
VISUALSIM TRAINING

Agenda- Part 4: Hardware Modeling
Architecture Library Overview 391-401

Configuring Hardware Blocks 402-421

Architecture Setup and Device Interface 422-429

Bus-Cache-RAM 430-452

Processor Modeling 453-480

Technology-specific Hardware Modeling 481-520

Power Modeling 521-576

Architecture Library Overview

Basic Components to define
Hardware modeling requires Architecture_Setup block

If using Traffic or other custom block to connect to a Bus, use the Device_Interface block in front
of the Bus port
◦ Also true for AXI, PCIe and NoC

Processor block requires InstructionSet

Parts of a System
Anything in Electronics
◦ Network
◦ Protocols
◦ DSP
◦ Processor, memory, bus, cache and

DMA
◦ Accelerators, AI pipeline
◦ Software task graph, trace file,

instruction sequence or software
code

Support
◦ Power Table
◦ Statistics and Report generation
◦ Traffic, trace, trigger, interrupt

Exploration
◦ Parameters

Electronics
Master
◦ Processor, DMA, Master-Generic

Non-Master
◦ Bus- Linear (AHB), Crossbar(AXI), Switch and Network-on-chip(CMN600)
◦ Memory (SRAM, DRAM, Flash)
◦ Slave- Generic

Software
◦ Traffic, Workflow, Profile-driven, Trace-Driven, Generated profile

Architecture Library Overview
•Generate architecture with parameterized blocks

•Define hardware and software components

•Create proposed or derivative architectures in few
minutes

•Rapidly define application flow diagram and behavior

•Optimize architecture and functionality mapping
combination

Hardware Modeling Library

Hardware Architecture Exploration
• Size processor, memory, cache, bus & RTOS for target application(s)

• Select arbitration algorithms for switches, custom buses and controller

• Optimize pipeline flows, control operation and input stacks/queue

• Partition applications between processors, ASICs and on FPGAs

• Explore potential architectures against wide-range of traffic stimuli

9

Software and Algorithm
Performance Optimization

• Select or validate target architecture performance for application
execution

• Trade-off thread distribution across multi-core or multi-processor
systems

• Create stimulus models of the software to handoff to hardware design
teams

• Evaluate different arithmetic flow and coefficients for performance on
target architectures

Assumptions
• Instruction list is for the timing, branch prediction and load/store operation only

• Behavior of the instruction is ignored except for branches and Load/Store operations

• Sequence of instructions is managed with the Reorder Buffer after the Execution Unit

• Pipeline is a single uninterrupted sequence
✔Can send request to external devices but there are no intermediate queues
✔Adding queues or special operations will have an impact on the cycle count. Intelligent

planning can minimize the extra cycles

• All instructions read from two registers and write to a third register

• Number of instructions per DS must be less than 4,000 to evaluate the performance

Source of Data
•Microprocessor User’s manual

•Programmer Reference Guide

•Key information
✔Features
✔List of peripherals and interfaces
✔Cache and memory
✔Pipeline
✔Instruction list by Execution Unit
✔Timing for each Instruction
✔List of Execution Units
✔Clock speed
✔Minimum peripheral information- clock speed, width, FIFO buffer, line width, memory/cache size, burst

size(DMA and Bus), number of channels (DMA)

Model Routing Table
• Provides connectivity information for the model

• Hello messages are sent by all masters and Slaves to add to the Routing Table

• Maintained in the ArchitectureSetup block

• Currently used by
✔Req-Ack, Linear, AHB and PCI buses
✔Switches, Processor, DRAM and Cache

• Standard VisualSim hardware blocks get added to the Bus

• Custom blocks can be added by
✔Connecting the custom components to a DeviceInterface (HardwareSetup ->

DeviceInterface) which is in-turn connected to the Bus

✔Using the Utility Function- addDeviceToBus to enter the connectivity information for
this device in the Routing Table

Analysis and Results
• Common Statistics for all devices

✔End-to-end latency and Task Delay
✔Throughput (MIPS or MB/s), Utilization (%), Task Delay
✔Minimum, maximum, mean and standard deviation

• Processor
✔Individual statistics for Internal Caches, Execution Units, registers, Pipeline
✔Flush Time, Stall (%), Thread swaps and Context switching
✔Detailed pipeline activity

• Cache
✔Hit-miss Ratio

Configuring Hardware

Architecture_Setup and Device_Interface
Arch_Setup is required
-No change required

Custom blocks to Bus/NoC
-Flip ports to change
direction

To
Master To Bus

Set field values here or
keep default to use
existing field values

Major Blocks and Location

Not required

Processor and L1 Cache

Trace Mode

Profile-based

Use Processor_DSA_Instruction
A_Variable
A_I_Cache_Addr
A_D_Cache_Addr

A_Address
A_Command

A_Address
A_CommandA_Instruction

A_Variable

Trace Input
Instruction array

Instruction address array

Data cache address array for Load and Store operations

Derived from
Processor Fast models

I_Cache_Address,A_Instruction,D_Cache_Address
array,array,array
{"0x1044c","0x10450","0x10454"},{"mov","mov","ldr"},{"0x00","0x00","0xbefffe50"}

Processor
Unique Name

Key Parameters to modify

Required

Execution Units

Datapath to D-cache

Issue Queue

Instruction Set

Instruction Set
Name of the Exec Unit

Instruction Name
Latency Value is
Single (or)
RangeExec Unit Types

INT
FP

Bus Arbiter and Interface

{Read, Write}

Bus Arbiter

Required
Unique Name

List all devices connected via
this port. Index is in order of
name- Port_1, Port_2 etc

Cache- Key Parameters
Unique name

Minimum Required field
Extra cycle to match harware

Stochastic

Optional but
increase accuracy

Used for stochastic

Memory Controller and HW_DRAM

Memory Controller

Look at JEDEC spec or
Datasheet

From vendor Datasheet

HW_DRAM- DDR, LPDDR, GDDR

From vendor Datasheet

Look at JEDEC spec or
Datasheet

JEDEC & User-setting

SRAM and Stochastic Memory

For SRAM, set to false

In ns for one width access

Required field

Activate & Overhead cycles
Value is expression, variable or
field

AXI Required

Required
Required
Slave Buffer

Master Buffer (Not required)
Speed up simulation. List last
connected number

Required. List all Devices
through each Slave

If flow control support
for Master/Slave device

PCIe

Can be common or array for each port in order starting from
top-left and continuing through top-right

Required: List of all the Devices
connected to each End-Point

Required: Determines speed

DMA

Input to
DMA block

Sequence of items
Index match
Common Priority

Use Input (none) or Database (Name)

Required
Per channel, num sent before Ack

Match input fields

Sequence
Operation Destination Send as

Burst size
Channel
Number

Transfer
Size

Generic NoC (Other NoCs are similar)

All blocks required
• Use Master NIU when device is to left
• Use Slave NIU when device is to right
• Wire is optional for delay and power
• NoC Setup is just a hierarchical block

and inside blocks can be edited

Router, NIU and Wire

Processing Speed

Bandwidth is sum

Match this with BW

Used with Loop Topology

Used for name
and Mesh routing

Processing Speed

Input is from Device
Output is from NoC

Processing Speed

Number of

Required for Routing

Architecture Setup and Device
Interface

Architecture Setup
All Bus and Hardware block must associate with Architecture Setup

This Block Handles

⮚Routing

⮚Plotting

⮚Statistics

⮚Debugging for all the Hardware components

8/18/2020 MIRABILIS DESIGN INC. 35

1. There can be multiple architecture setup blocks
2. Each block must have unique name

Important Points for Architecture Setup

1. Routing table
• No need to update this Table
• Use the Device list in the interfaces blocks to define the path to a Slave
• Used to create a connectivity topology between devices connected together
• Sends out “Hello” messages to determine node-to node connectivity

2. Plotting
• Use the output_plot port to capture statistics in a graphical view
• Need to Configure Parameter for the port to set the number of datasets

3. Statistics
• Statistics accumulated during simulation are sent out multiple times

3. Listener
• View debugging messages for all blocks

The A_Destination
field will be the name

of the
Architecture_Setup

Routing Table Construction
- in Architecture Setup

Format Sample:
Source_Node Destination_Node Hop Source_Port

Source Destination Next Block Out Port
Processor DRAM Port_1 bus_out

Add entries using RegEX
addToRoutingTable (Architecture_Name, Source_Name, Destination_Name, Hop_Name,

Source_Port_Name)

Delete entries using RegEX
removeFromRoutingTable (Architecture_Name, Source_Name, Destination_Name, Hop_Name,

Source_Port_Name)

8/18/2020 MIRABILIS DESIGN INC. 37

8/18/2020 MIRABILIS DESIGN INC. 38

Architecture Setup Configuration

Let’s learn how
the flow works

DeviceInterface Block
• Can be used to define the Source Name, data size, command type and
destination for a Master

• Can be used to define the Device name on the Slave side

• Add the Master or Slave block to the Linear Bus, Bridge and AHB Buses
automatically
✔Generate Hello Messages
✔Eliminates the need for a RegEx functions or manually generate Hello message

• Map fields of other data structure formats to the corresponding fields of the
Processor_DS

• Used to connect only in the presence of the Linear Bus, AHB and bridge
blocks.

