
VISUALSIM TRAINING

Agenda- Part 3: VisualSim
Basic Concepts

Key Library Components

Traffic

Plotting, Display and Statistics

Behavior Modeling

Database

Introduction to Virtual Connections

Concept of Delay

Resources

RegEx

Script Language

Statistics

Parameters, Variables
& Data Structures

Definitions of Parameter and Variable

4

Parameter Variable

Define inputs of any Data type of any Data type

Input value • fixed throughout the
simulation

• Vary during simulation

Availability • Available to the current
window and all hierarchy
blocks below this level

• Local - used in current
window

• Global - available in full model

Parameter- Review and Application
• Review
✔Constants
✔Cannot be changed with in a simulation run
✔Can be changed across simulation runs
✔Hierarchical

• Application
✔Any attribute of the model that needs to be modified for the design space
✔Usage: Network Speed, Cache Size, Simulation Time, Seed
✔Example: Any model

To Create New Parameter
Model parameter:
1. Drag-n-Drop the parameter from Library Folder
Model Setup >Parameter ('parameter=') into an open
Block Diagram Editor window.

2. Right-click to select Customize Name of parameter
& enter a name. Name must be unique, else BDE will
generate exception.

3. Double click the new parameter name to set the
value of the parameter.

To Create New Parameter
Block Parameter :

Double click on the block and
select Add. Enter the parameter
name and value.

Parameter Types
Types Values

String “Queue1”
“file://C:/VisualSim/filename.txt”

Integer
Double
Long

1
1.0
123L

Boolean True

Array
Matrix

{1,2,3}
[1,2;3,4]
Note: Can contain any data type

Expression (Parameter1==4)?Parameter2:Parameter4

Data Structure {first=1,second=”name”}

Parameter Usage
Parameter in Expression:
• Able to define mathematical

expressions using parameter values.
Parameters can only be on the right
hand side of the expression.

Parameter Usage
Parameters to set Block attributes

Parameter List
A block that reads the parameter names and their values
from a file and sets corresponding parameters for the model.

Edit File
● Parameter list contains parameter names and

respective values.
● It is in textual format such that user can make changes

in the file and values gets updated accordingly.

Configure Parameter
● Able to select different parameter configuration.
● Specify parameter from text editor itself instead of the

tool.

Variable
• Variable is a variable or register

• Variable is a named location
✔Local- Current window
✔Global- Entire model

✔Block- Use in Script and ExpressionList

• Used to communicate between blocks and routing

• Defined in VariableList (Global and local),
ExpressionList blocks(Block) and Script (Block)

• Used in ExpressionList and Script

• Supports all standard data types

• Initialize using VariableList
✔Local- ”myvariable local 0.0”
✔Global- “myvariable global “string””

• Initialize using Script and ExpressionList blocks
✔Done the first time variable is accessed

• Initialize with RegEx and Script
✔Use only for block memory

• Types supported

• Int, long, double, binary, string, data
structure, array and boolean

Variables

Variables

14 ReturnMirabilis Design Inc.

Variable Blocks and RegEx
• Variable_Monitor
✔Trigger the block to output the current value of a pre-determined list

of blocks. Output is an array.
✔Generate a output when a variable out of the list is being written into

or read from. Output is an array.

• Variable_Dump
✔Outputs the current value of all the variables in the model- global,

local and block. Output is an array.

• RegEx
✔readAllVariables provides current value of all variables
✔Check(“Name”)- Does the variable exist?

Accessing Variables
• Standard approach
✔ Use the Variable name on the LHS and RHS of an expression
✔Global Variable can be accessed in any block in the entire model
✔ Local Variable can be accessed from same window as the definition
✔ Block Variable are accessed in a Script or ExpressionList

• Reading local Variable from outside the current Window
✔ StringName = List hierarchies separated by ‘.’ + “Variable_Name”
✔MyVariableToken = StringName.read()

• To overwrite the content of a local Variable
✔ StringName =“My_Variable_Name”
✔MyVariableToken = StringName.write(New Value)

• Accessing block Variable from outside the script block
✔ StringName = “My_Block_Variable_Name”
✔MyVariableToken = StringName.read(Block_Name)

VariableList- Applications
• Systems
✔Storage systems (maintain count of available words in the cache for each incoming request)
✔Example: Application Demo->Systems->Computer Model. Look at Memory_Init for initialize and L1 Cache->Decision4

• Network
✔In_Thru and Out_Thru (Continuous count of bytes at input and output ports. Used for statistics and for traffic shaping)
✔Example: Application Demo->Flow Control

• Hardware
✔L1, L2, L3 (Maintains the current content in an address at the Caches)
✔Example: Application Demo->Imaging->Video Cache Paging. Look at Memory_Init for initialize and all Processing blocks

• Software
✔Clusters (Flag for active and inactive Hardware within a cluster), Jobs (Current job executing at each core or processor)
✔Example: Application Demo->Other->SW Pool Size

What is a Data Structure?
• Data Structure is similar to “struct” in C

• Fields of the Data Structure represent

✔Data transmitted through the model

✔Represents the IC pins, frames, packets etc.

• Fields can hold the results of a mathematical or logical operation

• DS Fields can be
Strings, Boolean, integers, doubles, arrays, matrix, data structures, long

Data Structure
Signals or transactions

• Propagate from block to block along the wires between ports
• Dynamically create and remove fields

Class type
▪ Containing named fields and associated value
▪ May be accessed using the period operator
▪ look like “input.FieldName”

Mirabilis Design Inc. 19

Supported Data Types

Mirabilis Design Inc. 20

Base Data Structure: Header
All data structures have these six fields.
• BLOCK (Source name)

• DS_NAME (Template name)

• TIME (creation time-stamp)

• ID (sequence number)

• INDEX (integer scratch pad)

• DELTA (double scratch pad)

Common DataStructures
• Header- Construct custom Data Structure
• Processor_DS- Used by all hardware blocks

• Ether_DS- Used by TSN
• Task_Class- Used by Node blocks

Example of DataStructure Template

Cache Data Structure

Note: Defines information needed in a Cache Request and Cache Line

Field Name Type Value Comment */

Val_Bit boolean true ; /* Cache Line: Valid Flag */

Lock_Bit boolean false ; /* Cache Line: Lock Flag */

Age_Bits int 0 ; /* Cache Line: Age of Line */

Tag_Bits int 0 ; /* Cache Line: High Address, Int */

Addr_Bits int 0 ; /* Cache Line: Mid Address, Int */

Word_Bits int 0 ; /* Cache Line: Low Address, Int */

Access_Command String Read ; /* Access: Command */

Access_Sequential boolean true ; /* Access: Seq or Non-Sequential */

Access_Bytes int 4 ; /* Access: Bytes */

Access_Time double 1.0 ; /* Access: Time to next Access */

Access_Next int 1 ; /* Access: Index to next Access */

Data String 01AB ; /* Data : HEX */

Data_Structure String Pass ; /* Data Structure Passed Through */

Standard Data Structures are located in VS_AR/VisualSim/data folder
User can create a new one and place it along with their own model
Access the Data Structure template using the Traffic block or newToken RegEx function

Field Usage
• To hold information
• Use in blocks

Agenda- Part 3: System Libraries
Traffic 165-177

File I/O 178-183

Plotting, Display and Statistics 184-190

Expression List 191-194

Database 195-202

Concept of Virtual Connections- 203-239

RegEx 240-255

Script Language 256-293

Resources 294-337

Debugging 339-365

Configuring Blocks 366-389

Key Library Components

Library Organization

Library Components to cover in basic training

Model Setup Digital Simulator, Parameter, Variable, Hierarchal Block
File IO Database

Traffic Traffic, Delay

Behavior Expression List, Join, Fork, In and Out
Resources Queues, Server, System Resource

Power Power manager
Mappers Mapper

Results Text Display, Time Data Plotter

Mirabilis Design Inc. 27

Access Documentation of Library Specifications

Mirabilis Design Inc. 28

Online Video Introductions (1)
No Library Block Description Block

1. Digital Simulator Implements the Discrete – event model of computation
https://www.youtube.com/watch?v=lReOQrpLM64

2. Parameter In order to give global parameters for the model
https://www.youtube.com/watch?v=I3TwzKawlo8

3. Variables The block is used to define memory locations
https://www.youtube.com/watch?v=OLMiBkzgRoI

4. Traffic Generate Input as per the specified data structure and time distribution
https://www.youtube.com/watch?v=OLMiBkzgRoI

5. Expression List Executes sequence of assignments statements and send the output by
evaluating the expression https://www.youtube.com/watch?v=OLMiBkzgRoI

6. Delay Generate delay while transmitting the packets
https://www.youtube.com/watch?v=UUcW-3w7fQM

7. Hierarchical Block Group a set of functional blocks that has function or device
https://www.youtube.com/watch?v=I3TwzKawlo8

Mirabilis Design Inc. 29

https://www.youtube.com/watch?v=lReOQrpLM64
https://www.youtube.com/watch?v=I3TwzKawlo8
https://www.youtube.com/watch?v=OLMiBkzgRoI
https://www.youtube.com/watch?v=OLMiBkzgRoI
https://www.youtube.com/watch?v=OLMiBkzgRoI
https://www.youtube.com/watch?v=UUcW-3w7fQM
https://www.youtube.com/watch?v=I3TwzKawlo8

Online Video Introductions (2)
No Library Block Description Block

8. Queues Orders the incoming data from High priority to lowest
https://www.youtube.com/watch?v=OLMiBkzgRoI

9. Server Multidimensional Resource – Multiple Queues + time delay
https://www.youtube.com/watch?v=OLMiBkzgRoI

10. Mapper To model multi-threaded application, dynamically allocates to one of
many resources https://www.youtube.com/watch?v=UWpUZGjArdo

11. System Resource To link multiple concurrent behavior flow into single block
https://www.youtube.com/watch?v=DmGyNIj58WU

12. Join and Fork Join: Separate inputs from any output; Fork: Control execution of two
concurrent flow https://www.youtube.com/watch?v=OLMiBkzgRoI

13. Power Manger To evaluate battery discharge, instantaneous power, average power so
on.. https://www.youtube.com/watch?v=vceZ-LLHyRc

Mirabilis Design Inc. 30

https://www.youtube.com/watch?v=OLMiBkzgRoI
https://www.youtube.com/watch?v=OLMiBkzgRoI
https://www.youtube.com/watch?v=UWpUZGjArdo
https://www.youtube.com/watch?v=DmGyNIj58WU
https://www.youtube.com/watch?v=OLMiBkzgRoI
https://www.youtube.com/watch?v=vceZ-LLHyRc

