->
 </script><script language="JavaScript">
<!--
 if (_ie == true) document.writeln('\
 <OBJECT \
 classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" \
 width = "800" \
 height = "480" \
 <codebase="http://java.sun.com/products/plugin/autodl/jinstall-1_4-windows-
i586.cab#Version=1,4,1,mn"> \
 <PARAM NAME = "code" \
 VALUE = "VisualSim.actor.gui.MoMLApplet" > \
 <PARAM NAME = "codebase" VALUE = ".." > \
 <PARAM NAME = "archive" \
 VALUE = "VSsupport.jar,simulators.jar" > \
 <PARAM NAME = "type" \
 VALUE = "application/x-java-applet;jpi-version=1.4.1" > \
 <PARAM NAME = "scriptable" VALUE = "false" > \
 <PARAM NAME = "name" VALUE = "Dual Processor Server" > \
 <PARAM NAME = "background" VALUE = "#faf0e6" > \
 <PARAM NAME = "controls" VALUE = "buttons, topParameters" > \
 <PARAM NAME = "orientation" VALUE = "horizontal" > \
 <PARAM NAME = "model" VALUE = "Dual_Processor_MUX1.xml" > \
 MoML specification for this model. \
 </OBJECT> \
 ');
 else if (_ns == true && _ns6 == false)
 document.writeln('\
 <COMMENT> \
 <EMBED \
 type = "application/x-java-applet;jpi-version=1.4.1" \
 code = "VisualSim.actor.gui.MoMLApplet" \
 codebase = ".." \
 archive = "VSsupport.jar,simulators.jar" \

20140211 Page 362 of 364 Custom Development Guide- Applets
 Mirabilis Design Inc.

 width = "600" \
 height = "480" \
 name = "Dual Processor Server" background = "#faf0e6" model = "Dual_Processor_MUX1.xml"
controls = "buttons, topParameters" orientation = "horizontal" \
 scriptable = "false" \
 pluginspage = "http://java.sun.com/j2se/1.4.1/download.html"> \
 <NOEMBED> \
 MoML specification for this model. \
 </NOEMBED> \
 </EMBED> \
 <COMMENT> \
 ');
 else document.writeln('\
 <APPLET \
 code = "VisualSim.actor.gui.MoMLApplet" \
 codebase = ".." \
 archive = "VSsupport.jar,simulators.jar" \
 width = "600" \
 height = "480" \
 > \
 <PARAM NAME = "name" VALUE = "Dual Processor Server" > \
 <PARAM NAME = "background" VALUE = "#faf0e6" > \
 <PARAM NAME = "controls" VALUE = "buttons, topParameters" > \
 <PARAM NAME = "orientation" VALUE = "horizontal" > \
 <PARAM NAME = "model" VALUE = "Dual_Processor_MUX1.xml" > \
 MoML specification for this model. \
 </APPLET> \
 ');
//-->
 </script><!-- HTML CONVERTER -->

Figure 3-2 Java Script for embedding VisualSim Simulation Cockpit

<P><!-- HTML CONVERTER --><SCRIPT LANGUAGE="JavaScript"><!--
 var _info = navigator.userAgent;
 var _ns = false;
 var _ns6 = false;
 var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0 && _info.indexOf("Windows 3.1") < 0);
//--></SCRIPT><COMMENT> <SCRIPT LANGUAGE="JavaScript1.1"><!--
 var _ns = (navigator.appName.indexOf("Netscape") >= 0 && ((_info.indexOf("Win") > 0 &&
_info.indexOf("Win16") < 0 && java.lang.System.getProperty("os.version").indexOf("3.5") < 0) ||
(_info.indexOf("Sun") > 0) || (_info.indexOf("Linux") > 0) || (_info.indexOf("AIX") > 0) || (_info.indexOf("OS/2")
> 0) || (_info.indexOf("IRIX") > 0)));
 var _ns6 = ((_ns == true) && (_info.indexOf("Mozilla/5") >= 0));
//--></SCRIPT></COMMENT> <SCRIPT LANGUAGE="JavaScript"><!--
 if (_ie == true) document.writeln('\
 <OBJECT \
 classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" \
 width = "1000" \
 height = "1400" \
 codebase="http://java.sun.com/products/plugin/autodl/jinstall-1_4-windows-
i586.cab#Version=1,4,1,mn"> \
 <PARAM NAME = "code" \
 VALUE = "VisualSim.ModelBuilder.MoMLViewerApplet" > \
 <PARAM NAME = "codebase" VALUE = "../../.." > \
 <PARAM NAME = "archive" \
 VALUE = "VSsupport.jar,ModelBuilderApplet.jar,diva.jar,simulators.jar" > \
 <PARAM NAME = "type" \
 VALUE = "application/x-java-applet;jpi-version=1.4.1_01" > \
 <PARAM NAME = "scriptable" VALUE = "false" > \