• Not useful with a single AXI or a single PCIe

Hardware Statistics
Name Value

Bus_1_Utilization_Pct_Max 10.1,

Cache_1_Utilization_Pct_StDev 1.05689435,

Processor_1_D_1_Utilization_Pct_Max 1.45,

Processor_1_INT_1_Utilization_Pct_StDev 0.10969973,

Processor_1_INT_2_Utilization_Pct_Max 24.55,

Processor_1_I_1_Utilization_Pct_StDev 0.01500007,

Processor_1_L_2_Utilization_Pct_Max 3.1,

Processor_1_PROC_Utilization_Pct_StDev 0.03489914,

Processor_1_Pipeline_Utilization_Pct_Max 50.2,

Processor_1_Register_Rd_Utilization_Pct_StDev 0.19330594,

Processor_1_Register_Wr_Utilization_Pct_Max 49.55,

SDRAM_1_Utilization_Pct_StDev 1.91E-07

40

Name Value

Bus_1_Delay_Max 3.600004E-8,

Bus_1_IOs_per_sec_StDev 634428.24721,

Bus_1_Input_Buffer_Occupancy_in_Words_Max 32.0,

Bus_1_Preempt_Buffer_Occupancy_in_Words_StDev 0.0,

Bus_1_Throughput_MBs_Max 176.0,

Cache_1_Delay_Time_StDev 1.499871E-8,

Cache_1_Hit_Ratio_Max 100.0,

Cache_1_Memory_Used_By_Processor_1_MB_StDev 8.455181E-5,

Cache_1_Memory_Used_By_SDRAM_1_MB_Max 2.56E-4,

Cache_1_Memory_Used_By_Total_MB_StDev 8.455151E-5,

Cache_1_Throughput_MBs_Max 116.0,

Processor_1_Context_Switch_Time_Pct_StDev 0.0,

Name Value

Processor_1_D_1_Hit_Ratio_Max 100.0,

Processor_1_D_1_KB_per_Thread_StDev 0.0,

Processor_1_I_1_Hit_Ratio_Max 100.0,

Processor_1_I_1_KB_per_Thread_StDev 0.0,

Processor_1_L_2_Hit_Ratio_Max 100.0,

Processor_1_L_2_KB_per_Thread_StDev 0.0,

Processor_1_Stall_Time_Pct_Max 1.35,

Processor_1_Task_Delay_StDev 2.9502E-7,

SDRAM_1_Delay_Time_Max 1.5E-7,

SDRAM_1_Memory_Used_By_Processor_1_MB_StDev 0.0,

SDRAM_1_Memory_Used_By_Total_MB_Max 2.56E-4,

SDRAM_1_Throughput_MBs_StDev 0.0,

DMA_IO_per_sec_Max 7.45E6,

DMA_Throughput_MBs_StDev 3.463999999,

writeStats To File
• Generates Statistics for all the blocks in the model

at the end of simulation

• Writes into a Text File in the model directory

Bus-Cache-RAM

Bus Arbiter
Communication channel between master and slave devices
▪ Buses created using this block include AMBA (AHB and APB) and PCI

Arbiter_Mode supports
▪ First Come-First Server
▪ Round-Robin
▪ Custom

Request on the input Ports
▪ priority-based
▪ reordered on the arrival

Read Transaction
⮚Transaction arrives from master

▪ Stored in respective port FIFO buffer.

⮚Port informs the Bus Arbiter of the transaction
▪ When the bus is available, the Controller selects a Port, based on the arbitration.

⮚When the transaction is accepted for transfer
▪ the Data Structure is delayed by one cycle for the Address Control
▪ Packet fragmented to match Burst_Length
▪ Then the Data Structure is sent out with the delay = A_Bytes/width/Clock_Speed

⮚ Return data fragments transferred to the master through the bus
▪ Number of cycles depending on the bus width, burst size, bus speed, bytes transferred etc.

Configuration

8/18/2020 MIRABILIS DESIGN INC. 45

Unique name for BusArbiter

Bus arbitration

Names of all the ports with
the Round Robin order

Match port order to
connected devices

Using Cache Block

Cache

Emulate a cache in architecture mode
Handles
oRequest Queuing
oCache hit-miss evaluation
oCache Prefetch, Read/Write
oCache miss activity to the next level of memory

8/18/2020 MIRABILIS DESIGN INC. 47

Operation
1. Queuing
▪ Receive a request to Read or Write
▪ Incoming request processed immediately if the Cache is active, else placed in FIFO

2. Catch Hit-miss
▪ When a new request comes, the cache evaluates the Hit Expression
▪ A hit occurs

▪ If the expression evaluates to a "true“
▪ If a miss occurs

▪ The task sent to the Next_Miss_Memory block

8/18/2020 MIRABILIS DESIGN INC. 48

Configuration

8/18/2020 MIRABILIS DESIGN INC. 49

Route the requests to the next level of
memory to access when a cache miss
occurs or a prefetch is requested

Expression for the cache hit using RegEx
language.
• true, then the task had a cache hit
• else a miss occurred.

Number of outstanding requests that
need to be processed

RAM
• Model different dynamic random
access memory technologies

• Executes a memory request, read or
write (instruction) and returns the
request to the source

• Memory - > RAM

• FIFO based scheduling

Using RAM Block

RAM
1. Operations of basic memory controller and memory array
2. Handles
◦ Pre-fetch
◦ Read
◦ Write
◦ Refresh

3. Applications
⮚ ROM, RAM, SRAM, DRAM or SDRAM
⮚ DDR, DDR2, DDR3
⮚ SDR, QDR
⮚ VRAM, Direct Rambus, PSRAM, SGRAM
⮚ NAND and NOR flash

8/18/2020 MIRABILIS DESIGN INC. 51

Operation
⮚ Receive request for data or instruction
⮚ Requests are queued and processed on Priority

⮚ Operations
⮚Read
⮚Write
⮚Pre-fetch

8/18/2020 MIRABILIS DESIGN INC. 52

DRAM Features
• Speed

• Size

• Buffer

• Line width

• Memory width

• Access Time - Read, Refresh, Write, Erase, Read/Write,

• Banks

• Refresh

• Controllers - SDR, DDR, DDR-2, DDR3, QDR, RDR, custom

Block Usage
• Synchronous Dynamic (SDRAM)

• Double Data Rate (DDR, DDR-2, DDR-3)

• Quad Data Rate (QDR) SRAM

• Direct Rambus (DRDRAM)

• Video DRAM (VRAM)

• Synchronous Graphics RAM (SGRAM)

• Pseudo Static RAM (PSRAM)

• Disk Drive

• NAND and NOR Flash

Configurations

RAM configurations

How the device know,
the RAM is connected?

Number of cycles between refresh.