Online Video Introductions (3)

No Library Block Description Block

14. Text Display Complete Statistics of data processed
https://www.youtube.com/watch?v=JyxXdOc24IQ

15. Time Data
Plotter

Plots the processed data on Y-axis against current simulation time in X-axis
https://www.youtube.com/watch?v=JyxXdOc24IQ

16 Database Used as a lookup table for doing searches Demo Model
https://www.youtube.com/watch?v=UWpUZGjArdo

17. IN It accepts request from Virtual connections (MUX and OUT) and virtual
machine and its wireless connection to reduce the number of links in BDE

18. OUT Route the data to other parts of the model in BDE or any part of the global
model and its wireless connection too

https://www.youtube.com/watch?v=UWpUZGjArdo (Both IN and OUT)

M

Mirabilis Design Inc. 31

https://www.youtube.com/watch?v=JyxXdOc24IQ
https://www.youtube.com/watch?v=JyxXdOc24IQ
https://www.youtube.com/watch?v=UWpUZGjArdo
https://www.youtube.com/watch?v=UWpUZGjArdo

Complete Systems-Level Library

Minimizes the need for custom development and quick custom development language

Traffic
• Distribution
• Sequence
• Trace file
• Instruction profile

Reports
• Timing and Buffer
• Throughput/Util
• Ave/peak power
• Statistics

Power
• State power table
• Power

management
• Energy harvesters
• Battery
• RegEx operators

SoC Buses
• AMBA and Corelink
• AHB, AB, AXI, ACE,

CHI, CMN600
• Network-on-Chip
• TileLink

System Bus
• PCI/PCI-X/PCIe
• Rapid IO
• AFDX
• OpenVPX
• VME
• SPI 3.0
• 1553B

Processors
• GPU, DSP, mP and mC
• RISC-V
• Nvidia- Drive-PX
• PowerPC
• X86- Intel and AMD
• DSP- TI and ADI
• MIPS, Tensilica, SH

ARM
• M-, R-, 7TDMI
• A8, A53, A55, A72,

A76, A77

Custom Creator
• Script language
• 600 RegEx fn
• Task graph
• Tracer
• C/C++/Java
• Python

Support
• Listener and

Trace
• Debuggers
• Assertions

Stochastic
• FIFO/LIFO Queue
• Time Queue
• Quantity Queue
• System Resource
• Schedulers
• Cyber Security

RTOS
• Template
• ARINC 653
• AUTOSAR

Memory
• Memory Controller
• DDR DRAM 2,3,4, 5
• LPDDR 2, 3, 4
• HBM, HMC
• SDR, QDR, RDRAM

Storage
• Flash & NVMe
• Storage Array
• Disk and SATA
• Fibre Channel
• FireWire

Networking
• Ethernet & GiE
• Audio-Video Bridging
• 802.11 and Bluetooth
• 5G
• Spacewire
• CAN-FD
• TTEthernet
• FlexRay
• TSN & IEEE802.1Q

FPGA
• Xilinx- Zynq, Virtex, Kintex
• Intel-Stratix, Arria
• Microsemi- Smartfusion
• Programmable logic

template
• Interface traffic generator

Software
• GEM5
• Software code integration
• Instruction trace
• Statistical software model
• Task graph

Interfaces
• Virtual Channel
• DMA
• Crossbar
• Serial Switch
• Bridge

RTL-like
• Clock, Wire-Delay
• Registers, Latches
• Flip-flop
• ALU and FSM
• Mux, DeMux
• Lookup table

Traffic, Reports and Interfaces
• Traffic
✔Sequence, distribution-based, intermittent, files and clocks

• Plotters and Debugging Tools
✔Real-time viewers, animation and breakpoint
✔Text, export, statistics

• Pre-configured Analysis
✔Power- Instantaneous, average and discharge
✔Performance- Latency, buffer, hit-ratio, stall-times, utilization, throughput, I/Os second
✔Battery- lifecycle, charge and discharge, capacity usage

• Interfaces
✔C/C++/Java, Python, MatLab, Excel, XML
✔File I/O, FPGA board, Database
✔SystemC, HDL, STK

No Post Processing Required- Development to Analysis together

Resources, Hardware and Algorithms
• Performance Resource
✔Active and Quantity Resources
✔Channels, pipeline, SystemResource (schedulers), queues

• Cycle-Accurate Architecture Generators
✔Processor (uP, DSP, Custom, GPU, TPU, and AI), memory, cache
✔Profile-based software sequence generator, trace from fast functional model in GEM5 and ARM

Fast Functional Library
✔Linear, switched and Req-Ack bus
✔Pipeline, DMA, Controllers
✔Bridges, Switches (Blocking & non-blocking)

• Behavior
✔Block-based, C-like scripting, Java/C/C++, SystemC, Python

• Application-Specific
✔Signal and image processing, analog, controls
✔Wired Networking and Wireless Sensor Networks

No Programming Required- Accelerate model development

Selecting the right block- 1
•Traffic, Test Bench, Clock
✔Traffic>Clock
✔Traffic>Wireshark Network or

VCD Hardware trace

•Analysis, Reports, Display
✔Results->TimeDataPlotter
✔Results->Statistics
✔Result->TextDisplay

•Math and Logical
✔Use RegEx language

•Write/Read File
✔Traffic Reader
✔File Reader
✔File Writer
✔Excel
✔XML

•Import
✔C Code
✔Application
✔SystemC
✔Verilog

•Event Resources
✔Queues
✔Server

•Timed Resources
✔One Queue to One Server- Timed Q
✔Symmetrical: Server_N_Resource

✔Combine multiple parallel resources-
Server (a.k.a Smart_Timed_Resource)

✔Distributed requests- System
Resources

Selecting the right block- 2
•Quantity
✔Quantity_Based

•Channel
✔Used to define logic for each Server
✔1-to-many or 1-to-1 channels

•Hardware
✔Standard blocks

•RTOS
✔Server: SLOT type
✔Queues + Script for custom scheduling

•Behavior
✔Algorithm- Script
✔Existing algorithm- C, Java
✔Sequence- Expression List
✔Sequence with routing- Expression List

•Lookup
✔Arrays or Database

•Temporary storage
✔If content is not important, then use

Queue

✔If content determines activity, use arrays

Integration with SystemC
• Full Library -> Hardware Language -> SystemC ->

SC_Sim

• Provides timed interface between VisualSim and
SystemC

• Timed interface - Synchronization between
VisualSim and SystemC simulator

SystemC model- Example

Integration with Verilog
• Full Library -> Hardware Language -> Verilog-

> Verilog_Sim

• Provides timed interface between Visualsim
and Verilog

• Timed interface - Synchronization between
VisualSim and Verilog simulator

Verilog model- Example

Assembling a System Model

Selecting the Right Block
To define sensor, I/O or interface
◦ Traffic blocks

To define a trigger or an event
◦ Traffic block

To define field values or set variable values
◦ ExpressionList

To do simple math computation to determine delay value, extract fields for plotting
◦ ExpressionList

For arbitration, logic or software details
◦ Scripts

Traffic

Data Structure Generation
• Traffic
✔ Time distribution

• TriggeredTraffic
✔ Requires an input trigger to generate DS

• Transaction Sequence
✔ Custom list of operations

• Custom Traffic
✔ Periodic distribution

• Trace
✔ Read from a file

• Using RegEX
✔ newToken(Value)

Defining Data Structure in Traffic Blocks
Data Structures template
• .txt can be located anywhere
• .class located in VS_AR/VisualSim/data

● Absolute path is required for accessing
files located anywhere.

● File name if located in the
$VS/VisualSim/data directory.

Types
• Statistics Distribution- Single request, periodic or fixed, uniform within a range, normal,

exponential
• Custom- Based on a combination of data size and interface speed. Can also be triggered by

external event
• Trace file- Existing file from hardware bus, network, software thread execution sequence,

instruction order
• Sequence- Special case to typically debug with a order such as command of “Read, Write,

Write, Read , or packet sizes of “128, 1512, 256”

45 Return

This Parameter is an alternate to the
Data_Structure_Name field above. If the user defines a
file name here, the above parameter is not considered.

Traffic

Mirabilis Design Inc.

Select the “Time_Distribution”
according to design

Restrict the number of
transactions

- Double click to configure

Traffic- Application
• System
◦ Signal from sensors
✔Example: Application Demo->System->Functional

◦ User action
✔Example: Application Demo->Automotive->Abstract SH4

◦ Network packet
✔Example: Application demo->Networks->GiE

• Network
◦ Input for each channel, interface or port
✔Example: Application demo->Systems->Flow Control

Traffic- Application
Hardware
◦ Read or Write request

◦ Example: Library Demo->Hardware->Bus Switch Control->Defining Read Operation for Shared Bus. Notice the input data structure
has the A_Command field updated with Read or Write.

◦ Instruction sequence to execute on a processor
◦ Example: Library Demo->Hardware->Core Architecture->Basic Processor Model. Looking at the Single Event to start the simulation,

Generate Instructions to create a stream for the Processor to execute and the Processor_Done to trigger the next stream to the
Processor

◦ Input from Interface
◦ Example: Application Demo->Processor->Xilinx PowerPC. Notice the Ethernet and PCI interface

Traffic- Application
Software
◦ Request from SystemResource to execute

◦ Example: Application Demo->Computer->RTOS->RTOS Modeling. Here there are different software threads that have
different profile. The Virtual Machine is the RTOS that schedules these tasks onto different resources. The Sequence
and the RTOS form the input

◦ Trigger a periodic execution
◦ Example: Application Demo->Computer->RTOS->ARINC 653. The combination of the Transaction Source +

Processing.

◦ Periodic execution of a System_Resource
◦ Example: Application Demo->System->Flow Control. Look inside the Smart_Controller code. You will notice the delay

between loop execution. This is a form of traffic. Also, the pop input to the X_On and X_Off are triggers that send data
out of the Queues. The Decision block connected to the Xon_Queue has an output condition that determines if this
traffic must be passed into the model

Type I - Statistical
• Define a distribution

• Parameters for mean and standard distribution

• Specify values for the Data Structure fields. It can be source, destination, data, priority or bus
delay

Type II - Custom
• If a custom distribution is required or the

Data Structure is generated as a function of
another activity, or triggered during the
flow, use the Triggered Traffic.

