
VISUALSIM TRAINING

Agenda- Part 2: About VisualSim
Introduction to VisualSim

Documentation and Support

Classes, User Library and Version Control

Intelligent Simulation using Post Processor
◦ Batch-mode simulation
◦ Multi-simulation
◦ Diagnostics

Documentation and Support

Documentation and Support

Demo models for
Libraries and
Applications

Pinned Models

Documentation
and Tutorials

Online Support
Portal

Recent Models
Post Processor

Presenter
Presentation Notes
The Visualsim homepage gives you the direct access to all the documentations, training videos, tutorials, demo models ,etc.,

Documentation and Support
• Block Description

Right click on the block and Select

Documentation -> Get Documentation

• The Customize Documentation enables the
user to override the default documentation
and add their own information

Presenter
Presentation Notes
Every block in VisualSim contains block documentation. To view the block documentation right click the block and select Documentation > Get Documentation. User can create documentation for the block. To create a new document, right click the block and select Open Block. A new BDE is opened. Right click in the white space and select Documentation > Customize Documentation. Enter the new documentation details and click Commit. Save the model.

This feature is available for the blocks and modules. This function opens a new window that provides access to the complete documentation associated with that block. If there is no documentation provided for the entity, then a dialog window appears indicating that there is no documentation available. The Customize Documentation enables the user to override the default documentation and add their own information. This is associated with that block in the model. Note that once the user selects the Customize Documentation item, the documentation shows the new format. To undo this option, the user must go to Remove Custom Documentation.

Documentation and Support
• User Documentation

✔ Short Description in the model
✔Wil be displayed like a Block Parameter

• Export to Web
✔HTML & jnlp files created
✔The document can be shared between users.

Annotation

Presenter
Presentation Notes
Used to input documentation about the content of the model on the Block Diagram Editor

Introduction to VisualSim

VisualSim Homepage and Documentations

8

Presenter
Presentation Notes
The Visualsim homepage gives you the direct access to all the documentations, training videos, tutorials, demo models ,etc.,

Tool Organization
•VisualSim Starting Page
•VisualSim Architect
✔Block Diagram editor
✔Finite State Machine Editor
✔Expression Evaluator
✔Text Editor
✔HTML Editor

•VisualSim Modeling Components
✔Library: Hardware, Resources, Script.
✔Interfaces: Verilog, SystemC, C++.
✔Utilities: PowerTable
✔Technologies: DDR3, Cache and PCIe

•VisualSim reports and Statistics

•VisualSim Post-Processor

•VisualSim Diagnostic Engine

•VisualSim Cloud

•VisualSim Batch Simulation

•VisualSim multi-core execution

Presenter
Presentation Notes
Visualsim tool has a wide library which enables us to model hardware, software systems, networking models etc., has blocks that provide an interface to easily import C code, applications written in C or C++, Python, MatLab, and Satellite Toolkit. Interfaces are provided to run VisualSim in co-simulation with Verilog and SystemC. The Interfaces require the licenses for Verilog.

▪ Block Diagram Editor
▪ Text Editor – Extensively used for authoring code in the script
▪ Expression Evaluator – Evaluate Equations and Algorithms, can be

used for conducting quick studies

Mirabilis Design Inc. 10

VisualSim Architect- Core Menu Items

Block Diagram Editor

11

Library Components
Just Drag and Drop in

“Editor Interface”

Block Diagram Editor – Main editor to construct,
validate, debug and optimize the model.

Parts of the Block Diagram

3. Libraries

5. Parameters
6. Variables

11. Use cases Behavior

8. Traffic

7. Setup

4. Annotations

2. Toolbar
1. Menu-Bar

10. Architecture

9. Report

12. Mapping

13. Simulator

Presenter
Presentation Notes
This shows the Parts of the Editor and Block diagaram. It shows how the traffic is generated, how to define the behavioral flow, architecture platform, how to declare variables, parameters, result and statistics generation, providing information in the model using annotation, Library in Visualsim, Various options in Menu bar, Tool bar, etc

Model and Block

Discrete-Event and Block Execution

Simulation Engines (or)
Models of Computation

What are Models of Computation?
• Govern interaction of components in a model

• VisualSim includes
✔Digital Simulator (Discrete-Event) & Finite State Machine
✔Continuous Time & Untimed Digital (Synchronous Data Flow)