Duration in cycles of the refresh

Important Concepts
1. Controller Time
▪ Cycle Time = 1/Memory Speed Mhz
▪ 1.0 for SDR or 1/2 for DDR and quarter for QDR

Example: Cycle_Time * 1.0

2. Access Time
▪ Access time for Read, Write, Prefetch and Erase is in nanoseconds

Example : Read 1000.0/Memory_Speed_Mhz
▪ Default value

▪ Read 5.0
▪ Prefetch 6.0
▪ Write 7.0
▪ ReadWrite 8.0
▪ Erase 9.0

Required Fields
• A_Source

• A_Destination

• A_Command

• A_Bytes

• A_Bytes_Remaining

• A_Bytes_Sent

• A_Task_Flag

Read Operation
Input Output

c

input

output
c

Write Operation
input

output

input

output

i) A_Task_Flag= True

ii) A_Task_Flag= False

Input Output

cc

i)

Notes on RAM Block
Read Request
✔Accepts one request
✔Returns the first word based on RAM Word width
✔Delays internally for the remaining words
✔Generates Controller time for the first word only
✔Access_Time is based on A_Bytes

Write Data
✔Accepts each word/burst
✔Controller time for the first word/burst only
✔Access delay is based on the A_Bytes_Sent field
✔Standard output is to output3 at the end of all words
✔If A_Task_Flag == true, then sends to the Bus after the access time for the

last word

Latency Computation & Statistics

Generate using Architecture Setup block

• Latency = (Number of words + Access cycles –1) *
Memory cycle time where,
✔ Number of Words = Bytes sent/ Width Bytes
✔ Memory Cycle time = 1.0e-6 / Memory speed in Mhz

Timing Diagrams
• Use Timing Diagram Block

Hardware setup -> Timing
Diagram

Learn More by Reviewing Training Recordings

Watch Tutorials
- Training Part 1 (54 minutes):

https://www.youtube.com/watch?v=9JHcLm0w2-4
- Training Part 2 (65 minutes):

https://www.youtube.com/watch?v=LY-imqaSBwc
- Training Part 3 (42 minutes):

https://www.youtube.com/watch?v=3H7YaZ0wrwg

8/18/2020 MIRABILIS DESIGN INC. 64

https://www.youtube.com/watch?v=9JHcLm0w2-4
https://www.youtube.com/watch?v=LY-imqaSBwc
https://www.youtube.com/watch?v=3H7YaZ0wrwg

Processor Modeling

Processor Model

Multi-Processor Model

Instruction_Set
• Divided according to their Execution Unit

• Names must be INT_x (Integer) and FP_x (Floating) where x is a number

• All required instructions must be in the Instruction_Set, distributed across the
Execution Unit list

• Execution Units are either Integer or Floating. Branch is Integer while Vector and
Graphics are Floating-Point

• Each line must have the Instruction Name, Minimum cycles, Maximum Cycles
(Optional) and ends with ;

• Minimum and Maximum cycles are used for those instruction with variable cycles

Processor
Unique Name

Key Parameters to modify

Required

Pipeline
• Match the pipeline specified in the datasheet

• Can handle address generation (one cycle delay), instruction fetch, instruction decode (wait for the
instruction return and one cycle delay), data fetch, execute, write back and unused stages (for a delay
or adding empty pipeline stages and

• Four columns

• Name is *_AnyName- The numbers must be sequential and the last number must match the
parameter- Number_of_Pipeline_Stages

• If using Actions- read, write and wait, Execution_Location is required

• For Action- exec, it can be none (if a cycle delay is intended), Execution Unit of this processor, another
processor or a SystemResource_Extend/ SystemResource

• Condition is currently not used

Examples of Pipeline usage
/ First row contains Column Names. /
Stage_Name Execution_Location Action Condition ;
1_INSTRFETCH I_Cache_Name instr none ;
2_INSTRFETCH I_Cache_Name wait none ;
3_INSTRFETCH D_Cache_Name read none ;
4_DECODE none exec none ;
4_RENAME D_Cache_Name wait none ;
5_DISPATCH none issue 3 ;
6_ROBL none exec none ;

// Re Order Buffer Loading
6_IW none exec none ;

// Instruction Window
7_II none exec none ;

// Instruction Issue
8_EXECUTE ARM exec none ;
9_EXECUTE ARM wait none ;
10_STORE D_Cache_Name write none ;

Direct DRAM
I_1, D_1 to DRAM
One INT_1
No Bus

Single Task with 9 ADD instructions
1 Word per cache line
1.0 hit-ratio for Register

Prefetch
And data Request

VS_AR/doc/Doc_Support/Processor_Model_PPT_1.xml

Prefetch

Each is a task

Direct DRAM
I_1, D_1 to DRAM
One INT_1
No Bus

Four Tasks with 9 ADD each
10 Words per cache line
A_Variables =
Number_of_Registers

VS_AR/doc/Doc_Support/Processor_Model_PPT_2.xml

Direct DRAM
I_1, D_1 to DRAM
One INT_1
No Bus

Single Task with 9 ADD instructions
10 Words per cache line
0.25 hit-ratio for registers

Notice that the Registers are hit only 25%
of the time. Most of the requests are going

to the D_1

VS_AR/doc/Doc_Support/Processor_Model_PPT_3.xml
VS_AR/doc/Doc_Support/Processor_Model_PPT_4.xml

Direct DRAM
I_1 and D_1 to L2; L2 to
DRAM
One INT_1
No Bus

Single Task with 45 ADD
instructions
10 Words per cache line
0.25 Hit-Ratio for Registers

Direct DRAM
I_1 and D_1 to L2; L2 to DRAM
One INT_1
Bus to DRAM

Single Task with 9 ADD Instructions
10 Words per cache line
0.25 hit-ratio for registers

Bus Data Activity

Bus Control Activity

VS_AR/doc/Doc_Support/Processor_Model_PPT_5.xml
VS_AR/doc/Doc_Support/Processor_Model_PPT_6.xml

I_1 and D_1 to L2; L2 to Cache
Cache to DRAM
One INT_1
Bus to DRAM

Single Task with 9 ADD instruction
10 Words per cache line
0.25 hit-ratio for registers

I_1 and D_1 to L2;
L2 to Cache; Cache to DRAM
One INT_1, One INT_2
Bus to DRAM

Single Task with alternate ADD and ADDN
10 Words per cache line
A_Variables = Number_of_Registers * 4

VS_AR/doc/Doc_Support/Processor_Model_PPT_7.xml VS_AR/doc/Doc_Support/Processor_Model_PPT_8.xml

Variable instruction
execution time

I_1 and D_1 L2; L2 to Cache; Cache
to DRAM
One INT_1, One FP_1
Bus to DRAM

Single Task with 9 ADD and ADDN
Instr
10 Words per cache line
0.25 hit-ratio for Register

I_1 and D_1 L2; L2 to Cache; Cache to
DRAM
One INT_1, One INT_2
Bus to DRAM
10 Words per cache line

Single Task with 9 ADD and ADDN
0.25 Hit-ratio for registers
Multiple instructions per cycle

Instructions executing
in parallel

VS_AR/doc/Doc_Support/Processor_Model_PPT_9.xml VS_AR/doc/Doc_Support/Processor_Model_PPT_10.xml

I_1 and D_1 L2; L2 to Cache;
Cache to DRAM
One INT_1, One INT_1
Bus to DRAM
10 Words per cache line

Three tasks
Clock change in task 2 from 500
to 200 Mhz
0.25 Hit-ratio for Registers

Notice instruction width
is different between

left (faster) and right (Slower)
These are tasks 1 and 3

I_1 and D_1 L2; L2 to Cache; Cache
to DRAM
One INT_1, One FP_1
Bus to DRAM
Single Task; Pipeline flush with a
ADD, ADDN and *b

10 Words per cache line
A_Variables =
Number_of_Registers * 4
Multi-instruction per cycle

Branch instruction that
causes the flush is

5 cycles here

VS_AR/doc/Doc_Support/Processor_Model_PPT_11.xml VS_AR/doc/Doc_Support/Processor_Model_PPT_12.xml

Notice the latency between
request
because of the DRAM access
due the higher miss

Direct DRAM
I_1, D_1 to DRAM
One INT_1

Single Task with 9 ADD instructions
10 Words per cache line
0.25 Hit-ratio for Registers
Added Hit-Ratio parameter to both
I_1 and D_1

Direct DRAM
I_1, D_1 to DRAM
One INT_1

Single Task with 9 ADD instructions
10 Words per cache line
0.25 Hit-ratio for Registers
Added Hit-Ratio parameter to I_1, D_1 and L_2

Notice the latency between request
because of the DRAM access
due the higher miss

Notice the higher
DRAM activity

VS_AR/doc/Doc_Support/Processor_Model_PPT_13.xml VS_AR/doc/Doc_Support/Processor_Model_PPT_14.xml

Notice the higher
DRAM activity

Notice multiple line returns

I_1, D_1 to DRAM
One INT_1
Cache Prefetch Line
parameter added and set to 3

Single Task with 9 ADD
instructions
10 Words per cache line
0.25 Hit-ratio for Registers
Added Hit-Ratio parameter to I_1
and D_1

I_1 and D_1 L2; L2 to Cache
Cache to DRAM
One INT_1, One FP_1
Bus to DRAM

Single Task; Pipeline flush with a *b,
ADD and ADDN
10 Words per cache line
Multi-instruction per cycle
Added Cache_Loop_Words to define
loop length

Notice reduced I_1 cache
access- 13 vs. 18 instructions

VS_AR/doc/Doc_Support/Processor_Model_PPT_15.xml
All Processor features
Refer to model
VS_AR/doc/Doc_Support/Processor_Model_PPT_16.xml

Bus Data
Bus Control

External Cache

DRAM
L_2 (Notice the name format

D_1
I_1

FP_2

FP_1
INT_2
INT_1

Register Write
Register Read

Processor Timing Diagram- Prefetch

Every 0.2 is 1 cycle.