• Every time the input port is triggered the
Triggered Traffic block generates a
transaction

Type III – Transaction Sequence
•Generate transactions or Data Structures in a
specific sequence

•Define sequences in the parameter window or
specify a file + path

• Time interval between Data Structure is a
parameter

• Specify an output processing using the Regular
Expression (RegEx) Language

Type IV – Custom Traffic
•Generate data structure during the T_Interval
period

•Stalls all transmission during the T_Pause.
•Equally distributes the Number_Of_Transactions
during the T_Interval range.

Type V - Trace File Based
• Use a trace dump from the network, cache, memory or
processor pipeline

• Traffic Reader block

• The expected file is
✔ ASCII text
✔ Any number of columns and rows
✔ Each column has the first row with header and the second

row with types
✔ The header name is the field name
✔ Any number of rows and columns are supported

Example of Trace

{InstructionCount = 11299, InstructionCycle =
57455, ICacheHit = 4730, ICacheMiss = 952,
DCacheReadHit = 4012, DCacheReadMiss =
383, DCacheWriteHit = 2752,
DCacheWriteMiss = 65, DDR_Read = 1335,
DDR_Write = 448, SimHostTime = 0.024972,
SimTargetTime = 57456, Index = 0,
ioReadCount={4, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
34}, ioWriteCount={2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
0, 2, 9}, processorID=0}

Traffic Creation VI: Clock based
• Use the Clock block

• Generates rising (pos) and falling (neg) edge

Traffic Creation VII:
Event-and Queue- based Traffic
• Event
✔Use the Distribution + Script block
✔Traffic rate depends on the event return
✔Add a field called Event_Name with a string value
✔Script can WAIT or TIMEQ on Event_Name

• Queue
✔Traffic rate is fixed
✔Queue(a.k.a Smart_Resource) and Arbiter controls the data transfer to the

Bus
✔Requests can be queued or dropped based on response rate
✔Can use Events for the response trigger

Read and Write from File System

File I/O
File Reader
▪ Read from a file
▪ Column value can have a different data type.

8/18/2020 MIRABILIS DESIGN INC. 57

File I/O
File Writer
▪ Write any data to a file
▪ Capture data structure value or model statistics for

use in other models or for further analysis

8/18/2020 MIRABILIS DESIGN INC. 58

Trace File Based
Trace dump from

▪ Network, cache, memory or processor pipeline

Traffic Reader
▪ Expected file
✔ASCII text
✔Any number of columns and rows
✔Each column, first row with header, and second row with types
✔The header name is the field name
✔Any number of rows and columns are supported

8/18/2020 MIRABILIS DESIGN INC. 59

writeStats To File
• Generates Statistics for all the blocks in the model

at the end of simulation

• Writes into a Text File in the model directory

SaveText in Plotters and TextDisplay

61 ReturnMirabilis Design Inc.

Plotting, Displays and Statistics

Result
• Statistics

✔ ResourceStatistics
✔ Statistics blocks to collect statistics at intermediate points

• Assertions or tests
✔ High/low value for scalar
✔ Conditional model activity
✔ Model termination

• Collect data
✔ Write to screen or to files (Excel, text or XML)

• Plot data
✔ Bar, Histogram or XY plots
✔ Special viewers- Matrix, Image, MPEG and speakers

• 3D- Interactive Creation
✔ Create custom animated views that resemble the system

TimeData Plotter
• Plot double values against simulation time

• View or save the results of the simulation in a XY
format.

• Used to depict latency, throughput and other
variables that vary against time.

TimeData Plotter

65 Return

XY Plotter
• Any scalar value against any other scalar value.

Both values must arrive synchronously.

• The X- and Y-axis can have different data values.

• Plots can be Latency vs. Packet Size or Task Delay vs.
Processor Speed.

• The parameters of this block match the fields (or
RegEx) of the incoming Data Structure to determine
the coordinates, color and trace identifier (Dataset).

• Values, color, legend defined in fields of incoming
data structure. Plot similar to XYPlotter

Histogram
• The plotter accepts data on the input and plots them as a
histogram.

• View the plot in real-time or save for future viewing.

Bar Graph
• The bar graph plots series
• The input is an array

Text Display
• Output to text the data structure and statistics

• The input type can be of any type.

• Can be set to Save/View from Post Processor

• Cannot be viewed from the Post Processor

Text Display

70 ReturnMirabilis Design Inc.

writeStats To File
• Generates Statistics for all the blocks in the model

at the end of simulation

• Writes into a Text File in the model directory

Behavior Modeling

Processing
Data Flow
◦ Describe actions based on expressions
◦ Results stored in DS fields if required by

transaction
◦ Results stored in variables if required elsewhere

in model

Control Flow
◦ Model if-else; while, and case-switch

Virtual Flow
◦ Move data to other parts with IN or Script name
◦ Use Mux and Demux to create instruction

decodes, protocol switching, broadcast etc.

Delay
◦ Simple delay before output

• Switching
✔Control the flow of data through model

• Execution Control
✔Control simulation based on model results,

activity or triggers
✔Combine blocks with multi port

ExpressionList to establish assertions

• Mapping
✔Connect processing flow with the resources
✔Send to SystemResource and Processor
✔Multiple Mappers can send to a resource

Expression List
Sequence of mathematical expressions

Requires one transaction on all input ports to fire the block

Assign values to fields or variables
◦ Execution starts when data arrives on the input ports
◦ Data at each port is identified by the port name
◦ Queued if multiple values arrive at one port

Usage
◦ input.field_name = value

Output
◦ Condition can use any expression containing fields, variables and logical operators

8/18/2020 MIRABILIS DESIGN INC. 74

Expression List (Cont.)
Create multiple input ports and output ports
Avoid setting data types unless a restriction is required

8/18/2020 MIRABILIS DESIGN INC. 75

8/18/2020 MIRABILIS DESIGN INC. 76

Expression List (Cont.)

To add or remove ports

Database

Database

• Lookup table for searches
• Used as Routing Table

• Main features
• Read
• Write
• Remove

78

• Database content can be defined in
✔ Data_Structure_Text window
✔ FileorURL

✔ Text File
✔ CSV file
✔ XML file

• Linking name enables multiple Database blocks to share
one database content

• One block maintains the values
• Other blocks use extern in the Data_Structure_Text

Operation
• Parameters
✔ Input Fields : List of fields in incoming Data Structure
✔Lookup Fields : List of Column names in the Database
✔Output Expression : Used to define the match type and value

• Values in Input fields are matched with values in the Lookup Fields in order

• The number of fields in the input and lookup must match

• According to the match type in the output Expression parameter the data is sent on the output port
✔Match – Reads the first row match from the database
✔Match_all – Reads all the rows that matches from the database
✔Particular value – eg : match.field_a

Read Mode
• FindsSends out the matched row as a Data Structure

•Two types of Matches possible:
✔Match
✔Match all

Write Mode
• Replace the matching row with the values in the input Data Structure
• If no match found, append at the end of the table
• Match_all is not possible

Remove Mode
• If a row matches, remove that row

• Match_all is possible

Demo for database model

82 Return

Zoomed
plot

Database – Virtual Concept
• Content of the Database can be accessed as an array of data structures

from any ExpressionList or Script block using RegEX functions

• Multiple Databases can reference a single Database

Database Access Using RegEX
• getResourceActivity()
✔ Gives the current queue length of the Resources under the named column

• getNextResource()
✔ Get the first resource (Processor, SystemResource and SystemResource_Extend) in the listed

column that is not currently processing any transaction. If none of the resources are free, then the
function returns "none"

• getColumn()
✔ Get an Array of Column entries from Database block, based on Column Name

• getRows()
✔Returns an array of data structures for each row that match the value in the named column.

• getCell()
Usefull if we only want a particular value rather than an array of values

RegEX Results

Database Reference
• The content of the single Database can be
accessed by multiple Databases using the
Keyword Extern

• All these database blocks read/write/remove
this single database

• The content is instantly updated in all the
Database blocks.

FSM
• Controller
✔ FSM has states and transitions
✔ Controls the processing of linked hierarchical blocks in the same Window
✔ Must contain the FSM Simulator and use the FSM_Controller

✔ Refinement of states and transitions is the firing of one or more of these hierarchical block

• Hierarchical
✔ Functions as a hybrid simulation domain
✔ Depends on top-level simulator to control time and data flow
✔ State and Transition actions are defined as block diagrams/ FSM
✔ Multiple refinements can be applied to each state or transition

Concept of Virtual Connections

Virtual Connections
• Connections made using Names and not wires

• Multi-function

✔Mux and demux for routing and decisions

• Names accessed in memories or fields

• Different Virtual Connections in VisualSim
✔ IN and OUT
✔ Mapper to System Resource
✔ Mapper to Processor
✔ Script block to Script block
✔ Virtual Concept in Database block

IN, OUT, MUX, DEMUX (Bubble Blocks)
• The OUT block accepts Data Structures or token arriving on

the input port and transmits it as a virtual connection to:

✔ 'IN' and 'MUX' that match the Destination_Name.

✔ 'NODE', Script block with the same name.

• The IN block accepts incoming Data Structures or tokens

from any OUT/MUX/uEngine/Virtual_Machine blocks and

sends a value on the output port.

In

91 Return

Destination.Value means you can send
out a DS, DS field, variable or a
parameter.
If the field has only Destination, send
incoming value.

Out

92 ReturnMirabilis Design Inc.

Routes the data structure to other
blocks.
Destination.Value means you can send
out a DS, DS field, variable or a
parameter.
If the field has only Destination, send
incoming value.

Join and Fork

93

Separate inputs from
any output

Control execution of
two concurrent flow

ReturnMirabilis Design Inc.

94

Virtual Flow Modeling

DEMUX

IN

IN

IN

IN, OUT, MUX, DEMUX

OUT

OUT

OUT MUX

X

Y

Z

X

A

B

C

A

Mapper to System Resource
•Mapper blocks define the connectivity between the behavior flow and the architecture flow,
and within the architecture flow using a named connection

• The block takes the incoming Data Structure and send it to the Scheduler virtually
• This block can send a request to either the SystemResource or SystemResource_Extend.

Task
IN

Task
Done

System_Resource

SystemResource_Extend SystemResource_Done

Mapper

HW

SW

TC

Mapper
Request

Mapper to Processor

• This block enables the mapping of behavior, task or

function on a target processor, SystemResource or

SystemResource_Extend.

Script To Script
❖ Virtual_Machine supports both local and global

virtual input/output.

❖ The SEND function will send the values to the

output ports, virtual connections, other Virtual

Machine blocks or a LABEL.