• Selection of correct model of computation
✔Discrete Event for Performance architecture analysis
✔Finite State Machine for protocols and control
✔Synchronous Dataflow for DSP and imaging algorithms and software functionality

✔Continuous Time for analog and waveform-based evaluations

Presenter
Presentation Notes
The models of computation determine and govern the simulation. This includes the ordering of the tasks for execution, timing and flow of data through the system. The user does not need to understand the inner working of the simulators but just understand what the most appropriate simulator is for the tasks to be performed.

Simulation Polymorphism
• Simulators share kernel, event queue & library

• Use the domain that fits the question

• Transfer of control/time/data between simulators is seamless and invisible to user

• Components are created once and used extensively

Presenter
Presentation Notes
The VisualSim platform is simulation polymorphic. This means that a single block can be utilized in multiple domains without any modifications.

In addition, VisualSim simulators can be mixed and matched for superior quality modeling. For example the Dual Processor system can be modeled as a Discrete Event while the bus arbitration scheme, which is a control, can be modeled as a Finite State Machine.

The user does not need to make compromises or build bridges between these domains, thus enhancing productivity.

Now, let us look at each of the simulators in a little detail.

Simulation and different Models of Computation

Discrete Event
Simulator Object

Timed Simulation

Synchronous Data Flow
Simulator Object

Untimed DSP Algorithms

Analog Simulator
Object

Analog Simulation

Digital Simulator
• Integral component for every digital domain designs
• Length of simulation is specified
• Definition - Execution of synchronous events between asynchronous time
• Calendar maintains sequences of events on a timeline
• Deterministic semantics to simultaneous events - Creates a block firing list in data-precedence

order
• Performance modeling uses Discrete-Event
• VisualSim has two Digital Simulators

✔Default is a high performance simulator that does not support the use of other simulators in
the same model

✔Uncheck the Digital Only in the Digital block and you will get flexible simulator that can reside
within or can envelope other simulators

• WriteStatsToFile – Generates Statistics for all the blocks in the model and writes into a text
file

Where to get digital simulator?

Presenter
Presentation Notes
Performance Analysis and System Architecture exploration will always use the Discrete-Event (DE) simulator. This is similar in operation to Verilog and VHDL. Here each trigger or change in time is considered an event. These events are arranged on a calendar. These events are executed in the order on the calendar. The processing of data is considered a synchronous events. To prevent race conditions, a topology map is created at initialize time to ensure that these synchronous events are scheduled correctly.

The schedule of the execution of events are not deterministic and cannot be predicted in advance.
Where do I get digital simulator?

Discrete Event Calendar Example
Time Event Action # in

Sys
in

Queue
13 E4 finishes E4 departs 1 0

E5 starts processing – time=4

15 E6 arrives Schedule next arrival – IAT=5 2 1

E6 enters queue

17 E5 finishes E5 departs 1 0

E6 starts processing – time=1

18 E6 finishes E6 departs 0 0

20 E7 arrives Schedule next arrival-IAT=10 1 0

E7 starts processing – time=5

25 E7 finishes E7 departs 0 0

30 E8 arrives Schedule next arrival – IAT=11 1 0

E8 starts processing – time=8

38 E8 finishes E8 departs 0 0

40 End
simulation

Tim
e Event Action # in

Sys
in

Queue
0 E1 arrives Schedule next arrival – IAT=2 1 0

E1 start processing – time = 4

2 E2 arrives Schedule next arrival – IAT=2 2 1

E2 enters queue

4 E1 finishes E1 depart 1 0

E2 start processing – time=2

4 E3 arrives Schedule next arrival – IAT=1 2 1

E3 enters queue

5 E4 arrives Schedule next arrival – IAT=3 3 2

E4 enters queue

6 E2 finishes E2 departs 2 1

E3 starts processing – time =5

8 E5 arrives Schedule next arrival – IAT=7 3 2

E5 enters queue

11 E3 finishes E3 departs 2 1

E4 starts processing – time=2

Untimed Digital or Synchronous Data Flow
• Definition
✔Can specify a priori the number of input samples consumed on each

input and the number of output samples produced on each output
each time the block is invoked.