Pipeline
Execution

Initial
Prefetch

D_1 Prefetch

I_1 Prefetch.

I_1 D_1
Addr

I_1 D_1
Miss

I_1 D_1
Miss

To DRAM

I_1 D_1
Line Fetch

I_1 D_1
Addr Fetch

I_1 D_1
Data Fetch

Processor Timing Diagram- Pipeline

Grid line is 1 cycle.

3 instructions
ADD, SUB, MUL

Cycles: 2,3,4
Start

Stage 1: Read
Instr 1 Instr 2 Instr 3

Stage 1: Read
Data1 Data 2 Data 3

Stage 3: Execute on INT1
Instr1 Instr 2 Instr 3

Instr1 Instr 2
Stage 4: Write Back

1st Word Prefetch
Instr 1 Data 1 Instr 2

From Cache
Instr 1 Data 1 Instr 2

Transfer on Bus
Instr 1 Data 1 Instr 2

Instr 1 Data 1 Instr 2
Control on Bus from Cache

Decode
1 cycle
After

Data &
Instr

Execution Units

Datapath to D-cache

Issue Queue

Instruction Set

Instruction Set
Name of the Exec Unit

Instruction Name
Latency Value is
Single (or)
RangeExec Unit Types

INT
FP

Traffic Profile
• Using traces from ARM fast Models

• Using traces from GEM5 Model

• Generating instruction traces using a Task Generator in VisualSim

2/2/2021 MIRABILIS DESIGN INC. 84

Traces from ARM fast model

2/2/2021 MIRABILIS DESIGN INC. 85

Trace from ARM Fast Model

Parsed and Read into VisualSim

Branch Mis-Prediction from Traces

2/2/2021 MIRABILIS DESIGN INC. 86

Branch Misprediction penalty is calculated from the timestamp values:
Here,
Total time taken for Mis predicted instr = int(0x000000002ead4f70) – int(0x000000002eab7ab0)

= 783110000 – 782990000 = 120000 picoseconds = 12 ticks
= 1 tick(instruction latency) + 11 ticks(branch penalty)

Traces generated from GEM5

2/2/2021 MIRABILIS DESIGN INC. 87

Trace file Converted to VisualSim Format

2/2/2021 MIRABILIS DESIGN INC. 88

Demo output csv
from gem5 traces.

Different cpu cores
stats

Cache and Memory
stats

Using Trace in VisualSim

These instructions read via TrafficReader as input to the
Processor block

Using Task Generator Module
• More dynamic and distributed traffic profile can be generated

• “n” number of Software tasks can be defined

2/2/2021 MIRABILIS DESIGN INC. 90

Task Generator – config file

2/2/2021 MIRABILIS DESIGN INC. 91

Software tasks
Number of

instructions per
task

The Total Number of instructions are made up of instructions of
different types. The percentages of each type of instruction is

specified here.

Task Generator - Config File

2/2/2021 MIRABILIS DESIGN INC. 92

This type descriptor is used in the previous slide.
User can specify the percentage of each type of

instruction for each software operation

Technology-specific Hardware
Modeling

DMA
• DMA block that represents a memory controller that sits between the Processor or bus
or DeviceInterace Block and the Memory bank.

• Receive requests directly from the processor block or from the Req port.

• Performs Sequential operation

• Channels operate concurrently

• Request fragments into Burst Size & each one is sent out as one task

•Delays are based on block parameters & no additional delay

• All fragments of Write must arrive to release channel

• Hardware Devices - > DMA

• Two ways to characterize the task operation of the DMA Block:
✔ Using Database
✔ Using Data Structure Fields

DMA Block Notes
• A_Bytes_Sent = Bus_Width

• A_Bytes = Burst_Size or remaining Bytes

• Output Request has A_Task_Flag = true

• A_Command: Read returns as a Write

• A_Command: Write returns as a Read

• If Req port connected to non-Architecture block, then entry in Routing Table is required.

• A_Instruction must not have a # prefix

Req
Port

Devices

Queue/Channel;
Size is FIFO_Buffer
Ordered as FCFS

Dropped

False

Ack
Port

B
U
s

Selected based on
A_Task_Address

Din
Port

Dout
Port

Release
Channel

Return to Channel
Start next tasktrue

false

DMA Block Diagram

Is A_Task_Name
& A_Instruction
combination in

Database?

Are there more
A_IDX lines for this
task & instruction?

Using Database
• Database Fields are:

✔A_Task_Name
✔A_Instruction
✔A_IDX
✔A_Task_Source
✔Burst_Word_Size
✔A_Task_Address
✔A_Command
✔A_Bytes
✔A_Priority
✔A_Destination

DMA Database Block Entry Example

A_Task_Name A_Instruction A_IDX A_Task_Source Burst_Word_Size A_Task_Address A_Command A_Bytes A_Priority A_Destination ;

Ext_Int
Ext_Int
Serial

Load
Load
Store

0
1
0

Ext_DRAM
Int_DRAM
Int_DRAM

32
32
32

1
1
2

Read
Write
Write

128
128
1024

0
1
3

DMA
DMA
DMA

;
;
;

Identifier :
Match Request
A_Task_Name

Instruction:
Match Request
A_Instruction

Handle
many tasks
per Req

Target device Burst size is per
task

Channel Number Operation Data
transfer
size is
unique
per task

Priority for
queuing on
Bus and
others with
priority

Target DMA
block

Using Data Structure
• Fields necessary in Data Structure
✔A_Task_Name
✔ A_DMA_Command
✔ A_DMA_Destination
✔ A_Priority
✔ A_DMA_Bytes
✔ A_Task_Address
✔ A_DMA_Burst_Byte

Example of DMA in model

Statistics
• The Architecture setup block generates statistics for DMA

✔ IO_per_sec : Input and output transactions per second

• The data structure coming out from dout port will be
having two added fields :
✔ Task_Latency (which gives the latency for the task

completed)
✔ Task_Throughput (which gives the throughput for the task

)

• DMA controller produces Traces

Bridges and Switches
Bridge
◦ Blocking
◦ Delay is variable based on data size and speed
◦ Single source<->Destination

Switch (Blocking)
◦ Single interconnect
◦ 4 connected Devices and can add more
◦ Single-cycle delay for Read and Multi-cycle delay for Write

Switch (Non blocking)
◦ Point-to-point mesh with multiple channels per wire
◦ Basic block contains for 4 device connections; Can be expanded
◦ Single-cycle delay for Read and Multi-cycle delay for Write

Serial_Switch (Non blocking)
◦ Point-to-point mesh with multiple channels per wire and multiple PHY per wire
◦ Basic block contains for 16 device connections. Can be expanded
◦ Single-cycle delay for Read and Multi-cycle delay for Write

AXI BUS
• Suitable for high bandwidth and low latency Designs
• Enable high frequency operation without using

bridges
• Supports 16 Masters and 8 Slave Ports
• Provides Statistics
• Arbitration Algorithms

✔Fixed Time Slot
✔Round Robin
✔User Algorithm

• Loops every cycle
✔Test for available requests
✔Test of Read Threshold and Wait Flags

AXI Bus Block Diagram-
Read/Write Request Channel

Interconnect

Master 1 Master 1 Master 1

Slave 1 Slave 1

There is a separate set of Read Request
and a separate set of Write Request.