20140211 Page 363 of 364 Custom Development Guide- Applets
 Mirabilis Design Inc.

 <PARAM NAME = "NAME" VALUE = "SNS RF Control System" > \
 <PARAM NAME = "background" VALUE = "#faf0e6" > \
 <PARAM NAME = "controls" VALUE = "buttons, topParameters" > \
 <PARAM NAME = "includeRunPanel" VALUE = "true" > \
 <PARAM NAME = "modelURL" VALUE = "Sensor_Model.xml" > \
 MoML specification for this model. \
 </OBJECT> \
 ');
 else if (_ns == true && _ns6 == false)
 document.writeln('\
 <COMMENT> \
 <EMBED \
 type = "application/x-java-applet;jpi-version=1.4.1_01" \
 code = "VisualSim.ModelBuilder.MoMLViewerApplet" \
 codebase = "../../.." \
 archive = " VSsupport.jar, ModelBuilderApplet.jar,diva.jar,simulators.jar" \
 width = "1000" \
 height = "1400" \
 NAME = "SNS RF Control System" background = "#faf0e6" controls = "buttons, topParameters "
includeRunPanel = "true" modelURL = "Sensor_Model.xml" \
 scriptable = "false" \
 pluginspage = "http://java.sun.com/j2se/1.4.1/download.html"> \
 <NOEMBED> \
 MoML specification for this model. \
 </NOEMBED> \
 </EMBED> \
 <COMMENT> \
 ');
 else document.writeln('\
 <APPLET \
 code = "VisualSim.ModelBuilder.MoMLViewerApplet" \
 codebase = "../../.." \
 archive = " VSsupport.jar,ModelBuilderApplet.jar,diva.jar,simulators.jar" \
 width = "1000" \
 height = "1400" \
 > \
 <PARAM NAME = "NAME" VALUE = "SNS RF Control System" > \
 <PARAM NAME = "background" VALUE = "#faf0e6" > \
 <PARAM NAME = "controls" VALUE = "buttons, topParameters " > \
 <PARAM NAME = "includeRunPanel" VALUE = "true" > \
 <PARAM NAME = "modelURL" VALUE = "Sensor_Model.xml" > \
 MoML specification for this model. \
 </APPLET> \
 ');
//--></SCRIPT><!-- /HTML CONVERTER --></CENTER></P>

Figure 3-3 Java Script to combine the VisualSim Model and Simulation Cockpit together.

3.2.1 Using JavaScript in files

It is possible to put the javascript in a file and call it from the html file. This reduces clutter in the
html document and also provides increased flexibility in adding functions. In this case the html
file will contain the following lines where the model needs to be displayed:

 <script src="video_model.js"></script>

The video_model.js contains the same javascript as shown above. A number of demonstration
systems on the Web are currently using this method.

090515 Page 364 of 364 Simulators-Finite State Machine
 Mirabilis Design, Inc.

4 Templates
This section contains templates that can be used as a starting point for custom applets and block
development:

♦ Java Block with code format and Javadoc inclusions
♦ Text Html for creating documentation with limited text
♦ Applet Html for creating Applets

The following contains sample code that is discussed in the Creating Custom Applet and creating
models in Java in this document.
Tutorial 1: This is a simple model containing 2 blocks, a simulator with the Stop Time parameter
set and the connection between the blocks. This is the view of this model as an Applet in a Web
Browser.
Tutorial 2: This is the above model but implemented as an Applet. This is the view of this model
as an Applet in a Web Browser.
Tutorial 3: This model contains the two blocks, two top-level parameters, parameters of the block
linked to the model parameters, a plotter and the connection between the blocks. This is the view
of this model as an Applet in a Web Browser.