• Execution is statistical determined prior to execution

• Deadlock and boundedness are decidable

• Used for embedded real-time software, DSP and hardware

• Full Library -> Model - > Simulator - > Untimed Digital

Presenter
Presentation Notes
Synchronous Data Flow is used for modeling signal processing, embedded software and hardware behavior tasks. In this case the execution at each input is pre-determined at initialization.

Continuous Time
• Definition
✔Simulator finds a fixed-point, i.e., a set of continuous-time functions that

satisfy all the relations
✔Solve algebraic or differential relations between inputs and outputs

• Represent components that interact via continuous-time signals

• Closely related to Spice circuit simulators and similar to Simulink, Saber, and
VHDL-AMS

• Defines physical systems with linear or nonlinear algebraic/ differential
equation descriptions

• Used for analog and control systems

• Full Library -> Model - > Analog and CTRL- > Continuous Time

Presenter
Presentation Notes
Continous Time (CT) is an extension of Discrete Event. The CT simulator solves a series of equations to determine a set of functions that all the possible relations. This similar to Spice, Simulink and VHDL-AMS.

This domain is very useful in modeling analog circuitry, control systems and MEMS.

Finite State Machine
• Definition
✔Case statement in a graphical form defining sequential

control logic

• Entities represent states and connections represent transitions
between states

• Execution is a strictly ordered sequence of state transitions

• Control and protocol modeling uses FSMs

• Can be reactive or token-based firing

• Full Library -> Model - > FSM- > FSM Simulator

Presenter
Presentation Notes
Finite State Machine (FSM) is different from the other domains in that there are states and transitions between the states. There are no blocks in this type of models. The details or refinement of each state can be described as a block diagram.

FSMs are typically used for modeling control and protocols.

Multi-Domain Simulations
• Analog with digital electronics is mixed-signal
✔Continuous time + Discrete event

• FSM with concurrent model of computation
✔With DigitalSimulator yield Control flow
✔With ContinuousTime yield hybrid systems
✔With UntimedDigital yield Statecharts

• ContinuousTime or DigitalSimulator in FSM creates modal models
✔Simple models are valid over a fixed region
✔Modal model provides system transition between these models

• UntimedDigital with DigitalSimulator or ContinuousTime
✔Physical Layer and MAC Layer
✔Baseband and RF

Presenter
Presentation Notes
The four domains can be mixed and matched based on the modeling requirements. The slides shows a few of the examples. The only caveat is that a SDF cannot be the top-level of a DE or CT domains, as the SDF has no notion of time.

Selecting the Right Continuous Time and
FSM Simulator

• Continuous Time
✔Top-level must use CoTMultisolver
✔Inside a ContinuousTime or DigitalSimulator can be CT Embedded or CT

MultiSolver
✔Inside an FSM is CT Embedded but top-level containing FSM must be

ContinuousTime/DigitalSimulator

• FSM-Hierarchical
✔Can be a FSM or an embedded FSM
✔Top-level Simulator is selected based on the mode of operation required
✔Refinement can be an FSM or any other simulator

Events and Delays

Time vs. Events
• Time is a fixed delay and is loaded into the simulator calendar
✔Used to model cycles or latency
✔Can generate one output

• Event is a trigger that is generated by the user for an instant response
✔Used to model a acknowledge or handshake
✔Can trigger multiple blocks to fire at the same time

27

Delay- Review
• Concept is to schedule the data structure to continue execution some time in the
future

• Takes the incoming data structure and sends it on the output port after certain
amount of time

• Usage
✔Time to process in a resource such as hardware, mechanical and other

components
✔Time between packets entering a network or a system
✔Time taken to execute a job or task
✔Special case: When there is a loop in the model, a Delay with 0.0 time must be

specified to prevent an infinite loop forming.

• Used with additional blocks
✔Queue + delay can be used to model a bus, processor, stage in a pipeline

Presenter
Presentation Notes
 This block delays input events by some amount specified by a parameter. The Delay is used to define the processing time in a system, the time a packet takes to travel across the network, the time it takes in each layer of the stack.