AXI Bus Block Diagram-
Read Data Channel

Interconnect

Master 1 Master 1 Master 1

Slave 1 Slave 1

AXI Bus Block Diagram-
Write Data Channel

Master 1 Master 1 Master 1

Interconnect

Slave 1 Slave 1

AXI Bus Block Diagram:

Read Flow Write Flow

AXI Bus Block Diagram:
Arrays

Master Outstanding- Read

◦ Array starting from master # 0

Master Outstanding- Write

◦ Array starting from master # 0

Slave Threshold- Read

◦ Array starting from Slave # 0

Slave Threshold- Write

◦ Array starting from Slave # 0

Configuration
Interfaces and Buses ->AMBA -> AMBA_AXI

How to Connect?

Statistics
• Master/Slave combination

✔Queue number 1 for Master 1 to Slave 1
✔Queue Number 2 for Master 1 to Slave 2
✔Read Request and Write Request

• For each master
✔Read Data Channel and Write Data Channel
✔Queue number is the port number

• List of overall statistics
✔Number_Entered
✔Number_Exited
✔Occupancy_Max/Min/Std_Deviation/Mean
✔Total_Delay_Max/Min/Std_Deviation/Mean
✔Utilization_Mean

Enable Plot
• Ports_to_Plot parameter- { master number,

slave number }

• Connect DS_xTime_yData_Plotter to plot_out
port

• Configure The plotter to –
✔ Field Trace Name - Plot_Name
✔ Field_Y_Value - Plot_Value
✔ Field_Color - Plot_Color
✔ Field_Offset - Plot_Offset

• Plots the transaction between the Selected
master and slave

Integrated Cache
Integrated Cache can be used as L1(Instruction and/or Data), L2 and L3 cache in both stochastic and cycle accurate
mode.

Stochastic Mode:

◦ Hit or miss of input request will be determined by the instruction hit ratio/data hit ratio.

◦ If it is a hit, request will be processed and response will be returned to the source. If it is a miss, request will be
sent to next level cache or memory to fetch whole block of data, while the request is waiting in the buffer,.

Address_Based Mode

◦ Hit or miss of the input request will be determined by the availability of the requested address in the cache.

◦ If it is a hit, request will be processed and response to the requested address will be returned. If it is a miss,
whole block of address range will be fetched from next block of memory and the request waiting in the buffer
will be processed.

Flow control:

◦ User can run the model either with flow control or without flow control. By default block will be used in without
flow control.

◦ Input flow control can be achieved by including a field named “Event_Name” in the input data structure and a
TIMEQ to trigger the next request. The next request will be triggered only when the data is processed by the
cache.

◦ Output flow control can be achieved by setting the “Output_Flow_Control” parameter as true.

Integrated Cache Configuration
Key Configuration parameters:
✔Cache_Speed_Mhz: Speed of the cache in Mega hertz, which is

used to calculate the cycle time. Eg: 1000.0 (1GHz)
✔Cache_Width_Bytes: Word size in cache, cache will transfer this

bytes of data in single clock cycle. Eg: 8 (8 bytes or 64 bit)
✔Cache_Size_KB: Overall cache size in Kilo Bytes Eg: 64
✔Block_Size_KB: Cache will be organized as blocks of memory

based on this size. Eg: 1
✔Loop_Ratio: Loop ratio used in stochastic mode to represent

repetition of same instruction fetching. Eg: 0.2 (between 0 to 1)
✔Overhead_Cycles: Overhead delay of the cache block Eg: 1
✔First_Word: If it is true the response will be returned, when the first

word of the requested size is fetched. Otherwise, the response will
be returned at the end of requested words

Integrated Cache Operation
• Command : Read_Instr
✔Read_instr is used only for instruction cache.
✔Check hit or miss, if hit, number of cycles will be delayed based on A_Bytes

and send it out.
✔If it is a miss, it will put the request in the buffer, single cycle for request

generation will be performed and send it to next level memory.

• Command: Read_Req / Write_Req
✔These commands are used only for data cache.
✔Check hit or miss, if hit number of cycles will be performed for read and write

• If the cache is in write_through it will sends the data to the next level cache at the same time.
• If the cache is in write back, it will just update the current cache block. If read request comes

to the same address, whole block of data will be updated to the next level cache.

• Command: Read / Write
✔Cache will consider the request for the data cache and process the

cycles of delay based on the A_Bytes.

Integrated Cache connection
Input Ports
◦ to_cache: Request going in to the cache, it can be connected to a

processor or device interface through a bus.
◦ Expected fields: A_Command, A_Source, A_Destination, A_Priority, A_Bytes, A_Task_Flag,

A_I_Addr, A_D_Addr

◦ fm_cache: Response from the cache after the hit occurs in the data.

Output Ports
◦ to_next_cache: Request going to next level cache or memory in the case of

a miss or an update(Write through or write back). It can be connected to
next level memory through a bus.
◦ Expected_Fields: Cache_Event, Block_No, A_Command, A_Source, A_Destination, A_Priority,

A_Bytes, A_Task_Flag, A_I_Addr, A_D_Addr

◦ fm_next_cache: Return Data from the next level memory.

Integrated Cache Statistics
Number of Statistics samples can
be generated during the simulation
time using the parameter
“No_of_Statistics’

Integrated Cache Debug messages

Cache size configuration should match with the number of blocks
allocated.

Memory_Controller

Write Data
Controller

Write Data
Buffer

Cmd / Addr
Controller

Command
Buffer (N)

Write Response
Controller

Write Response
Buffer

Read Data
Controller

Read Data
Buffer

Memory
Controller

Write Data Address Read Data

Write Data Read DataWrite ResponseCommand/Address

Standar
d

State
Machin

e

Memory_Controller
Algorithm State Machine

Idle

Rea
d

Writ
e

SequentialSequential

Done

Done

Read_to_Write

Write_to_Read

First
Read

First
Write

Consistent with JESD 209 LPDDR, Aug 2007

Memory Controller
• Oversees the operation and perform handshaking with the
HWDRAM

• Oversees the sequential Read/Write operation and Holding the
request when the DRAM is busy

• Data Structure Fields Used:
✔A_Address_Min
✔A_Address_Max
✔A_Command
✔A_Bytes
✔A_Bytes_Remaining
✔A_Bytes_Sent

Memory_Controller
• Constructed as 7 individual blocks for easy understanding

• Data Structure Fields used
✔A_Address_Min, A_Address_Max, A_Command
✔A_Bytes, A_Bytes_Remaining, A_Bytes_Sent

• Arbitration Algorithm
✔First Come-First Serve provided as standard algorithm
✔Custom algorithm add as a separate script file

• Processing Arrays (Accessible Externally)
✔Command Type, Bank and Page Address, Data Structures

• A_Command is suffixed with Memory transition
✔Read_Sequential, Write_Sequential, Read_Precharge, etc.

Statistics of Memory Controller
• Read_MBs_per_Second:

Total Read command processed by memory
controller as number of Mega Bytes per second

• Read_IOs_per_Second:
Total IOs that the block can handle for one

second
• Wr_IOs_Per_Second, Wr_MBs_per_Second

Cycle Accurate_DRAM – Key Features
•Bank Address Decoder
✔Bank, Row, Column

•Page Address Decoder

•Timing accuracy
✔Extensive list of access types for read and Write

•Types of Read and Write
✔Sequential, non-sequential, Random Burst, Multi-row

•Refresh per Bank
✔Maximum time between refresh
✔Types: Sequential, After N Idle Cycles, Deadline

•Power using RegEx

•Statistics
✔Command Profile, Power Profile, Memory State Profile

HW-DRAM Statistics
• Provides the number of cycles taken by

each process in the memory block

• The port named “port” gives the
statistics

How to connect ?

Configuration
Memory Controller HW-DRAM

HW_DRAM- Timing Parameters

126

Name Description
tCL CAS Latency time

tRAS Active to Precharge delay

tRP DRAM RAS# Precharge

tRCD DRAM RAS# to CAS# Delay

tWTR Minimum time interval between end of WRITE and READ command

tWR Minimum time interval between end of WRITE and PRECHARGE command

tRRD Minimum time interval between successive ACTIVE commands to different banks

x Cycles Time between Read to Read or Read to Write for non-consecutive or non-sequential access to the same row in
a bank

tDQSS Deviation from the clock for a Write operation

tRL Read latency between the request and the actual output of the first bit

tWL tWL=Write Latency between the request and the actual output of the first bit

tDQSCK 1

tRTP Read to precharge

tHWPre Time between the request and the actual precharge. This is a hardware limitation.