Database – Virtual Concept
• The content of the Database can be

accessed as an array of data structures

from any ExpressionList or Script blocks.

99

Virtual Connection Modeling
Networking: NODEs

NODE

NODE

N_3

N_1

NODE
N_2

NODE N_4

NODE
N_5

Routing_Table

RT

Networking: Protocol Layer

Layer_Protocol L_2

L_1Layer_Protocol

N_1N_1

IP

MAC

PHY

LT

RT
NODE

Layer_Table

Routing_Table

Utility Functions
•readAllVirtual
✔List of all Virtual Connections (IN, OUT, MUX)

✔Names of SystemResources, Queues, Servers, script and Smart_Controller.

•Used to identify the location of a connection

100

RegEx

RegEx
• Collection of Mathematical, Logical, Statistical and Algorithm-Specific Functions

• Popular RegEx are used with Array, Queues and Schedulers, Data Structure, Power and Networking

• Usage
✔Parameters
✔Processing, ExpressionList, Script and Smart Controller for defining logic and decisions
✔Can combine parameters, variable and data structure fields

Applications
◦ Flow Control
◦ Example: Application Demo->Systems->Flow Control

◦ Determining status of a hardware resource before transmitting
◦ RegEx function->Queues and Schedulers->getDeviceStatus

◦ Selecting the next available resource among a pool
◦ Example: Application Demo->Automotive->Detailed SH4 Model-> Look at the Spread Spectrum

Mapper.

Script to SystemResource Blocks

7/18/2022

SystemResource or
SystemResource_Extend
Blocks

Block_Name: “MyVM”

Block_Name: “MySched”

done=scheduleTask(token,”MyVM”,”MySched”,time,tnow,priority,id,mutex)
if (port_name == “virtual”)
{

<my function>
}

input
output

Currently, triggers completion of Scheduled Event

getBlockStatus() to Queue and Server
getBlockStatus(String block_name_, String name_, int index_)
◦ block_name_ = Queue_Name
◦ name_ = “length”, “copy”, “take”, or “stats”
◦ index_ = Index of Queue (one based indexing)

Queue_Name + _Length
◦ One can obtain the length of a Resource Queue directly from a memory.

7/18/2022

Virtual
Use in ExpressionList and Script blocks

FORMAT virtual(<Destination>, <Data>)

Send data to another block virtually

newArray

FORMAT newArray(length, value)
Create a new array with the type being
the default value

length()

FORMAT <Array>. length()

length() function will give us the length
of the array.

Append()

FORMAT <Array>. append(value)

Here, we append the incoming packet ID
value to an array called idArr.
Append at the end of the array

min()

FORMAT <Array>. min()

NOTE
Array has to be of type integer or double

Get the minimum value

mini()

FORMAT <Array>. mini()

NOTE
Array has to be of type integer or double

Gets the matched index

find

FORMAT

find(<Array>, value)
Get index of all matched values in the array

Output is in array format

search

Get first index matching the value in an array

FORMAT

<Array>.search(value)

>> a = {1,3,4,5,6,6,6,6}
{1, 3, 4, 5, 6, 6, 6, 6}
>> b = a.search(6)
4

removeHead()

FORMAT

<Array>.removeHead()

>> a = {1,3,4,5,6,6,6,6}
{1, 3, 4, 5, 6, 6, 6, 6}
>> b = a.removeHead
{3, 4, 5, 6, 6, 6, 6}

indexOf

FORMAT

Variable.indexOf(value)

NOTE
Variable can be a string, array of string

If String array is used, output also will be an array

>> v = {"str1","str2","str3"}
{"str1", "str2", "str3"}
>> b = v.indexOf("str1")
{0, -1, -1}

substring

FORMAT

<String Variable>.substring(len1,len2)

Get the number of values (len1) start from position (len2)

>> v = {"abc1","bcd2","cde3"}
{"abc1", "bcd2", "cde3"}
>> b = v.substring(1,2)
{"b", "c", "d"}

eval
Here, by using eval we got the
decimal value of the Hexadecimal
equivalent

FORMAT eval(<string>)

>> a = "0x010"
"0x010"
>> b = eval(a)
16

Script Language

Script Flow Diagram
Input Port
Virtual Connection
Another Script

Init functions (Executed without input)
…….
LABEL: BEGIN (Code starts here)
……
……
……
SEND (output)
……
SEND (LABEL)
……
……
TIMEQ () or GTO (END)
…..

LABEL: New
……
TIMEQ(Event) or WAIT(Event)
……
QUEUE(put)
……..
……..
……..
QUEUE(Pop)

Output Port

Trigger

Start
Execution

Script
Or

Hardware Block

Event

Continue Execution
after placing copy of
current item in Queue

Original Token will
continue from here

All tokens waiting at a
TIMEQ will be output
on an Event

Input Queue

Script Sequence of Operation
Current executing data structure is called- port_token

All code prior to LABEL:BEGIN runs at init time

Block can have multiple input and multiple output ports

When data arrives at any input ports, DS is stored in input queue in the order of arrival with
portname
◦ No reordering for priority is done
◦ Virtual connections to LABELs have higher priority

Code executes similar to C

SEND can send to LABEL in same script, output port, Script block or IN

Script Sequence of Operation
When TIMEQ is reached, current DS is queued and new DS from input queue starts executing

When time changes and a DS pops out of a TIMEQ, it starts executing from the next line

When DS is stored in a Queue, it continues to execute from the next line.

When a DS is pop from the Queue, the pop DS becomes the port_token

When a WAIT is encountered, no other port_token can execute

TIMEQ and WAIT can be triggered to pop either using a Delay (provided along with the DS) or
using an EVENT from any where in the model (name provided along with DS)

Script Functions
Keywords
if, if-else, else, else-if

single line if-else

While

for

LABEL

SWITCH/CASE

CALL/ RETURN

Reserved words
port_token

port_name

TNow

TStop

TResolution

local_memory

local_memory_name

Address

Methods
QUEUE
TIMEQ
SEND
PLOT
WAIT
EVENT
GTO

Script Parameters
STANDARD

◦ Block_Name
◦ Single_Cycle
◦ Breakpoint

HIDDEN PARAMETER

◦ Max_Queue_Length
◦ Number_of_Queues
◦ Add_Scheduler_Times_to_DS
◦ Maximum_Loops
◦ Read_File
◦ Save_Files
◦ Profile_File
◦ Listen_to_File
◦ Path

List of Methods

7/18/2022

GTO (3)
WAIT (time*)
SEND (port,token*)

QUEUE(Queue_Name,Token,Priority,Cmd)
Cmd = Put,Pop,Length,Copy,Take,Stats

TIMEQ(Queue_Name,Token,Priority,Cmd,Time*)
Cmd = Block,Non_block,Length,Copy,Take,Stats

PLOT (Plot_Name,Dest,Color,Offset,Value*)
Dest = output port or virtual connection

*Denotes RegEx can be used.
Grey entries used by conditional statements, red for Script only.
QUEUE, TIMEQ place result in “port_token”.
“Length” sets a block variable “length”.
If Cmd is “Set”, then Priority indicates the position.

GTO Function

7/18/2022

GTO (relative address*)
GTO (LABEL*)

*Denotes RegEx can be used.

LABEL Function

7/18/2022

LABEL: MyLabel

Note: MyLabel can be a fixed value or parameter of the model.
It cannot be a Variable.

WAIT Function

7/18/2022

WAIT (time*)
WAIT(Event Name)

*Denotes RegEx can be used.
WAIT is a blocking wait, does not allow other inputs to
execute.

Event is triggered from anywhere in the model.
Can be used to trigger at a particular time or dependency
If value is integer or long, then aligns to Clock boundary, else delay

SEND Function

7/18/2022

SEND (port, token*)
SEND (virtual_connection, token*)
SEND (LABEL, token*)

*Denotes RegEx can be used.
SEND to LABEL creates a new thread

QUEUE Function

7/18/2022

QUEUE (name, token, priority, command)
Addition functions are:
QUEUE (“MyQueueName”, “length”) ->Gets the length
QUEUE (“MyQueueName”, “stats”) -> Generates stats
QUEUE (“MyQueueName”, “get”)
QUEUE (“MyQueueName”, “pop”) ->removes head of Queue
QUEUE (“MyQueueName”, “copy”) ->get first item in Queue.
QUEUE (“MyQueueName”, “put”)

Single dimension queue and length is determined by the Hidden parameter
Length and stats require a variable on the LHS
Get and pop will write to port_token
Values for name, token, priority, command supports DS.field notation.
RegEx expressions for the arguments are not supported.

TIMEQ Function

7/18/2022

TIMEQ (name,token,priority,delay)
Eg: TIMEQ (“MyTimeqName”, port_token, 0, 1.0)

Additional Functions:
TIMEQ (“MyTimeqName”, “length”)
TIMEQ (“MyTimeqName”, “stats”)
TIMEQ (“MyTimeqName”, “copy”)

name, token, priority, delay supports DS.field notation.
RegEx expressions for the arguments are not supported.

PLOT Function

7/18/2022

PLOT (name,dest,color,offset,value)

name, dest, color, offset, value supports DS.field notation.
RegEx expressions for the arguments are not supported

If-Else Conditional Statements

7/18/2022

if (port_name == “input”)
{

SEND (output, port_token)
}
else if (port_name == “input2”)
{

SEND (output2,port_token)
}
else
{

SEND (reject,port_token)
}

port_name and port_token are Script/Smart_Controller
identifiers for port name source + active token.

While Conditional Statement

7/18/2022

while (MyFlag)
{

if (Queue_Length > 0)
{

MyFlag = false
SEND (output, port_token)

}
}

MyFlag is an instance variable defined in self_start.
Queue_Length is a memory location being set outside this while loop.
If Queue_Length > 0, MyFlag will be set false, SEND to output and
drop out of while loop.

For Conditional Statement

7/18/2022

for(idx=0;idx<10;idx=idx+1)
{

port_token.length=irand(idx,20)
SEND(output,port_token)

}

The for loop runs until idx gets the value 10. For each run a random
integer value between idx and 20 is generated and is assigned to a
Data structure field called length. Then we use SEND() function to
send the data structure out.