Delay - Continued

29 Return

Delay incoming Data Structure or token
• by a variable time period

Mirabilis Design Inc.

Delay- Application
• System
✔Example: Application Demo->System->Functional->1_1->1.1.1. The Delay is associated

with the processing time for this decision logic.
✔Example: Application Demo->Aerospace->ACS->DCGS. The Delay block is used to

emulate the time across the network

• Network
✔Example: Application Demo->Standards->SPI3.0. There is delay block that is the time

associated with the Link Layer.

Presenter
Presentation Notes
 This block delays input events by some amount specified by a parameter. The Delay is used to define the processing time in a system, the time a packet takes to travel across the network, the time it takes in each layer of the stack.

Delay- Application
• Hardware
✔Example: Application Demo->Hardware->SoC Power Modeling. Here the Delay block

is used to delay the time between bursts of activity in the traffic generation.
✔Example: Application Demo->Computer->Disk. Inside the Disk block, it used as the

Delay for moving the spindle

• Software
✔Example: Delay is not used for the time associated with processing a task or for the

scheduling the process. This is because the order is not preserved and the Delay
schedules a task immediately. It is possible to use the Queue + Delay. In that case,
there might be additional logic after the Queue block.

Ports

Port Details
Configure Ports

Relations and Connections

Block Context Menu

Input Port
Output Port

Relation

Presenter
Presentation Notes
External ports and relations can be created from the toolbar. Using the input and output ports, the user can set the ports for hierarchical block.

The Configure Ports dialog supports adding, removing, and changing key properties of ports of an entity. It displays the ports of an actor in tabular form with each row representing a port and each column a particular property of a port. The user can change the direction, property of the port, hide/unhide name of the port.

 The relation is the Diamond that enables broadcast from a single port. Control-click to create new relations. The relation provides the ability to connect multiple links to a single input. Alternatively you can click the Black Diamond in the standard toolbar.

Port Types
•Data types are polymorphic identified at the ports

•Ports can be specified as: int, double, long, float, boolean, string, arrays or data structure

✔Note: Port types on either side of link must match

•Ports can also be unspecified: general or unknown
✔Simulator dynamically adapts to the connected ports, if both sides are unspecified

✔User-added ports must always be set to a minimum of General

•Port types of library blocks
✔If a port type is fixed such as int, string or double, this cannot be modified and the port

connected to it must be modified

✔Exceptional Cases: Only unknown and general can be modified

Presenter
Presentation Notes
Most VisualSim blocks can accept several token types on an input port to trigger normal operation. Blocks have polymorphic input and output ports to allow the user more flexibility in implementing their design.

The constant "unknown" type has a rather special behavior, in that it sets the type of the port to be unknown, allowing type resolution to infer it.

CLASSES, USER LIBRARIES AND
VERSION CONTROL

Creating a Block Diagram

Presenter
Presentation Notes
The First thing to Instantiate in the model is Digital Simulator. The VisualSim Editor Window has the Library Blocks. Drag and Drop the blocks from the Library. Set the Stop time for Digital Simulator. It can also be connected to a parameter.

Digital Simulator

37 Return

Start and Stop time of Model

Specifies whether to write the
statistics for all blocks in the model to
the _results folder of the model
Directory

Connecting the Blocks

Presenter
Presentation Notes
All Data Structures enter on the top-left (input port) and exit on the top-right (output port).
The traffic is the stimulus that goes through from block to block. The input into a block causes the block to fire, meaning that the block takes the content of the input; does modification to the content or does some action based on the content; and then places it on the output port.

Block Parameter Settings

Presenter
Presentation Notes
Configure the Block Level Parameters in the Block according to the specification or requirements. For example, here configure the Start time parameter to time at which the traffic generation should start. In expression list block you can add the expressions, add the fields that need to be added to the incoming transactions. Every block has Parameters required for its functionality. Read the Document of the Block to know the exact configuration and what data type it accepts.

Hierarchical Blocks
• Grouping a set of functional blocks

that combine to define a function or

device

Presenter
Presentation Notes
A Hierarchical block is a container of a number of basic and other Hierarchical blocks. A hierarchical block is used when the Editor Window runs out of space, or combines blocks that perform a specific function. Each level of a Hierarchy must have the same simulator. Levels below and above this Hierarchy can have a different simulator, as far as they conform to the simulator rules.