CycleAccurate_DRAM:
Same Row Read Timing

Type Timing

1st Request at starting Bus cycle
+ tRRD (if switched)
+ tRAS
+ M_Cycle * 1st word
+ M_Cycle * Remaining Word

Sequential or Consecutive Burst
(same row)

Bus cycle
+ tRRD (if switched)
+ M_Cycle * 1st word
+ M_Cycle * Remaining Word

Non-Sequential or Non-Consecutive
Burst
(Same row but not immediate word)

Bus cycle
+ tRRD (if switched)
+ xCycles + tCL
+ M_Cycle * 1st word
+ M_Cycle * Remaining Word

CycleAccurate_DRAM:
Random Read Timing

Type Timing

New Row Burst Bus cycle
+ tRRD (if switched)
+ tRP (Active to Active) + tRAS
+ M_Cycle * 1st word
+ M_Cycle * Remaining Word

Multi-row or row crossing
Burst

Bus cycle
+ tRRD (if switched)
+ xCycles + tCL (if non-sequential, else ignored)
+ M_Cycle * 1st word
+ M_Cycle * Remaining Word on current row
+ tRP (Active to Active) + tRAS
+ M_Cycle * Remaining Word

Read following a Write Add tWTR

CycleAccurate_DRAM: Write Timing
Type Timing
Sequential or Consecutive Burst
(Following another Write)

Bus cycle
+ tRRD (if switched)
+DQSS (75% to 125% of 1 cycle)
+ M_Cycle * Number of Words

Non-Sequential or Non-Consecutive Burst
(same row following Read or Write)

Bus cycle
+ tRRD (if switched)
+ xCycles + tCL
+DQSS (75% to 125% of 1 cycle)
+ M_Cycle * Number of Words

Random Burst
(Follow Write)

Bus cycle
+ tRRD (if switched)
+ tRAS + tRP (Active to precharge)
+ tWR (Write to Active)
+DQSS (75% to 125% of 1 cycle)
+ M_Cycle * Number of Words

Random Burst
(Follow Read)

Bus cycle
+ tRRD (if switched)
+ tRAS + tRP (Active to precharge)
+ DQSS (75% to 125% of 1 cycle)
+ M_Cycle * Number of Words

Timing Diagram

Memory_Controller Signals and Delays
Read following by Write

tRAS tRP tRCD Read=
tRL + tDQSCK

+ Word/(2*Clk)

Write=
tWL + tDQSS

+ Word/(2*Clk)

tWR +
tHWPre

Memory_Controller Signals and Delays
Write following by Read

tRAS tRP tRCD Read=
tRL + tDQSCK

+ Word/(2*Clk)

Write=
tWL + tDQSS

+ Word/(2*Clk)

tWTR

tRP

BL/2 to
next

Precharge

Memory_Controller, CycleAccurate_DRAM
Banks and Bi-Directional Bus- Read Operation

tRP tRCD tRL

+tRL
Data

Power Modeling

Purpose
Design with energy as one of the key decision factors

Get early feedback on the power requirements and system limitations

Set the requirements and golden references for the system implementation

Explore the power from end-to-end

Determine the system scalability with power as key consideration

VisualSim Power Technology
Comprehensive power solution
◦ Generation, storage, consumption and management

Graphical entry for all definitions
◦ States, transition and state change logic
◦ Complex expression that can incorporation switches, area, LDO efficiency, Frequency and Voltage
◦ Battery charging mode

Database of pre-defined battery data

Application at the system, sub-system and semiconductor levels

Variety of applications- automotive, multimedia, avionics and space, industrial and
semiconductor

Reason for Early System Level Power
Exploration
Power-based problems are one of the primary causes of costly re-spins
◦ Heat dissipation
◦ Low battery life
◦ Lackluster power-performance trade-off

Peak power consumption
◦ Determines the cooling, heat sink and other mechanical enclosure designs
◦ Energy usage, heat dissipation

Map the battery life and power consumed for variety of use cases and workloads

Role of overclocking and power consumption in failures

Understand where the power is being consumed in the system

136Modeling of communication, computing and Scheduling

Concept of VisualSim Power Technology
Based on system model activity and state change logic

Covers task-based power, transitions, management logic

Incorporate the hardware, software and network

Looks at each of the entities in detail
◦ Generation from multiple sources- wind, solar, motor,

steady, custom
◦ Storage- looks at various types of batteries
◦ Consumption at various rates by multiple devices and

different clock speeds
◦ Management based on time and custom logic

Generate power profile for downstream test

Reports are average, instant, battery life, usage,
comparison between input, available and consumed

Power is now an integral part of Architecture Exploration

Block Power Mode Diagram

Function 1

Function 2

Function N

.

.

.

Functional
Portion

Timing 1

Timing 2

Timing N

.

.

.

Timing and Resource
Portion

Block Functional and Timing Diagram

Power Table
• Used to analyze the power consumption, battery

discharge, dynamic system changes, power state
changes of the devices which impacts the system timing.

• Enables to design application-based power schedulers
and make trade-offs between performance and power
consumption including battery drain.

• Outputs the instantaneous, average and State_Change
information of top level and the other powerTable
located in hierarchical blocks.

Library Blocks Supported

Library components
• System_Resource , System_Resouce_Extend
• Server
• Channel
• Custom Device- Single
• Custom Device-Multiple instances of same block

System-level libraries
• Processor
• Cache
• Bus Controller
• HW-DRAM, RAM
• AXI Bus , AHB/APB

139

Operation
• When the operation state of a device changes (idle, standby, wait, and busy), the power level
goes to the new state

• There is a delay to go to the new state called State Transition delay. The transition delay is
denoted by t_OnOff

• The power level of a state can be changed dynamically changed using asynchronous state
change parameter or RegEX function

• Any number of devices can be associated with a single powerTable block

Configurations
Power Table configurations

• PowerTable block-> Configure

• Unique name for this Power Manager. Can be name + instance number

• Manager_Setup parameter :
✔Architecture block : Lists the devices supported by power table
✔Power States:
❖ Active: Power consumption when device is processing a task
❖ Standby: Power consumption when device is idle
❖ Wait: Power Consumption when device is waiting for a response
❖ Idle: Power consumption during Off state of the device
✔Operating State:
❖ Existing: Initial state of the device
❖ OffState: Off state of the device
❖ OnState: Active/ON state of the device
✔State Transitions
❖ t_OnOff: transition time delay from Active state to other
✔Parameters

Example model
Three software task scheduled on single processing resource

VisualSim plot
Top Scheduler tasks

Traffic Rate= 10 sec Traffic Rate= 5 sec Traffic Rate= 3 sec

VisualSim plot
Power plots

Power plot with traffic rate= 10 sec Power plot with traffic rate =3 sec

Power Table configurations continued

● Default states are Active, Standby and Wait. User can add any number of additional states.For adding new
states: Power Table-> Manager_Setup-> Power states column-> add the additional state and its
corresponding time. List of States must be prior to Existing.

● Async_State_Change window is used if the block changes its state asynchronously. The format is
"<Device_Name> <State> <Time_or_Expression> <Next_State>".

● Expression_List can be used to define the logic and declare the values that can be used elsewhere in the
PowerTable. The format for using Expression_List is "<Name> <value or expression> ;

● Similarly the user can set the configuration of other blocks by:
Right click on the block-> Customize-> Configure

● Doubt on the working on any block? Right click on the block-> Documentation-> Get Documentation

Power Modeling Usage
• Hardware library and schedulers
✔No model construction required

• Custom blocks including accelerators
✔Use the expression and variable to change the power values
✔Define custom power states
✔Use the Time_State to define movement from one state to another,

especially for inactive states
✔Use the Power RegEx functions to change state or modify power

level

• For model operations
✔Cycle-by-cycle table of instant power state of all devices

(powerManager)

146

Example model for hierarchical power
table

• Power Table can be built hierarchically

• Top Level Power table is connected to the Low level
Power Tables.
For example, this top tower table will contain all the
power tables in the below hierarchies.

These 3 levels can be viewed by:
From top level of the model
Rack 1-> open block
board1-> open block
section1-> open block

Top level of the model

Architecture_1_Processor_1_Rack_1_Board_1_Se
ction_1_SubSection_1

Power table for hierarchical

•The processor, memory and bus
are present in architectural block
column since the model contains
three devices. So each power
table of each subsection will
contain these three architectural
blocks.