SWITCH, CASE Statement

7/18/2022

SWITCH (port_name)
{

CASE: input
SEND (output, port_token)

GTO (END)
CASE: DEFAULT

SEND (output2, port_token)
GTO (END)

}

SWITCH and CASE are spelt as all caps
Last CASE needs to be DEFAULT.
Case can flow through to next case if no GTO()

CALL, RETURN Statements

7/18/2022

<Normal Flow>
CALL (MySubr)
SEND (output, port_token)
GTO (END)

LABEL: MySubr
port_token.INDEX = 0
port_token.TIME = TNow

RETURN

CALL, RETURN all caps.
RETURN statement should have the same port_token when
CALL was executed, else will not RETURN correctly.
CALL will stop the current flow to execute this subroutine
When done it will return to the next line
Port_token must be of type data structure, else a error will be reported.

How to Read or Write a DS Field or Variable

port_token.MyField = MyVariable + port_token.MyField
WAIT(1.0)
SEND(output, Token)

input output

Variable is a global variable.

MyFieldToken = readField(port_token,”MyField”)

MyToken = readMemory(”MyVariable”)+ MyFieldToken

MyToken = writeMemory(”MyVariable”, MyToken)

WAIT(1.0)

SEND(output, Token)

input output

Advanced: Calculate field or variable name

Basic: Field or variable name fixed

How to use “port_name” and“port_token”

7/18/2022

if (port_name == “input”)
{

SEND(output, port_token)
}
else if (port_name == “input2”)
{

SEND(output2, port_token)
}

input

input2

output

output2

port_name == “virtual” for virtual input, can use field of data
structure for further selection.

WAIT as a blocking Switch

7/18/2022

if (port_name == “input”)
{

WAIT(1.0)
SEND(output, port_token)

}
else if (port_name == “input2”)
{

WAIT(1.0)
SEND(output2, port_token)

}

input

input2

output

output2

Script or Smart_Controller has a common queue for
input Transactions, and allows blocking operation if two
Transactions arrive at the same time.

TIMEQ as a non-blocking Switch
if (port_name == “input”)
{

TIMEQ(port_name,port_token,0,non_block,1.0)

SEND(output, port_token)
}
else if (port_name == “input2”)
{

TIMEQ(port_name,port_token,0,non_block,1.0)

SEND(output2, port_token)
}

input

input2

output

output2

How to use QUEUE

7/18/2022

If (port_name == “input”)
{

QUEUE(port_name,port_token,0,”put”)
TIMEQ(port_name,port_token,0, 1.0)
QUEUE(port_name,port_token,0,”pop”)
SEND(output, port_token)

}

input output

The above QUEUE will keep statistics for Transactions that
arrive while the delay executes. This models a simple delay,
yet keeps track of active Transactions. TIMEQ is also sufficient.

Script (only) How to PLOT a Transaction

7/18/2022

input

if (port_name == “input”)
{

PLOT(port_name,”MyPlot”,”red”,0,1.0)
WAIT(1.0)
SEND(output, port_token)
PLOT(port_name,”MyPlot”,”red”,0,0.0)

}

output

“MyPlot”

0.0

1.0

1.0

Time

input

Use DS_TimeDataPlotter to plot the output values

Script, SC to Virtual Connection Block

SEND(“MyIN”, port_token)
input output

IN or DEMUX Virtual Connection Blocks

“MyIN”

Note: SC shorthand for Smart_Controller.

Script, SC to Script, SC Communications

7/18/2022

Block_Name: MyBlock (Parameter)

SEND(MyBlock2, port_token)
input output

“virtual” is keyword, DS can contain further information

Block_Name: MyBlock2 (Parameter)

if (port_name == “virtual”)
{

<my function>
}

input output

Note: SC shorthand for Smart_Controller.
Virtual input gets higher priority in the input queue

Script to SystemResource Blocks

7/18/2022

SystemResource or
SystemResource_Extend
Blocks

Block_Name: “MyVM”

Block_Name: “MySched”

done=scheduleTask(token,”MyVM”,”MySched”,time,tnow,priority,id,mutex)
if (port_name == “virtual”)
{

<my function>
}

input
output

Currently, triggers completion of Scheduled Event

RegEx: getBlockStatus() to Queue
getBlockStatus(String block_name_, String name_, int index_)
◦ block_name_ = Queue_Name
◦ name_ = “length”, “copy”, “take”, or “stats”
◦ index_ = Index of Queue (one based indexing)

Queue_Name + _Length
◦ One can obtain the length of a Resource Queue directly from a memory.

7/18/2022

Queue, Smart_Controller Example

7/18/2022

Max_Queue_Length: Param
Number_of_Queues: Param
Initial_Queue_State: “First_Token_Enqueue”
Queue_Reject_Mechanism: “Incoming_Token_Rejected”
Queue_Type: “FIFO”

input output

Queue

SC or VM

while (true) {
Select = 1
WAIT (1.0E-05)
while (Select <= NumQs && Deficit > 0) {

if (getBlockStatus(Smart_Resource_Name,"length",Select) > 0) {
token = getBlockStatus(Smart_Resource_Name,"copy",Select)
WAIT ((token.Size * 1.0E-06) / Controller_Speed_Mhz)
SEND (pop,Select)
Index = Select - 1
Thru(Index) = Thru(Index) + token.Size
Deficit = Deficit - token.Size
if (Deficit <= 0 || (TNow - Const_Time) > Period) {

Const_Time = TNow
Deficit = 128

}
}
Select = Select + 1

}
}

input
output

pop

Script - Traffic Generator Example

7/18/2022

LABEL: BEGIN
Token = newToken("Processor_DS")
Token.ID = 1
WAIT (Start_Time)
Token.TIME = TNow
SEND (output,Token) /* Send out first DS, Start_Time */
while (true)
{

WAIT(Mean_Time)
Token.TIME = TNow
Token.ID = Token.ID + 1
SEND(output,Token) /* Send out mean time DSs */

}

input output

Note: Assume Start_Time and Mean_Time are the parameters of the
block. Double click the block, add name and value, where value could be
a window level parameter.

Script, SC- DS input, Set Fields, DS output

7/18/2022

Count = 0
LABEL: BEGIN
If (port_token.containsRecordTokenLabel(“MyField”))
{

Count = Count + 1
port_token.MyField = Count
port_token.TIME = TNow
SEND(output,Token)

}
else
{

throwMyException(“No Field Named MyField.”)
}

input output

Note: Assumes MyField is an existing field with an integer type.

Script, SC- Search Array Example

7/18/2022

MyArr = {“one”,”two”,”three”}
LABEL: BEGIN

Search_Name = port_token.MyName
Search_Result = search(MyArr,Search_Name,0)
if (Search_Result != -1)
{

SEND(output,Token)
}
else
{

throwMyException(“No Search_Name: ” + Search_Name)
}

input
output

Note: search (Array_Name, Matching_Value, Starting_Index) will find
the first match or return -1.
search (Array_Name, Matching_Value) will return an array of
matching indexes, if none found will return {} (empty array with length
== 0).

Script, SC- How to obtain Statistics of Queues

7/18/2022

Note : This block obtains the statistics of the “Input_Queue” at the
end of the simulation (TStop) and sends to the port named
stats_out. QUEUE and TIMEQ named queues would be
accessed in the same manner.

Time = TStop
TIMEQ (“MyStats”, port_token, 0, non_block, TStop)
Stats_DS = getBlockStatus(Block_Name,"Input_Queue","stats")
SEND (stats_out,Stats_DS)
LABEL: BEGIN
TIMEQ (“MyInput”, port_token, 0, non_block, 1.0)
SEND(output,port_token)

/* Note: If the block has a WAIT, when the getBlockStatus
executes, then the WAIT can block the stats
from processing. In this case, it may be
better to have a separate block collect the
statistics, using the same getBlockStatus()
function. */

input

output

stats_out

Script, SC- Statistics Output
DISPLAY AT TIME ------ 20.00000000000 sec ------
{BLOCK = "Stats_Example.Input_Queue",
DELTA = 0.0,
DS_NAME = "Queue_Common_Stats",
ID = 1,
INDEX = 0,
Number_Entered = 20,
Number_Exited = 19,
Number_Rejected = 0,
Occupancy_Max = 1.0,
Occupancy_Mean = 0.5128205128205,
Occupancy_Min = 0.0,
Occupancy_StDev = 0.4998356074261,
Queue_Number = 1,
TIME = 20.0,
Total_Delay_Max = 0.0,
Total_Delay_Mean = 0.0,
Total_Delay_Min = 0.0,
Total_Delay_StDev = 0.0,
Utilization_Mean = 0.0}

Script, SC- How to Debug

output

Debug = false
LABEL: BEGIN
port_token = port_token /* Use “Listen to Block” */
Debug ? sendToCommandLine(“Incoming DS: “ + port_token.toString()) : 0
SEND (output, port_token)

/* sendToCommandLine() can send specific information
to the command line. Another approach is to set
the memory equal to itself and “listen to block”
to see the execution. The script itself may want
to have a “debug” mode to see DSs entering or
exiting the block, listing only key fields. */

input

Note: One can also listen to port to see DS’s entering or exiting.
Use the Single Cycle and Breakpoint options

Resources

Resources
• Consume time or quantity

• Can be distributed, shared or dedicated

• Timing: cycle or event

• Level of details
✔Abstract: Delays, Quantity and Buffering (Focus of this Chapter)
✔Detailed: Processor, Memory and RTOS

Resources- Definition
• Resource is an element required by an entity

✔ Channels
Zchannel blocks

✔ Queuing Resource
Queues

✔ Quantity-Based Resource
Resource_QS_Allocate

✔ Time-Based Resource
Server

✔ Scheduler Resource
SystemResource
SystemResource_Extend with SystemResource_Done

Selection of Resource
To hold a data structure until it receives the
permission to transmit
◦ Queue

To model a delay or a single processing stage in a
flow
◦ Server

To define multiple flows or applications and link
them to a single processing unit
◦ SystemResource

To create a complete system definition of bus,
cache and processor with multiple application
flows
◦ SystemResource_Extend

To define interfaces, networks or wires
◦ Channel

To define a quantity that can be broken down
into ether collection or indexed
◦ Quantity_Shared

If you want data to be sent out in a particular
order at different times
◦ Pipeline

To model single queue with multiple processing
resources that picks the next available
◦ Use Server_N

Queue

157 ReturnMirabilis Design Inc.

Provides the priority number
for reordering the queue.

Set how the packets should
flow

Queue Operation
• Data Structures are queued based on priority from high to low number

• Data Structures in the queue are arranged based on FIFO or LIFO setting

• Number_of_Queues defines the number of parallel queues contained by a single Queue block

• Queue Number Field selects the queue to place

•To pop a packet

•From the head of a queue, Queue_Number must be sent to pop_input port.