Construct Hierarchical Block
• Select the blocks to be grouped. Select Edit -> Create Hierarchy

• Drag from Model Setup -> HierarchicalBlock

• Add input and output ports, Parameters

• To view inside the Block, Right click- > Open Block

Class
• A class is a master version of the block.

• Class is an XML sub-model

• Can be instantiated multiple times in the model.

• Changes made to class block are replicated to all
linked instances

• All sub-models need a Simulator

Presenter
Presentation Notes
Classes are especially useful when you need to instantiate a block multiple times in a model or used repeatedly in many models. This can be a component in your designs or a reporting utility. Classes are the base entities. When the class is instantiated, the user can only modify the values of the parameters and not the topology or the existing list of parameters. The user can add additional details within the Instance. These details are maintained only for that particular model and does not affect the base Class. If these new changes become the basis for another reusable block, then you can define this new block as a sub-class. The sub-class refers to the class for the basic details. Only the incremental details are stored in the sub-class. A class or sub-class can be easily converted into a instance for use in a particular model. This is useful when a model needs to be shipped to another person that does not have access to the libraries. The class also plays a significant role in the development of a user library.

Class is a XML sub-model
Sub-model can instantiated in any model
Restriction: Location of the sub-model XML is relative to the current install.
Note: Any changes to a Script in the instance will be considered higher priority over any changes made to the class
All sub-models need a Simulator

How to construct a Class?
• Assemble the initial block diagram
✔Use the library blocks to assemble the model
✔Create a Hierarchical block of this block diagram

• Create a class
✔Convert the Hierarchical block into a Class
✔Save as a sub-model

• Instantiate a new class for use in a model
✔To use the Class, you need to instantiate the block

in the model using Graph> Instantiate. Entity. Make
sure the Class is located within the
VS_Model_Library directory

• To test the class
✔ Test the class by constructing a simple model

around it.

• Save in Library
✔Right-click the block and select Save Block in

Library.

Presenter
Presentation Notes
Hierarchical block should not have ports when converting to class

CREATE HIERARCHY CONVERT TO CLASS OPEN CLASS AND SAVE AS

Constructing a class

Presenter
Presentation Notes
Open a New Block Diagram Editor
 • Instantiate a Digital Simulation and a new Parameter (SimTime). • Select items in the block diagram and select Debug->Create Hierarchy. • A new Hierarchical block appears with a port. • Remove the wire between the block and the port. • Select the Hierarchical and Right-click to ‘Convert to Class’. • Open the Hierarchical ‘class’ and do a File->Save As. • Select the directory under VS_Model_Library folder to save the file. Make sure to click “Save as sub-model”.

Instantiating the Class

Presenter
Presentation Notes
In order to Instantiate the Class Blocks that are not added to the Library, you can do the above steps.

Creating Sub Class
• Right click on the Class Block

• Select Class Actions > Create Subclass

• Can add additional parameters and Blocks

Presenter
Presentation Notes
Looking inside the subclass reveals that it contains all the elements of the class, but with their icons now surrounded by a dashed pink outline. These elements are inherited. They cannot be removed from the subclass (try to do so, and you get an error message). Can change their parameter values and add additional elements.

Do’s and Don’t for Class Block
Save all class blocks in a common location

Make sure the location is below a Classpath

Organize the Classes in folders under this Classpath

Use the Open Instance for Listen to Block and Listen to Port ONLY

Do not modify any functionality inside the Open Instance.
◦ This will reflect only in that instance of this Class.
◦ Any changes to the instance is extremely hard to debug.

Dynamic Instantiation
• Creates multiple instances of itself during the
preinitialize phase of model execution.

• Each instance of this block behaves exactly like a
Hierarchical block.

• Helps significantly in building large designs where the
model structure scales.

Presenter
Presentation Notes
 Using this block, the model can scale to any number of instances of an identical component by varying a parameter value. Each instance can have parameter values that are unique and can be accessed uniquely by an instance parameter.