• By enabling the “state plot
enable” parameter and the
setting in digital simulator, it will
create a GNU plot image, which
contains much larger amount of
information.

● The expression list row is useful for defining variables. For example, when the processor has to go to standby
state, a variable name is found in the standby column. The value of this variable “ sty” is read from the
expression list.

● The “delay to change state” row is for power management. For example the Bus is in standby state for more
than 1 ms, then it is put to Idle state. The “state” column gives the state in which the block is present. The
“Time” column tells how long the bus can stay in standby state, if the time is exceeded, then the “Next” column
gives to which state the bus will be going to. For example here it is Idle state.

Power table for hierarchical continued

Statistics
• Instantaneous Power (port)

➢ This outputs the instantaneous power of all the devices listed in the Manager_Setup field.
• Average Power consumed (port)

➢ This outputs the average power consumed so far during the simulation.
• Power Dissipated (port)
• Instant (powerCurrent) and total power consumed (powerCumulative) by device

➢ Cumulative- This is the accumulation of all the energy from all the devices listed in the PowerTable's
Manager_Setup table.

Listen To Block

PowerTable RegEx Function
Function & Argument Type(s) Description Example

powerCumulative
(String power_manager_name, String
block_name)

Gets the cumulative power
consumed for a device.

powerCumulative
("ARM_Power_Manager",
"Architecture_1_Bus_1")

powerCurrent
(String power_manager_name, String
block_name)

Gets the instantaneous power
as a double value for the
device.

powerCurrent
("ARM_Power_Manager ",
"Architecture_1_Bus_1")

powerManager
(String power_manager_name)

Gets the complete power
table.

powerManager
("ARM_Power_Manager ")

powerUpdate
(String power_manager_name, String
block_name,
String power_state)

Updates the current power
state of the block. LHS value
is the new power state of the
block.

powerUpdate
("ARM_Power_Manager ",
"Architecture_1_Bus_1",
"Standby")

powerUpdateN
(String power_manager_name, String
block_name,
String power_state,
integer Queue_Number)

Updates the current power
state of the
Smart_Timed_Resource
block. LHS value is the new
power state of the block.

powerUpdateN
("ARM_Power_Manager ",
"STR_Queue", "Standby",2)

• powerManager()
✔ Gives the power statistics for all the details associated with the Power Table as an array

• stateChange()
✔ stateChange(power_manager_name, Device name, Operating State, New State Name)
✔ Dynamically changes the state of a device to a new state
✔ It is similar to the function of Delay_to_Change_State parameter

Battery
Used to capture
◦ Rate of consumption
◦ Impact of continuous charging
◦ Lifecycle loss due to power spikes and thermal shock
◦ (Experimental) Heat and Temperature

Types of batteries support
◦ Battery database support NiCd, Li-Ion, NiMh, LdAcid

Activities modeled
◦ Charging- SOC threshold, Turbo charge, all input charge
◦ Discharge- From the PowerTable
◦ Lifecycle, discharge

Battery Block
Requires Unique name
Default database provided
Select battery type
Default charging is the value arrive. Click to Custom
State of Charge for charging to resume.

Note:
Power generated when not charging is wasted.
User can add items to the database
Edit the instance to add the new battery types

Enable Turbo charging

Time taken to get to each level of charge. Similar
to phone battery chargers

Experimental; For Temperature
and heat computation

Block Ports
ChargeFromGenerator_Port

SimulateShocks_Port
Consumption_Input_Port

ChargeRemaining_Port

Send Instant Power
Consumed Details

Reports
Heat Display- experimental

Input charge- Total charge arriving vs charge consumed

Peak Energy Available- Design capacity on total capacity; Total Charge Capacity is the available
charge

Power Consumed- Ignore

Battery Life Remaining Percentage- Reduction in battery life overtime as a result of spikes,
thermal shock

Available Battery Charge- Ignore

Power Generator
Time-Energy
◦ Constant Power Source
◦ File Based
◦ Time Based

Motor-Energy
◦ Motor Based Power Generation
◦ Wind Based Power Generation

Time-Energy Settings
Using Trace file from
existing system

Using Time-based
1. Duration is the period
2. Setup has % of time in the

Period of each time
3. Charge can increase or

reduce during the period
4. Efficiency is amount of charge

converted

Constant output at
the set rate

Motor-Energy Settings

Compute the Wind Power based
on air speed and efficiency

Motor based on RPM

POWER ANALYSIS AND MANAGEMENT

Use Cases
COMPARISON

VisualSim Model of a Single Core A53

• Clock Rate = 1300 Mhz

• Pipeline type = In-Order

• Pipeline Stages = 7

• Cache = 64 KBytes of I-Cache and

• D-Cache = 256 KBytes of L2 Cache

VisualSim Power Plots

Results comparison
Frequency Max Power

observed
Real System Power Delta percentage

500.0 Mhz 0.037 W 0.038 W 2.63%

600.0 Mhz 0.053 W 0.051 W -3.92%

700.0 Mhz 0.073 W 0.080 W 8.75%

800.0 Mhz 0.097 W 0.090 W -7.77%

1000.0 Mhz 0.157 W 0.159 W 1.25%

1100.0 Mhz 0.193 W 0.188 W -2.65%

1200.0 Mhz 0.233 W 0.227 W -2.64%

1300.0 Mhz 0.277 W 0.269 W -2.97%

Source: Anandtech.com

2 cases of Power calculation within
VisualSim

• CASE 1 : Modules which support Power calculation with preconfigured power states:
• Processor - Preconfigured architecture
• Server, Channels etc – Architecture is defined using these building blocks

• CASE 2 : Custom Modules
• Custom Power states
• Custom Architecture
• RegEx functions are used to define the power profile of a module

2/2/2021 MIRABILIS DESIGN INC. 165

Designs using CASE 1 modules
PREDEFINED POWER STATES

2/2/2021 MIRABILIS DESIGN INC. 166

Model SoC Architecture and
Map the MPEG Application

Processor Bus
Topology

Memory
Controller

Hardware
Accelerators

Power
management

Use Cases

Specification, demonstration and exploration using a single model

Evaluations and Decisions

SW

SWSW

SW

HW HW

HW HW

SW->All functions implemented in
Software on ARM A53
HW->Rotate Frame implemented
as an accelerator. All other
functions are on ARM A53

SW->meets power but not
performance
HW->Meets performance but
power is too high.

Decision
Add the accelerator but
implement power management

Results after adding power management

2/2/2021 MIRABILIS DESIGN INC. 169

The Added power management algorithm can be read as: If
the HW_Engine is in Standby state for more than 1.0 msec,

then move the device to Idle state

Designs using CASE 2
modules

CUSTOM POWER STATES

2/2/2021 MIRABILIS DESIGN INC. 170

Analog + Digital system designs

2/2/2021 MIRABILIS DESIGN INC. 171

Power RegEx functions used in
ExpressionLists

2/2/2021 MIRABILIS DESIGN INC. 172

Setting
to Active

state

Setting
to

Standby
state

Power Table Definition RegEx functions

2/2/2021 MIRABILIS DESIGN INC. 173

RegEx functions used Description

powerUpdate("Manager_1","AD9361","Active") The module defined by the name of “AD9361” in
powerTable “Manager_1” is moved to “Active” State

powerUpdate("Manager_1","AD9361","Standby") The module defined by the name of “AD9361” in
powerTable “Manager_1” is moved to “Standby” State

Statistics

2/2/2021 MIRABILIS DESIGN INC. 174

Control System Design – state machines

2/2/2021 MIRABILIS DESIGN INC. 175

Bluetooth
module in IoT
Demo model

Power Table Definition

2/2/2021 MIRABILIS DESIGN INC. 176

Expressions and equations are used to
define the power state values

Usage of RegEx functions

2/2/2021 MIRABILIS DESIGN INC. 177

Active_Count += 1

if(Power_Flag){

powerUpdate (Power_Manager_Name, Master_Act_Power, "Active")

}

TIMEQ ("Master_Processing", port_token, 0, AXI_Cycle_Time)

Active_Count = Active_Count -1

if(Power_Flag && Active_Count == 0){

powerUpdate (Power_Manager_Name, Master_Act_Power, "Standby")

}

Enable/Disable Power

Change state

Delay

Generated Stats

2/2/2021 MIRABILIS DESIGN INC. 178

Aging of devices

2/2/2021 MIRABILIS DESIGN INC. 179

As time passes, the
power efficiency goes

down making more
power consumed by
devices for the same

process

More Power Levels with Dynamic State
values

2/2/2021 MIRABILIS DESIGN INC. 180

RegEx functions used Description

powerManager("Manager_1") Reads the current power Table
configuration for all devices
defined

Power Table Configuration

2/2/2021 MIRABILIS DESIGN INC. 181

New power states added to satisfy the
requirement

State Values are dynamically calculated

2/2/2021 MIRABILIS DESIGN INC. 182

Each expression uses parameter values and global variable values which are
modified during the simulation which gives us a dynamic power profile

Generated stats

2/2/2021 MIRABILIS DESIGN INC. 183

Impact of capacitance
• PowerTable can also show the impact of capacitance (delay to reach a certain power level)

• PowerTable has a column called “t_OnOff”, which can be used to specify the time it will take to
reach the peak power level once the change of state has been made.