•Any position in the Queue, {Queue_Number, position) must be sent to the pop_input port

• When Maximum_Queue_Length is reached, packets are Rejected based on Rejection_Mechanism and sent to Reject_output

•Based on initial Queue State parameter,

•Enqueue: First Transaction can be enqueued and wait for the pop

•First_Packet_Flow_Through: First transaction send without pop. After first packet, head of queue sent if prior was acknowledged with pop

EventQueue (Deprecated)

Queue can be associated with dimension (Queue_N) and
priority (Queue_Priority)

✔Priority determines queue reordering and reject
mechanism

✔Dimension specifies number of parallel queues within
this block

Requires a pop to send DS on the output port
Delay not predictable in advance
Statistics generation is provided on lowest ports

External
Processing

Queue

“Transaction” “Transaction” “Pop to
Input”

Quantity Based Resources
• Passive Resources
• Resource units represent a quantity of items that must

be possessed before a transaction (DS) can continue
• Location : Full Library -> Resources - > Quantity-Based
• Queues requests if sufficient quantity of resource not

available
• Can index quantity and select contiguous or distributed
• Queueing Discipline - Enqueues input as FIFO or LIFO

Types of Quantity Based Resources

• Resource_QS_Allocate
• Consumes quantity of resources
• Contains a multiple queue with no reordering

• Resource_QS_Allocate_Priority
• Consumes quantity of resources
• Multiple queues with reordering

• Resource_QS_Free
• Free the resources allocated by Resource_QS_Allocate

161

Allocate and Free
• Allocate

✔ This is where the transaction attributes are set
✔ The input values specify transaction attributes
✔ If all inputs are enabled, requests for n units of resource are made
✔ When resource units granted to a transaction, outputs are enabled

• Free
✔ Resource units are held for arbitrary time (DS delayed in model)
✔ They can be freed by enabling inputs of Free block

Pool
Queue

Allocate Free

Examples
• Pages of memory in a computer

✔ A process requests x pages, waits if it can't get them immediately
✔ Once granted the requested number of pages, the process holds the memory an

indeterminate amount of time

✔ At a later time, the process returns the memory to a “pool”, where free pages are stored

✔ Upon being freed, pages may be allocated to other waiting processes

• Bus arbitration in hardware
✔ Pool initially consists of one token
✔ Each component which requires the use of the shared bus must request a token

✔ Once token is obtained, mutual exclusive access to the bus is assured
✔ Bus is freed when token is placed back into the resource

Addressing mode
• Non-indexed resource units--default

✔ Token Pool
✔ Indistinguishable items

• Indexed resource units
✔ Distinguishable items

✔ Request contiguous block of
resource units. Examples:

• Pages of memory
• Virtual circuit numbers in a

network
✔ Integer address (1st = 0)

Server
• Define multiple queues + time delay

• Active Resource
• DataStructures queued in FIFO or LIFO order

• Processing time is known in advance
• Provided along with the transaction to this block.

• SLOT
• Special operation mechanism
• Models any slot-based architecture such as multiple virtual

RTOS, TDMA etc.

165

Server

ReturnMirabilis Design Inc. 166

Server has a special
parameter called “Time
field” to delay head of queue
before sending out

Operation
• Queue_Number_Field selects the queue

• Queue is reordered based on Priority field

• Queue data in FIFO or LIFO based on Queue_Type

• Delayed by Time_Field value at head of queue and
sent out

• DS sent to reject_output when
Max_Queue_Length reached

Time- based Resources

1 Queue- 1 Resource

Multiple instances
1 Queue- 1 Resource

1 Queue- |
Multiple Resource

Resource Statistics
• Generated statistics using
✔Resource Statistics
✔RegEx Function- getBlockStatus
✔Array Lookup- Queue(Name, length)

• ResourceStatistics bloc
• Supports System_Resource, System_Resource_Extend,

Queue, Server, channel and Quantity Shared Blocks
✔ Buffer Occupancy, delay, utilization, Number of

Transactions entered, exited, rejected

• Array Lookup
✔ eg: Length_A = Queue_Length(1) -> This gets the

length of Queue Number 1

Resource Statistics

170

Statistics Name Value Explanation

Number_Entered 100 Number of transactions entering the queue

Number_Exited 25 Number of transactions that left the queue

Number_Rejected 10 Number of transactions rejected and output to reject port

Queue_Number 1 Queue Number. Queue number start at 1.

Occupancy_Min 4.0 Minimum queue size during the simulation

Occupancy_Mean 8.0 Mean/Average queue size during the simulation

Occupancy_StDev 3.0 Standard Deviation from the Mean queue size during the simulation

Occupancy_Max 25 Maximum queue size consumed during the simulation

Total_Delay_Min 1.3 In seconds. Least time through the queue+server among all transactions

Total_Delay_Mean 1.3 In seconds. Mean/Average time through the queue+server among all transactions

Total_Delay_StDev 1.3 In seconds. Standard Deviation from the Mean time through the queue+server among all transactions

Total_Delay_Max 1.3 In seconds. Maximum time through the queue+server among all transactions

Utilization_Mean 10.0 Mean utilization of the server portion only. Queue utilization not considered

Statistics & Debugging
Applies to Queue, Server, Server_N, SystemResource
and Channel
Generate using:

• ResourceStatistics block
• Name + "_" + Length(queue_index))
• RegEx

Concept of System Resource
Concept
◦ Split operation into two parts
◦ Behavior or mapper
◦ Resource (similar to Server)

Blocks
◦ Behavior: Mapper, SoftwareMapper, DynamicMapper
◦ Architecture: SystemResource_Extend, SystemResource
◦ Notify: SystemResource_Done

Multiple concurrent requests
◦ Send from Mapper (Behavior) to the SystemResource with the

delay information
◦ Can be static or dynamic reference
◦ Scheduler: First Come-First Serve, Round-Robin, Preemption,

Non-Locking

SystemResource_Done block
◦ Release appropriate SystemResource_Extend block by

signaling the completion of an external task

172

Architecture

Behavior
SoftwareMapper

DynamicMapper

System Resource

Mirabilis Design Inc. 173

This is the name of this
SystemResource block and is used by
Mappers, RegEx and other
SystemResource block to call this
block to execute a transaction.

Next_Resource is the name of the
next hierarchical System Resource,
which can be SystemResource or
SystemResource_Extend block.

System Resource (Cont.)

Mirabilis Design Inc. 174

Set Scheduler type from the range
of schedulers

Time the scheduler will devote to
each task for Round Robin

Application comparisons

System Resource Extended

175 ReturnMirabilis Design Inc.

Application comparisons

- Double click to configure

176

Example Model

Preemption
• Possible with System_Resource

• High priority task preempts the currently

executing Low Priority task

Hierarchical
TOP_SR

• Possible with System Resource

• The System Resource can refer to another
System Resource or System Resource
Extend for actual Processing

Non Blocking

FCFS Non- Blocking FCFS

• Possible with System_Resource_Extend

• Multiple Data Structures can be executed
between the output and the
SystemResource_Done block.

Application Examples of System Resources

180

System Resource
SystemResource_Extend SystemResource_Done

Differences
Features System Resource SystemResource_Extend

Preemption Yes No

Hierarchical Yes No

Extended Task Processing No Yes

Non – Blocking No Yes

What is Mapper?
Connect behavior flow with architecture resources

▪ Takes incoming Data Structure and sends to
▪ SystemResource
▪ SystemResource_Extend blocks

▪ Placed in the behavior flow where timed resources required
▪ Consumes zero time, no queue, no arbitration

Mapper System Resource

8/18/2020 MIRABILIS DESIGN INC. 182

Software Mapper
Hardware or Software Task issuer

▪ Sends tasks to SystemResource or SystemResource_Extend based on Target_Resource
▪ Delay at Resource provided by the distribution between Task_Mean_Time, Task_Spread_Time

and the Task_Distribution
▪ Block can either Queue incoming Data Structure or send to SystemResource immediately
▪ Mutex=true means that the DS cannot be preempted

8/18/2020 MIRABILIS DESIGN INC. 183

Attributes to issue
the task to
System Resource

Lock out all other tasks from
preempting this Task at the
SystemResource

Dynamic Mapper
Mapping of tasks on
▪ Target processor,
▪ SystemResource
▪ SystemResource_Extend

8/18/2020 MIRABILIS DESIGN INC. 184

Dynamic Mapper Overview
● This block accepts a data structure on the input and sends this along with the information in

block parameters to the target resource (processor or SystemResource).
● When the resource completes the processing, the data structure is returned to this block, which

places it on the output port. The Task_Destination determines the target resource.
● The Destination, Instruction, Time and Priority can be accessed from the Database or the field

content. If the Database_Lookup is the Linking_Name of a block, then a database is available.
The database row to use is matched with the Task_Name from this block.

● If the Database_Lookup value is "None" or default, then no database is available.

Dynamic Mapper to Processor

Mapping function to a target processor

writeStats To File
• Generates Statistics for all the blocks in the model

at the end of simulation

• Writes into a Text File in the model directory

Using Channel Block
Types of System Components

•Entity
✔ Bus
✔ DMA Controllers
✔ Wireless Channel

•Using Channels in place of Timed Queue
✔ Add logic to each Server resource
✔ Contains both 1-to-many and 1-to-1 channel structure
✔ Add more details when access to the channel is provided
✔ Impact of data access or fragmentation
✔ Create multiple channels from a single buffer
✔ Create non-blocking and blocking conditions

Channel Blocks
• Channel, Channel_Priority, Channel_N & Channel_Release
✔ Channel_N has a dedicated queue for each Channel
✔ Channel and Channel_Priority have a single Queue
✔ Channel_Priority support priority for ordering the queue only

• Model fixes number of channels

• Queues request and allocates channels as they become available

• Channel Block
✔ Latency= Channels Activity + Channel_Rate * Packet_Size

• Channel_N and Channel_Priority

✔ Latency= Channels Activity

• Channel_Release releases the Channel and transmit next task

✔ Supports retransmission for rejected transactions

• Used for modeling Bus, wireless channels and DMA

Using the Channel Blocks

Scheduler
• Reordered based on

1. Priority

• Queue Management:
1. FIFO
2. LIFO
3. FCFS
4. Round Robin
5. Weighted Round Robin
6. Weighted Fair Queuing
7. Deficit Round robin
8. Strict Priority

8/18/2020 MIRABILIS DESIGN INC. 191

Scheduler

8/18/2020 MIRABILIS DESIGN INC. 192 Return

Differences and Usage
• EventQueues and Queues
✔EventQueue requires multiple inputs for store and pop
✔Queues access required data from fields of the Data Structure
✔Queues content and statistics access via RegEx