Example of Dynamic Instantiation

DI block from
Model -> Hierarchical_Blocks

Specifies instance
on input & output

Presenter
Presentation Notes
The Dynamic Instantiation creates nInstances of identical Hierarchical blocks within a model. This block (the "master") creates nInstances - 1 additional instances (clones) of itself during the preinitialize() phase of model execution and destroys these additional instances during model wrapup(). Each instance is referred to its instance [0..nInstances-1] parameter which is set automatically by the master. The user cannot modify the instance parameter of the block.
To view all the instances, check the ShowClone parameter. To analyze the operation of each instance, simply select Open Block of any instance and do a Listen to Block. This will allow the user to view the activities of that instance. If you select the default instance, you will see the activity of instance=0. All changes in any instance will be propagated to all other instances.
Dynamic Instantiation input and output ports must not be multiports (for now) and must be connected to multiports or regular ports.

Advantages of Dynamic Instantiation

• Dynamic Instances solves modeling problems where objects are arbitrarily required.

• Examples are:

✔Mobile units entering, traversing and exiting a coverage area
✔ Creation and deletion of virtual circuits
✔ Peer-to-peer protocol connections

• Above problems are difficult to model using Static Instantiation
✔ Place many copies of a block in a diagram and use block logic to emulate creation and deletion and to branch data to/from

the appropriate blocks.

✔ Create a primitive that does all the work.

• Static Instantiation requires over-specification and makes model engineering and presentation difficult.

Differences
• Modification in one Hierarchical block does not affect another

• Changes in Open Block of Class block will be reflected at all places were used

• Changes in Instance will only be reflected in that one location

• Open Block for Dynamic Instantiation and Hierarchical Block for Listeners

• Open Instance for Classes for Listeners

Presenter
Presentation Notes
one adds a hierarchical block for each block in the conceptual block diagram and adds input and output ports to match the flow in conceptual block diagram. The block can be saved as a sub model for reuse in other models.
help significantly in building large designs where the model structure scales.

VisualSim Simulation, Diagnostics
and Recommendation Engine

Simulation
GUI
◦ Modify parameters in the top-window
◦ Click on GO button
◦ View results in real-time

User-Created Batch simulation
◦ C:\VisualSim\Java\jdk-14.0.1\bin\java -classpath C:/VisualSim/VS64 -Xms1024m -Xmx8048m

VisualSim.actor.gui.VisualSimBatchModeSimulator -resultpath C:/VisualSim/VS64/User_Library
C:/VisualSim/CModel/User_Library/JPL/FPGA/Multi_Core_Demo_Model_32_3.xml

◦ Path to Java folder
◦ Set the -classpath {VisualSim Install Directory}
◦ Set the minimum and maximum memory allocation
◦ Define the executable VisualSim.actor.gui.MoMLSimpleStatisticalApplication
◦ -resultpath {with full path and filename}
◦ List of parameters to modify –Top_level_parameter_name value – Hier_name.Block_Name.Parameter_name value
◦ Model name: {Path + file_name}

Presenter
Presentation Notes
The Simulation results can be viewed in real time using the GUI options available in VisualSim like Plotters, Displays, etc.,
VisualSim models can be executed from a script to run in a non-interactive mode. The sequence to simulation model can be executed using any script language. The batch file can contain multiple lines of this script with different parameter values and model file names. The batch mode simulation cannot handle any graphical display- text or waveforms

Setting up the Simulation
Add PlotManager to the model

Create CSV file
◦ 2.1) Value CSV
◦ 2.2) Path CSV

Create index.xml and batch file using PostProcessor

Simulation
◦ Run the batch simulation sequentially
◦ Run the batch simulation on multi core

View plot results using PostProcessor

Mirabilis Design Inc. 54

Post Processor
• Enables off-line viewing of results

• Analyze performance data collected from the simulation

• VisualSim Post Processor works with the Plotter, TextDisplays and the
HistogramPlotter blocks of the VisualSim Block Diagram Editor.

• Operating Semantics
✔Step 1: From the VisualSim Architect Block Diagram Editor, add the

PlotManager block to the model
✔Step 2: From the Post Processor window, select Activity->Configure Model.