2/2/2021 MIRABILIS DESIGN INC. 184

Power unit – W, mW, uW

2/2/2021 MIRABILIS DESIGN INC. 185

Pulldown option for the user – in power Table
If Micro_Watts is selected, then all state values entered

will be in Micro_Watts

Creating States for all Devices including
Wires

2/2/2021 MIRABILIS DESIGN INC. 186

/* Power_Table. First row contains Column Names, expressions valid for entries except Device Name.
where "Scheduler_" or "STR_" + BlockName; Processor, Bus, DRAM = Architecture_Name + "_" + BlockName

--------Device Name------- ---------Power States------ -----Operating States------ --toActive-- --Speed-- --Exist-- */
Architecture_Block Standby Active Wait Idle Retention Existing OffState OnState t_OnOff Mhz Volts ;
Architecture_1_LPDDR 70.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
RAS_Power_SDRAM 70.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
RRD_Power_SDRAM 70.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
Read_Power_SDRAM 70.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
Write_Power_SDRAM 70.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
ACT_Active_SDRAM 70.0 100.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
ACT_Standby_SDRAM 30.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
WTR_Power_SDRAM 30.0 300.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
Architecture_1_L3_Cache 70.0 Partial_Power_Val 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
RNF 70.0 Partial_Power_Val 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
RNI 70.0 Partial_Power_Val 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
HNF 70.0 Partial_Power_Val 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
XP 70.0 175.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;
Wire_Power 70.0 175.0 0.0 0.0 10.0 Standby Standby Active Cycle_t 1000.0 1.0 ;

Power Management for all Devices

2/2/2021 MIRABILIS DESIGN INC. 187

/* Delay_to_Change_State. First row contains Column Names, expressions
valid for entries except Device Name.

where State to same State can extend a Power State
--------Device Name------- --Start------Expression------Next--- */
Architecture_Block State Time State ;
Architecture_1_L3_Cache Standby 100.0e-9 Retention ; /*
Functional Retention mode */
RNF Standby 5.0e-6 Idle ;
HNF Standby 5.0e-6 Retention ;
Wire_Power Standby 5.0e-6 Idle ;

State_Plot_Enable
(GNUPlot)

2/2/2021 MIRABILIS DESIGN INC. 188

power plot
in gnu plt
format is
created

VISUALSIM TRAINING

	Slide Number 1
	Agenda- Part 4: Hardware Modeling
	Architecture Library Overview
	Basic Components to define
	Parts of a System
	Electronics
	Architecture Library Overview
	Hardware Architecture Exploration
	Software and Algorithm Performance Optimization
	Assumptions
	Source of Data
	Model Routing Table
	Analysis and Results
	Configuring Hardware
	Architecture_Setup and Device_Interface
	Major Blocks and Location�
	Processor and L1 Cache
	Trace Input
	Processor
	Execution Units ���Datapath to D-cache��Issue Queue
	Instruction Set
	Bus Arbiter and Interface
	Bus Arbiter�
	Cache- Key Parameters��
	Memory Controller and HW_DRAM
	Memory Controller�
	HW_DRAM- DDR, LPDDR, GDDR�
	SRAM and Stochastic Memory
	AXI
	PCIe�
	DMA
	Generic NoC (Other NoCs are similar)
	Router, NIU and Wire
	Architecture Setup and Device Interface
	Architecture Setup
	Important Points for Architecture Setup
	Routing Table Construction �	- in Architecture Setup
	Architecture Setup Configuration
	DeviceInterface Block
	Hardware Statistics
	writeStats To File
	Bus-Cache-RAM
	Bus Arbiter
	Read Transaction
	Configuration
	Using Cache Block
	Cache
	Operation
	Configuration
	RAM
	RAM
	Operation
	DRAM Features
	Block Usage
	Configurations
	RAM configurations
	Important Concepts
	Required Fields
	Read Operation
	Write Operation
	Notes on RAM Block
	Latency Computation & Statistics
	Timing Diagrams
	Learn More by Reviewing Training Recordings
	Processor Modeling
	Processor Model
	Multi-Processor Model
	Instruction_Set
	Processor
	Pipeline
	Examples of Pipeline usage
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Processor Timing Diagram- Prefetch
	Processor Timing Diagram- Pipeline
	Execution Units ���Datapath to D-cache��Issue Queue
	Instruction Set
	Traffic Profile
	Traces from ARM fast model
	Branch Mis-Prediction from Traces
	Traces generated from GEM5
	Trace file Converted to VisualSim Format
	Using Trace in VisualSim
	Using Task Generator Module
	Task Generator – config file
	Task Generator - Config File
	Technology-specific Hardware Modeling
	DMA
	DMA Block Notes
	DMA Block Diagram
	Using Database
	DMA Database Block Entry Example
	Using Data Structure
	Example of DMA in model
	Statistics
	Bridges and Switches
	AXI BUS
	AXI Bus Block Diagram- �Read/Write Request Channel
	AXI Bus Block Diagram- �Read Data Channel
	AXI Bus Block Diagram:�
	AXI Bus Block Diagram:�Arrays
	How to Connect?
	Statistics
	Enable Plot
	Integrated Cache
	Integrated Cache Configuration
	Integrated Cache Operation
	Integrated Cache connection
	Integrated Cache Statistics
	Integrated Cache Debug messages	
	Memory_Controller
	Memory_Controller�Algorithm State Machine
	Memory Controller
	Memory_Controller
	Statistics of Memory Controller
	Cycle Accurate_DRAM – Key Features
	HW-DRAM Statistics
	How to connect ?
	Configuration
	HW_DRAM- Timing Parameters
	CycleAccurate_DRAM: Same Row Read Timing
	CycleAccurate_DRAM: Write Timing
	Timing Diagram
	Memory_Controller Signals and Delays�Read following by Write
	Memory_Controller Signals and Delays�Write following by Read
	Memory_Controller, CycleAccurate_DRAM Banks and Bi-Directional Bus- Read Operation
	Power Modeling
	Purpose
	VisualSim Power Technology
	Reason for Early System Level Power Exploration
	Concept of VisualSim Power Technology
	Power Table
	Library Blocks Supported
	Operation
	Configurations
	Example model Three software task scheduled on single processing resource
	VisualSim plot
	VisualSim plot
	Slide Number 145
	Power Modeling Usage
	Example model for hierarchical power table
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Listen To Block�
	PowerTable RegEx Function
	Slide Number 153
	Battery
	Battery Block��
	Block Ports
	Reports
	Power Generator
	Time-Energy Settings
	Motor-Energy Settings�
	Slide Number 161
	VisualSim Model of a Single Core A53
	VisualSim Power Plots
	Results comparison
	2 cases of Power calculation within VisualSim
	Designs using CASE 1 modules
	Model SoC Architecture and �Map the MPEG Application
	Evaluations and Decisions
	Results after adding power management
	Designs using CASE 2 			modules
	Analog + Digital system designs
	Power RegEx functions used in 					ExpressionLists
	Power Table Definition RegEx functions
	Statistics�
	Control System Design – state machines
	Power Table Definition
	Usage of RegEx functions
	Generated Stats
	Aging of devices
	More Power Levels with Dynamic State values
	Power Table Configuration
	State Values are dynamically calculated
	Generated stats
	Impact of capacitance
	Power unit – W, mW, uW
	Creating States for all Devices including Wires
	Power Management for all Devices
	State_Plot_Enable �(GNUPlot)
	Slide Number 189