• TimedQueues and Server
✔Timed Queue requires multiple inputs for store and pop
✔Server access required data from fields of the Data Structure
✔Server has SLOT queue types for multiplexed access
✔Queues content and statistics access via RegEx

Differences and Usage
• Server and Delay
✔Delay schedules each incoming data structure at the Current Time + Delay
✔Delay block does not preserve the order
✔Server block first queues each data structure
✔Server block starts the delay only when the data structure is the head of the queue
✔Server block preserves the order
✔Server block queue is reordered based on Priority

• Server and SystemResource
✔Server block is used when there are a large number of identical devices
✔Bus with parallel lanes, multiple core, multiple input channels and output channels

✔SystemResource is used when Requesters are distributed in the model
✔There can only be 64 SystemResource in a model
✔SystemResource support Preemption, hierarchical reference and advanced processing

Learn More by Reviewing Training Recordings
Watch Tutorials

- Training Part 1 (54 minutes):
https://www.youtube.com/watch?v=9JHcLm0w2-4

- Training Part 2 (65 minutes):
https://www.youtube.com/watch?v=LY-imqaSBwc

- Training Part 3 (42 minutes):
https://www.youtube.com/watch?v=3H7YaZ0wrwg

Mirabilis Design Inc. 195

https://www.youtube.com/watch?v=9JHcLm0w2-4
https://www.youtube.com/watch?v=LY-imqaSBwc
https://www.youtube.com/watch?v=3H7YaZ0wrwg

Debugging

Debug
• Debugging is the process of:

a. figuring out where the bug is
b. figuring out how to fix it.

• Debugging proceeds from the point at which the realization of an error occurs, to finding the
earlier point at which the error was introduced.

Types of Debuggers
• Breakpoints

• Stop & Restart

• Trace Tracking

• Animation

• Dynamic Plotters

• Listen to Port

• Listen to Block

• Listen to Simulator

• Digital Debugger

• Error Messages

• Batch Mode Simulation

• Power Timing Diagram

• Variable Dump

• RegEx

• Script Debugging

• Data Structure Fields

• AutoSave

• Logger for Verilog and SystemC

• Plotters & Text Display

Model Construction - Strategy
Create blocks as individual Sub-Models and Hierarchical blocks
◦ Test each Hierarchical block prior to adding to a big model

Build-in tests using Displays, debug statements

Check flows within a Hierarchical block using
◦ Animation and the simulation profiler set to Run mode

Check block usage
◦ Set Digital Simulator profile to Summary mode

Set a Debug flag for each Hierarchical or sub-model.
◦ Use this to turn on and off debug statement

Setup monitors for key fields.
◦ Look at a smaller set of output in the Displays and Listen

During and End of Simulation
Error Message
◦ Identify the block listed in the Error Description and the Block Highlight in the block diagram view
◦ Review Possible Solution description to resolve

Listen to Block to see if the sequence of execution is correct

Listen to Port to see if the input and output field values are correct

Variable Dump block and see the values of the memory

View Command Line at the end of the simulation for the summary of total Simulator events,
synchronous event, asynchronous mix events, time taken and memory used

Follow the Data Flow
If TextDisplays has no output
◦ Check the block before it and follow up with each prior block
◦ Listen to Port to check the output values

Start at Hierarchical block levels to identify the right block
◦ Instance will display the Listen to Port.

Make sure the transaction is arriving from the correct source and going to expected destination

Does the Transaction ID sequence make sense?

Any special Transaction flags set, indicating mode of operation that is inconsistent with current
block

Animate Execution
• To view the dynamic operation of the model

• The Executing Block gets highlighted

• The time to highlight a block is in milliseconds

• To Start Animation:
Debug -> Animate Execution

• To Stop Animation:
Debug -> Stop Animating

Text Display, Plotters, Statistics

• To graphically display and analyze data collected
from the simulation.

• Helps to detect any errors in the behavior

• Statistics Generators - Generates statistics of all
resources and hardware blocks

• Extracts the appropriate fields in the data structure
or the entire object and display them.

• Plotter – Latency, throughput, etc

• Text Display – Entire Data Structure, any value
coming in the input port

Resource statistics Architecture Setup

Statistics to Identify Behavior Errors

Listen to Port
• Displays each token passing through the port

• Used to check whether the data is flowing through the particular port

• If no data on the "Listen to Port" window , it indicates that the model did
not generate any output from that block.

• If there is no data, then one needs to check the ports, or virtual
connections driving this block to see that they are being activated correctly.

• Helps to debug errors in connections, routing and conditional branches.

•Usage
• Right click the required port and select Listen to Port

Listen to Block
• Gives more insight into the internal block operation

• Shows the sequence of execution, entry/exit, virtual
Send, threads

Support coverage
• All blocks except

• Hierarchical blocks
• instantiated hierarchical class

• Provides simulator level information relative to
methods being fired, and so on. Simulator information
is most useful for evaluating custom blocks in the
simulation environment.

• Right click on the block and select Listen to Block

Error Message

Mirabilis Design Inc. 207

Message
• Highlight Error Block
• And Error Message

Fields of the Data Structure
• Each Data Structure (DS) has header fields that

provide information as to its source, ID increment,
and time created.

• Traffic field list the originating block
• ID indicates the sequence of generation
• TIME is a generation time stamp

• These are valuable clues if a request does not
arrive or arrives out of order.

Time and Task Tracer fields
• Set of arrays that are updated with the name and time stamp every time the

Data Structure enters or departs a Resource or Architecture block.

Tracer
• Enables the capture of execution of multiple Scripts from
one location and the content is written to a field.

• Helps to check the interaction between scripts and if the
sequence of execution of instructions is correct.

• Data is written into a file called VisualSimTraceLog.txt which
can be seen under users/user folder/.VisualSim/

Memory Dump/Variable Dump
• This outputs the current value of all the global and
local variables in the model

• The output is a data structure with each field
representing one of the memories.

• Full Library ->Model-> Utility-> Checkers->
Variable_Dump

Power Timing Diagram
• Used to analyze the power consumption, battery

discharge, dynamic system changes, power state
changes of the devices which impacts the system
timing.

• Outputs the instantaneous, average and
State_Change information of top level and the other
powerTable located in hierarchical blocks.

• Power Statistics and Report
✔ Instantaneous Power (port)
✔ Average Power consumed (port)
✔ Power Dissipated (port)
✔ Instant (powerCurrent) and total power consumed

(powerCumulative) by device

Batch Mode Simulation
• Batch Mode Simulation enables the user to schedule
multiple simulation runs with different parameter
values.

• The Plot manager is linked to the Post Processor

• The success or failures of the simulation runs are
reported on the terminal windows executing the
script and in the
"Batch_Mode_Results_Summary.txt".

RegEx
• Provides status and visibility into resource and
hardware blocks in the execution flow.

✔readAllVirtual() - Provides the List of virtual Blocks in the model.

✔readAllMemory() - Provides a output of all local and global memories and their current value.

✔getBlockStatus() - The statistics for the blocks are generated using the getblockStatus RegEx
function with the type, length, stats etc.,

✔getResourceActivity() - Used to access the information in the database block. It returns an
array of the current queue length of the resources listed in the named column.

Script Debugging
• Breakpoints

• Check variables

• Profiling

• Single cycle step-through

• Script Profiler

• sendToCommandLine(“MyMessage”) added to script

• Build-in DEBUG messages for subsystem
✔Entering, Exiting Subsystem
✔Executing each major block
✔Unexpected states
✔One line per transaction, easy to read

Script Profiler
• Keeps track of the number of times a statement executes and the average time the
statement took to execute down to the nano-second level.

• Referred to as Code Coverage in lower level verification testing

• Used for finding Algorithmic Bugs after finding functional bugs

Profiling
• Generates the Instruction Mnemonics for the execution of the script

• Used to check the Algorithmic Flow

Listen to Simulator- Digital Debugger
• Provides a sequence of execution for the
selected simulation.

• Integrated with Digital Debugging utility in
the Digital simulator.

• This window displays the usage statistics,
current block execution, and model
summary information.

• Debug -> Listen to Simulator

Digital Debugger parameters
• Off – Disables the Debugging Mode

• Pause – Turns the Debugger to Stop at every block in the model Flow. Provides summary at the end
of Simulation

• Run – Records the order in which each block is fired in the model. Provides summary at the end of
simulation.

• Summary Only – Generates the List of all the blocks at the current level of simulation and the levels
below

For each Block
✔ Records the number of time each block is fired in the model
✔ Average execution time for each firing
✔ Total time spent in each Block
✔It also lists the Blocks that are not executed in the model

Pause and Resume

• Saves the simulation data, events and status in a file

• Handy to debug simulations that run for a large period of time.

• User can analyze system behavior at various points in the simulation.

• User can pause at a timestamp and analyze the system response and continue simulation step by step from that
point onwards.

• The system can be analyzed for required functionality and also helps the designer to identify if the crucial tasks
are being executed within the deadlines.

Autosave
• VisualSim provides the ability for the user to continuously save the currently open
model, if they are modified.

• The interval between the saves is set in the VSconfig.properties. The format is:
Auto_Save_Time=2 Where the number on the RHS is the time interval between saves.

• The intermediate xml files are saved in the <User Home>/.VisualSim directory.

• The format is as follows: Scheduler_SW_FCFS_Preempt_20151127_143903.xml
Where

File Name : Scheduler_SW_FCFS_Preempt

Date : 20200214- Here is it 2020 February 14

Time : 193603 is 7:36:03 PM

Checking Timing and Events
• Check expected order of execution

• Check Event Names match between WAIT, EVENT

• Check Event_Name field is removed after use and not reused inadvertently

• Check whether transactions are generated at the clock boundaries

• Perform listen to block of Script to see timing of transactions, types
✔ Add messages to keep track of array values
✔ Try to capture the essence of the block execution in one line messages

Other Debugging Functions
• Code Debugging
✔Attach a standard debugger to the process
✔Add any compiler options to the batch file
✔Copy logger.Properties from doc/SystemC directory (Used in CustomCPP, Verilog and SystemC)

• Visibility into all communications and execution at code-level

Configuring System Blocks

Digital Simulator
Where to get digital simulator?

Simulation Duration

Enable Statistics Report

Common Parameters to Edit

Parameter
1. Drag-n-Drop the parameter from Library Folder
Model Setup >Parameter ('parameter=') into an open
Block Diagram Editor window.