To create the model index
✔Step 3: Now run the simulation in batch or interactive mode by varying the

selected parameters
✔Step 4: Now return to the Post Processor. From Activity->Open Plot Index,

select the list of runs and the plot to view

Presenter
Presentation Notes
Post-Processing is sometimes viewed as a "post" modeling activity. You can use the VisualSim Post Processor to graphically display and analyze performance data collected from the simulation. The Post Processor can organize results into a variety of x-y graphs, bar charts, and scatter plots, and displays them in either graphical or tabular format. The Post Processor can also perform a variety of statistical functions as a mean, min, max, standard deviation, and confidence intervals. System latency, system throughput, and system utilization are the three most common performance modeling statistics to obtain and plot in the post-processor.

1. Add PlotManager to block diagram

Steps
1. Add the Plot Manager to the model from the library. Results->PlotManager

Mirabilis Design Inc. 57

Steps
2. The PlotManager parameter Plot_Path represents the location where the plots will be stored, so make sure that this path is

valid for your environment. If you copy the location from the address bar, the address will be specified using "\". Change "\"
to "/".

3. For example – if the model is saved in the directory –
C:\VisualSim\VisualSim2030_64_grapes_beta\VS_AR\lib\mohini\simulation\part_index_model

4. Then the Plot_Path is– “C:/VisualSim/VisualSim2030_64_grapes_beta/VS_AR/lib/mohini/simulation/part_index_model/”

5. To run the simulation on multiple cores, check the parameter runOnMultiCore , else uncheck it .

Note : backslash “\”changes to
forwardslash “/”and the path has to be
within double quotes.

Mirabilis Design Inc. 58

Steps
6. Batch simulations cannot run with graphical viewers. Therefore, all Text_Display and Plotters must be

configured to be in "Save" mode. This can be done either using the block parameters or by using the Post
Processor.

7. Double Click on the TimeDataPlotter and Select SavePlot and provide a file name with extension .plt

8. Save the model and close it.

Mirabilis Design Inc. 59

2. Create CSV files

Mirabilis Design Inc. 60

Steps

1. Create the csv file and save the file where the model file(.xml) is saved.

2. Give the parameter name and values in (Range column)in the csv file as shown

1. The parameter name should match with the model parameter name.

Mirabilis Design Inc. 61

2.1 Create Value CSV file

Steps
4. Csv column explanation –

1. Parameter -> contains the name of the top level parameter from the
model.

2. Range-> The upper and lower integer value of the parameter.
3. Step -> Increase from lowest value for each run to maximum value.

For example –
Input_Rate range is from {1 to 3} and it will increment(Step) by 1 – so we will
get 1,2,3.
Same with Execution_Time, Execution_time range is from {2 to 8} and
Increment by 2 each time, so we will get 2,4,6,8.

Now, Input_Rate= {1,2,3} and Execution_Time={2,4,6,8}
so possible combination is -
(1,2), (1,4), (1,6), (1,8), (2,2), (2,4), (2,6), (2,8), (3,2), (3,4), (3,6), (3,8)
Total of 12 combination.

Steps
5. If the values in the model parameter are in decimal, provide the decimal values in the csv column – Range and Step.

Mirabilis Design Inc. 63

Steps
6. If the values in the model paramter are in integer, provide the integer values in the csv column – Range and

Step.

7. Save the file and close it.

Note: The format provided in the sample csv for range column should be same as the file you create.

Mirabilis Design Inc. 64

Steps
1. Create the csv file and save the file where the model file(.xml) is saved.

2. Provide the Javapath- (Java location in the system) and classpath - VS_AR (must),along with any
other path (seperated by semicolon) as shown -

3. Save the file.

Mirabilis Design Inc. 65

2.2 Create Path CSV file

3. Create index.xml and batch file using
Post Processor

Mirabilis Design Inc. 66

Steps
1. Click Activity->Configure Model and select the model with the PlotManager (make sure model is

saved).

Mirabilis Design Inc. 67

Steps
2. There will be a mixture of Text_Displays and Plotters. First, select parameters that we will vary

during this simulation. Click on Save for all Plots and Displays that will needed to be saved. Do
not select the View for any item. This will ensure that no real-time displays are available when
the Batch-mode simulation is executed. Add a file name for each item that needs to be saved. All
plotter views must have a file name with a .plt extension or you will get an error. All Text_Displays
must have a file name with a .txt extension or you will get an error.