	Table of Contents
	Chapter 1: Simulators
	1 Discrete-Event Simulator
	1.1 Introduction
	1.2 Writing DE Blocks
	1.3 Composing DE with Other Simulators

	2 CT Simulator
	2.1 Introduction
	2.2 Solving ODEs numerically
	2.3 Signal Types
	2.4 CT Blocks
	2.5 CT Simulators
	2.6 Interacting with Other Simulators
	2.7 Mixed-Signal Execution
	2.8 Appendix F: Brief Mathematical Background

	3 Untimed Digital or Synchronous Data Flow Simulator
	3.1 Purpose of the Simulator
	3.2 Using SDF
	3.3 Properties of the SDF simulator

	4 FSM Simulator
	4.1 Introduction
	4.2 Building FSMs in ModelBuilder
	4.3 The Implementation of FSMActor
	4.4 FSM-Hierarchical

	Chapter 2 Modeling Libraries
	Introduction to Resources
	Active Resources
	Event Queue Blocks
	Timed Queue Resource Blocks
	System Resource blocks(a.k.a Scheduler Blocks)
	Channel Blocks

	Queues (a.k.a Smart_Resource)
	Server (a.k.a Smart_Timed_Resource)

	Passive or Quantity-Shared Resource Blocks

	Virtual Connection Blocks
	Architecture Modeling Toolkit
	Cache
	Memory
	Processor Block
	Instruction_Set
	Architecture Setup
	Processor Model Features
	Cache and Memory Overview
	Bus, Switch and Controller Toolkit
	Bus Arbiter
	Bus Interface
	DMA_Controller
	Request Acknowledge Node/ Asynchronous Bus

	Power Modeling Toolkit
	Introduction
	How it works
	Block Level Parameters
	Block Ports
	Block Methods
	Power Utilities

	Bus and Interface Standards
	1 AMBA Buses
	1.1 AMBA AHB
	1.2 AMBA APB Bus
	1.3 AMBA AXI

	2 PCI Family of Buses
	2.1 PCI and PCI-X Bus
	2.2 PCI-Express

	3 CoreConnect Bus
	4 Switched Ethernet
	5 SpaceWire
	6 Rapid IO
	6.1 Introduction
	6.2 Rapid IO Blockset
	6.3 RIO_Node Block Configuration Parameters
	6.4 Connecting the RIO_Node Block in a model
	6.5 Serial Switch Block Configuration Parameters
	6.6 Connecting the Serial_Switch Block in a model
	6.7 Data Structure: Processor_DS

	7 Ethernet Audio Video Bridging
	7.1 Library
	7.2 Tutorial System

	8 Fibre Channel
	8.1 Introduction to Fibre Channel
	8.2 About VisualSim Fibre Channel Library Package
	8.3 Library Blocks
	8.4 FC_N_Port
	8.5 Fibre Channel Switch
	8.6 FC_Link
	8.7 FC_Config
	8.8 Tutorial

	9 TTEthernet
	9.1 Introduction
	9.2 About TTEthernet Library
	9.3 Synchronization
	9.4 System Level Model
	9.5 Model Parameters
	9.6 TTEthernet Node
	9.7 TTE Bridge
	9.8 TTE Config
	9.9 TTE_Setup
	9.10 TTE_Stats
	9.11 TTE_Traffic
	9.12 Tutorial
	9.13 Advanced Tutorial

	10 IEEE1394/Firewire
	10.1 Introduction
	10.2 About FireWire
	10.3 About FireWire Library
	10.4 Model Parameters
	10.5 Assumptions
	10.6 FireWire Node
	10.7 FireWire Link
	10.8 FireWire Config
	10.9 Reports
	10.10 Example
	10.11 Understanding Common Errors

	Application and Algorithm Library
	1 Networking
	2 Wireless and Sensor Network System
	Introduction
	Installation and Quick Start
	Modeling Wireless Networks
	Structure of a Pre-Built Model
	Controlling the Execution
	Building a New Model
	Using the Plot Blocks
	Modeling Capabilities
	Channel Models
	Wireless Node Models
	Examples of Modeling Capabilities

	Algorithmic
	I Analog
	Event Generator
	Waveform generators
	Control-Analog Functions

	II Control Systems
	Event Generator
	Waveform generators
	Control-Analog Functions

	II Petri Net
	III Image Processing
	Basic
	Advanced (Using Java Advanced Imaging)
	Media Interfaces (Using Java Media Framework)

	IV Signal Processing
	Sources
	Audio
	Communications
	Statistical
	Filtering
	Spectrum

	VisualSim Custom Development
	1 Custom-Coded Blocks using Java
	1.1 Overview
	1.2 Anatomy of an Block
	1.3 Action Methods
	1.4 Coupled Port and Parameter
	1.5 Iterate Method
	1.6 Time
	1.7 Icons
	1.8 Code Format
	1.9 Java Block Template
	1.10 Debugging

	2 Adding a Block to ModelBuilder Library List
	2.1 Edit Ramp2.java and change:
	2.2 Library Palette Addition
	2.3 Testing Addition
	2.4 Adding a new palette
	2.5 Hints on Adding Blocks

	3 Creating Applets
	3.1 Introduction
	3.2 Java Script for embedding the VisualSim Model

	4 Templates