2. Right-click to select Customize Name of parameter
& enter a name. Name must be unique, else BDE will
generate exception.

3. Double click the new parameter name to set the
value of the parameter.

Variables

• List of possible Variable types
• Set to local or global

Traffic

Select the “Time_Distribution”
according to design

Restrict the number of
transactions

- Double click to configure

Delay to start output
Select custom Data Structure File

Default:- Header, Pulse
Processor_DS and Task_Class

Mean/Min
Value

Max/Std Dev Value

Custom Traffic

Time_Interval is period of traffic

Time_Pause is quiet period
between transfer range

Number_of_Transaction
during each Time_Interval

Trace File Input

I_Cache_Address,A_Instruction,D_Cache_Address
array,array,array
{"0x1044c","0x10450","0x10454"},{"mov","mov","ldr"},{"0x00","0x00","0xbefffe50"}

File Format- csv file only
• First line are the column names
• Data type per column
• Values of any data type

Trigger one row

Output one row for
each trigger

Boolean value with
false being EoF

Using Traffic Reader Block

Input trigger, Use Processor_DS
for Hardware

Merge Input and Trace row

To and return from
processor, bus or memory

Loop until file is empty

Send out when file is done

Delay

231 ReturnMirabilis Design Inc.

Input.FieldName
Variable
Parameter
RegEx expression
Double value

File I/O

8/18/2020 MIRABILIS DESIGN INC. 232

Any data value

fileName to save in model folder
Using Selector button for full path

Add to existing file

Overwrite current content

Write Stats To File

Select in Digital Simulator

TimeData Plotter

234 Return

Name for Datasets in
order of connection

Select View or Save file
For large files, use Save

FileName required for
savePlot. Extension .txt

Text Display

Any data type

Select View or Save file
For large files, use Save

FileName required for
savePlot. Extension .txt

Display in Top bar

Database

LinkingName access this Database
from other database and RegEx

File name+path to csv file
Use for big file

Enter table hereInput DS fields to compare

Data Structure

Matched Row
/Array of rows

No match return
Data Structure

Database columns to compare

Type of output

Read/Write/Erase

In

237 Return

Value is DS, DS field, variable or parameter
Destination can be parameter or string
If no ‘.value_output’, send incoming value

Out

238 ReturnMirabilis Design Inc.

Concatenated string of string DS, DS
field, variable and parameter.

Queue

239 ReturnMirabilis Design Inc.

Priority to reorder queue. Field,
parameter, Variable or RegEx

Queue organization

DS

DS

DS, if
Queue full

Queue Num (or)
{QueueNum,Position}

Field, parameter,
Variable or RegEx

Queue organization

When Queue is Empty:
Send now if prior DS
received pop after (or)
First token needs Pop

Quantity Based Resources

• Queue_Number_Field selects the queue

• Queue is ordered based on the Priority field

• Queues the data in FIFO or LIFO order according
to the Queue_Type selected

• If Indexed, resource amt must be sequential

• Blocking mechanism determines to fulfill request

System Resource

Mirabilis Design Inc. 241

Set Scheduler from list
Program custom schedulers in Java

Time the scheduler will devote to
each task for Round Robin

Time between tasks including
preempt

Relative- Mapper time is delay
Clock- Mapper time is cycles/Clock_Rate_Mhz

Used with Time_Type- clock

Mapper uses this name

Arrives virtual
From Mapper

System Resource Extend

242 ReturnMirabilis Design Inc.

Non-blocking means that next DS is delayed
and sent out immediately without waiting for
the previous to reach Done block

Time the scheduler will devote to
each task for Round Robin

Time between tasks

Relative- Mapper time is delay
Clock- Mapper time is cycles/Clock_Rate_Mhz

Used with Time_Type- clock

Mapper uses this name

Arrives virtual
From Mapper

Logic +
Delay

Hierarchical System_Resource
TOP_SR

Mapper

Unique ID for Plotting

Reorder queue

Delay in resource

Software Mapper

Lock out all other tasks from
preempting this Task at the
SystemResource

Unique ID for Plotting

Reorder queue

Distribution for Delay

Queue in Mapper/SR

Dynamic Mapper

8/18/2020 MIRABILIS DESIGN INC. 246

Unique Name

Match Task_Name to get
below field values

Array for Processor
Processor or SystemResource

Database LinkingName

For Plotting
Reorder queue

Delay in SystemResource

VISUALSIM TRAINING

	Slide Number 1
	Agenda- Part 3: VisualSim
	Parameters, Variables�& Data Structures
	Definitions of Parameter and Variable
	Parameter- Review and Application
	To Create New Parameter
	To Create New Parameter
	Parameter Types
	Parameter Usage
	Parameter Usage
	Parameter List
	Variable
	Variables
	Variables
	Variable Blocks and RegEx
	Accessing Variables
	VariableList- Applications
	What is a Data Structure?
	Data Structure
	Supported Data Types
	Base Data Structure: Header
	Common DataStructures
	Example of DataStructure Template�
	Field Usage
	Agenda- Part 3: System Libraries
	Key Library Components
	Library Organization
	Access Documentation of Library Specifications
	Online Video Introductions (1)
	Online Video Introductions (2)
	Online Video Introductions (3)
	Complete Systems-Level Library�
	Traffic, Reports and Interfaces
	Resources, Hardware and Algorithms
	Selecting the right block- 1
	Selecting the right block- 2
	Integration with SystemC
	Integration with Verilog
	Assembling a System Model
	Selecting the Right Block
	Traffic
	Data Structure Generation
	Defining Data Structure in Traffic Blocks
	Types
	This Parameter is an alternate to the Data_Structure_Name field above. If the user defines a file name here, the above parameter is not considered.
	Traffic- Application
	Traffic- Application
	Traffic- Application
	Type I - Statistical
	Type II - Custom
	Type III – Transaction Sequence
	Type IV – Custom Traffic
	Type V - Trace File Based
	Traffic Creation VI: Clock based
	Traffic Creation VII: �Event-and Queue- based Traffic
	Read and Write from File System
	File I/O
	File I/O
	Trace File Based
	writeStats To File
	SaveText in Plotters and TextDisplay
	Plotting, Displays and Statistics
	Result
	TimeData Plotter
	TimeData Plotter
	XY Plotter
	Histogram
	Bar Graph
	Text Display
	Text Display
	writeStats To File
	Behavior Modeling
	Processing
	Expression List
	Expression List (Cont.)
	Expression List (Cont.)
	Database
	Database
	Slide Number 79
	Operation
	Read Mode
	Demo for database model
	Database – Virtual Concept
	Database Access Using RegEX
	Slide Number 85
	Database Reference
	FSM
	Concept of Virtual Connections
	Virtual Connections
	IN, OUT, MUX, DEMUX (Bubble Blocks)
	In
	Out
	Join and Fork
	Virtual Flow Modeling
	Mapper to System Resource
	Mapper to Processor
	Script To Script
	Database – Virtual Concept
	Virtual Connection Modeling
	Utility Functions
	RegEx
	RegEx
	Script to SystemResource Blocks
	getBlockStatus() to Queue and Server
	Virtual�Use in ExpressionList and Script blocks
	newArray
	length()
	Append()
	min()
	mini()
	find
	search
	removeHead()
	indexOf
	substring
	eval
	Script Language
	Script Flow Diagram
	Script Sequence of Operation
	Script Sequence of Operation
	Script Functions
	Script Parameters
	List of Methods
	GTO Function
	LABEL Function
	WAIT Function
	SEND Function
	QUEUE Function
	TIMEQ Function
	PLOT Function
	If-Else Conditional Statements
	While Conditional Statement
	For Conditional Statement
	SWITCH, CASE Statement
	CALL, RETURN Statements
	How to Read or Write a DS Field or Variable
	How to use “port_name” and“port_token”
	WAIT as a blocking Switch
	TIMEQ as a non-blocking Switch
	How to use QUEUE
	Script (only) How to PLOT a Transaction
	Script, SC to Virtual Connection Block
	Script, SC to Script, SC Communications
	Script to SystemResource Blocks
	RegEx: getBlockStatus() to Queue
	Queue, Smart_Controller Example
	Script - Traffic Generator Example
	Script, SC- DS input, Set Fields, DS output
	Script, SC- Search Array Example
	Script, SC- How to obtain Statistics of Queues
	Script, SC- Statistics Output
	Script, SC- How to Debug
	Resources
	Resources
	Resources- Definition
	Selection of Resource
	Queue
	Queue Operation
	EventQueue (Deprecated)
	Quantity Based Resources
	Types of Quantity Based Resources
	Allocate and Free
	Examples
	Addressing mode
	Server
	Server
	Operation
	Time- based Resources
	Resource Statistics
	Resource Statistics
	Statistics & Debugging
	Concept of System Resource
	System Resource
	System Resource (Cont.)
	System Resource Extended
	Example Model
	Preemption
	Hierarchical
	Non Blocking
	Application Examples of System Resources
	Differences
	What is Mapper?�Connect behavior flow with architecture resources
	Software Mapper�Hardware or Software Task issuer
	Dynamic Mapper
	Dynamic Mapper Overview
	Dynamic Mapper to Processor
	writeStats To File
	Using Channel Block �
	Channel Blocks
	Using the Channel Blocks
	Scheduler
	Scheduler
	Differences and Usage
	Differences and Usage
	Learn More by Reviewing Training Recordings
	Debugging
	Debug
	Types of Debuggers
	Model Construction - Strategy
	During and End of Simulation
	Follow the Data Flow
	Animate Execution
	Text Display, Plotters, Statistics
	Statistics to Identify Behavior Errors
	Listen to Port
	Listen to Block
	Error Message
	Fields of the Data Structure
	Time and Task Tracer fields
	Tracer
	Memory Dump/Variable Dump
	Power Timing Diagram
	Batch Mode Simulation
	RegEx
	Script Debugging
	Script Profiler
	Listen to Simulator- Digital Debugger
	Digital Debugger parameters
	Pause and Resume
	Autosave
	Checking Timing and Events
	Other Debugging Functions
	Configuring System Blocks
	Digital Simulator�
	Parameter
	Variables
	Traffic
	Custom Traffic
	Trace File Input�
	Using Traffic Reader Block
	Delay
	File I/O
	Write Stats To File
	TimeData Plotter
	Text Display
	Database
	In
	Out
	Queue
	Quantity Based Resources
	System Resource
	System Resource Extend�
	Hierarchical System_Resource
	Mapper�
	Software Mapper�
	Dynamic Mapper
	Slide Number 247