3. Select the Value csv file you have created in (2.1 Topic) with parameter names, ranges and steps.

4. Select the Path csv file you have created in (2.2 Topic) with javapath and classpath.

5. Click “Apply” and “Ok”

6. Refer the image in the next slide

Mirabilis Design Inc. 68

Mirabilis Design Inc. 69

Step 2

Step 3

Step 4

Steps
7. A file called ModelName_index.xml and Sim_Batch_Run file will be created in the same directory as

the model.

8. For example – if the model name is Part3.xml , then the Part3_index.xml file will be created.

Mirabilis Design Inc. 70

4. Run the batch simulation

Mirabilis Design Inc. 71

Steps

1. To run, click on the Sim_Batch_Run.bat / Sim_Batch_Run.sh file

2. This run the simulation from command line.

3. This will create the .plt and .txt file in the same folder as the model.

Mirabilis Design Inc. 72

5. Run the batch simulation on multi core

Mirabilis Design Inc. 73

Steps
1. To run on different CPU core –

I. Open the cmd terminal and navigate to VS_AR folder

I. To execute, type ThreadSimCore.bat path of/Sim_Batch_Run.bat
II. For example : ThreadSimCore.bat C:\VisualSim\VisualSim2030_64_october20\VS_AR\lib\mohini\simulation\Sim_Batch_Run.bat

I. Press enter
II. This will run the simulation using command line on the different CPU cores.
III. This will create the .plt and .txt file in the same folder as the model.

Mirabilis Design Inc. 74

space

6. View plot results using Post Processor

Mirabilis Design Inc. 75

Steps
After following the above steps , click on the Postprocessor and go to Activity-> Open Plot Index

Mirabilis Design Inc. 76

Steps
Go to the folder which contain the model and where the index file is also created.

Select the index file (index.xml) . Click open.

Mirabilis Design Inc. 77

Steps
Top-half displays list of simulations

Bottom half shows list of available plots.

The user may do the following:

· Select a plot name

· Select a list of simulations

· Select one among three options below:

Mirabilis Design Inc. 78

Steps
6. Select traces and view the plots

Mirabilis Design Inc. 79

	Slide Number 1
	Agenda- Part 2: About VisualSim
	Documentation and Support
	Documentation and Support
	Documentation and Support
	�Documentation and Support
	Introduction to VisualSim
	VisualSim Homepage and Documentations
	Tool Organization
	Slide Number 10
	Block Diagram Editor
	Parts of the Block Diagram
	Model and Block
	Discrete-Event and Block Execution
	Simulation Engines (or)�Models of Computation
	What are Models of Computation?
	Simulation Polymorphism
	�Simulation and different Models of Computation
	Digital Simulator
	Discrete Event Calendar Example
	Untimed Digital or Synchronous Data Flow
	Continuous Time
	Finite State Machine
	Multi-Domain Simulations
	Selecting the Right Continuous Time and FSM Simulator
	Events and Delays
	Time vs. Events
	Delay- Review
	Delay - Continued
	Delay- Application
	Delay- Application
	Ports
	Port Details
	Port Types
	Slide Number 35
	Creating a Block Diagram
	Digital Simulator
	Connecting the Blocks
	Block Parameter Settings
	Hierarchical Blocks
	Construct Hierarchical Block
	Class
	How to construct a Class?
	Slide Number 44
	Instantiating the Class
	Creating Sub Class
	Do’s and Don’t for Class Block
	Dynamic Instantiation
	Example of Dynamic Instantiation
	Advantages of Dynamic Instantiation
	Differences
	VisualSim Simulation, Diagnostics and Recommendation Engine
	Simulation
	Setting up the Simulation
	Post Processor
	Slide Number 56
	Steps
	Steps
	Steps
	Slide Number 60
	Steps
	Steps
	Steps
	Steps
	Steps
	Slide Number 66
	Steps
	Steps
	Slide Number 69
	Steps
	Slide Number 71
	Steps
	Slide Number 73
	Steps
	Slide Number 75
	Steps
	Steps
	Steps
	Steps

