

VISUALSIM TRAINING

Training: Planning, Modeling, Simulation, Advanced Features MIRABILIS

Planning

Agenda- Part 1: Planning

- Goals and Requirements
- Tasks and Operations
- Workload or Traffic
- Hardware or Platform
- Collaboration and Sharing
- Data Management
- Support
- Look and Feel

Planning Stage of the System Modeling

It involves the solutions/patform architect along with the product team deciding on the high level aspects of the design.

It will involve the following questions and subsequently narrowing down on the answers:

- 1.Performance and Power Objectives: Define specific performance and power targets, balancing them for overall objectives, such as X GHz processing speed within Y watts power budget.
- 2.Application Mapping and Task Graph: Plan how applications or tasks will map onto the hardware platform, outlining the system's **task graph.**
- **3**.Scalability and Reliability: Ensure the hardware system accommodates future scalability needs while maintaining high availability and reliability. This may involve redundant components or failover mechanisms to prevent downtime.
- 4.Security and Interoperability: Integrate security measures into the hardware design and ensure interoperability with other systems. For example, include hardware-based encryption modules and support industry-standard **communication protocols** like PCIe/UCIe.
- 5.Cost-Effectiveness and User Experience: Consider cost implications in hardware design decisions, such as selecting IPs/hardware platform. Employ strategies to enhance user experience within budget constraints, like choosing cost-effective components without sacrificing performance or usability.

Goals in system design

- High-level objectives guiding system design, quantifiable targets for functionality, performance, and other key aspects, used to drive design decisions.
- They can be later used to narrow down on the Requirements/Constraints of the system
- The box below gives an example of system design goals for a radar system

Performance:

High-Level Goal: Achieve a minimum target detection rate of 95% within a range of 200 kilometers. **Quantifiable Metric**: Target Detection Rate

Power:

High-Level Goal: Maintain power consumption below 500 watts during normal operation. **Quantifiable Metric**: Power Consumption

Functionality/Behavioral:

High-Level Goal: Ensure the radar system can differentiate between aircraft, ships, and weather phenomena with at least 99% accuracy. **Quantifiable Metric**: Classification Accuracy

Reliability/Security:

High-Level Goal: Maintain system availability of at least 99.9% over a 30-day period, allowing for scheduled maintenance downtime. **Quantifiable Metric**: System Availability

How to map goals to requirements?

Figure : System Model with hardware + algorithms. Flow Latencies are being observed

Step 1 : Define Goals Eg: Achieving a higher target detection rate

Step 2 : Model the system to observe certain performance metrics like latency, buffer usage, throughput.

Step 3 : Define Requirements/Design
Constraints
Eg : A higher Latency will limit the target
detection rate

Step 4 : optimizing the system Eg : Optimize the radar system's signal processing algorithms, hardware capabilities, and environmental conditions to minimize latency and improve overall performance.

VisualSim Modeling Methodology – From Goals to verifying Requirements

MIRABILIS

design

Tasks Or Operations

• **Task:** A specific unit of work that needs to be accomplished within a system. Tasks are typically smaller and more granular than workloads. They represent individual operations or actions that contribute to the completion of a larger goal.

How to Map Tasks to the System Hardware?

- 1. Task Analysis:
 - Understand the requirements and characteristics of each task in terms of CPU, memory, I/O, and other resources.
 - Analyze dependencies and relationships between tasks to identify any constraints or priorities.

2. Resource Allocation:

- Assign system resources such as CPU cores, memory, and I/O devices to tasks based on their requirements and priorities.
- 3. Choose the right scheduling algorithm:
 - Optimize resource allocation to maximize system efficiency and performance while meeting the demands of individual tasks.
 - Context Switching delays : Involves saving the current execution context of the running process, loading the context of the next process to be executed, and transferring control to it.

Workload

- Workload is a combination of tasks
- There are three different ways to define a workload in Visualsim

Behavioral Flow :

- Define a sequence in which the hardware resources of the system will be triggered.
- Breakdown the flow into individual stages with predefined input and output

Sensor Param_scaling Video_Render Server_Delay Param_scaling2 Decoder Param_scaling3 Playback_Synchronization Figure : Behavioral flow example

Generate an instruction mix:

- Used to simulate the workload when the actual application software is still under development
- It can also be used to evaluate the impact of certain type of instructions on the overall performance
- Examples :
 - > What will be the impact on performance when there are higher branch mispredictions?
 - higher number of loops vs a sequential code

Use real application traces:

- Used when the application is available
- Standard benchmarks like dhrystone can also be executed by fetching their traces using open source tools like GEM5

Hardware or Platform Modeling

- Extend an SOC based system model to a complete platform model
- Components: Example of an automotive platform
 - Software applications: Extend the ECU/Microcontroller Model to include ADAS, infotainment systems
 - Sensors and Actuators : Accelerometer, Gyroscope, proximity sensor etc
 - Control systems : Speed control, Power systems, Mechanical systems etc
 - Interfaces : A high speed Ethernet interface
 - BUS/Communication Protocols : CAN BUS and nodes for communication between different control systems
 - Power Generation : Include Battery, Temperature/Thermal management

A Complete automotive platform model in VisualSim

simulate a high load case

Collaboration and Sharing

MIRABILIS Subsystems and their integration - Example

Each of these tasks can be performed by individual teams using VisualSim and the Integration team can

also use the outputs from these teams

Generating Documentation - Interactive, and all plots loaded

MIRABILIS

Data Management

From the Basepath, it will be a standard path for all users

Adding Environmental variable in Windows:

- 1. Right-click on the Start Button
- 2. Select "System" from the context menu.
- 3. Click "Advanced system settings"
- 4. Go to the "Advanced" tab
- 5. Click "Environment Variables..."
- 6. Click "New"
- 7. Enter the path for the variable that is to be used.
- 8. For example,
- 9. Variable : CLASSPATH

10. Value: C:\VisualSim\VisualSim2410_64\VS_AR

In Linux :

- 1. Open the .bashrc file and add the export command
- For example, Export CLASSPATH= C:/VisualSim/VisualSim2410_64/VS_AR

		Environment Variables	5			>	
	Ahout	User variables for P	c				
System Properties		× Variable	Value				
Computer Name Hardware Advanced System	m Protection Remote	OneDrive	C:\Users\PC\OneDrive	C:\Users\PC\OneDrive			
Computer Marine Thatuware Advanced System	IT FIDIECTION REINDLE	Path	C:\Users\PC\AppData\	$\label{eq:c:Users} C:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
You must be logged on as an Administrator to	o make most of these change	es. QSYS_ROOTDIR	C:\intelFPGA_lite\22.1s	$\label{eq:c:intelFPGA_lite} C:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
Performance		TEMP	C:\Users\PC\AppData\	C:\Users\PC\AppData\Local\Temp			
Visual effects, processor scheduling, memor	y usage, and virtual memory	TMP	C:\Users\PC\AppData\	C:\Users\PC\AppData\Local\Temp			
	Settings						
User Profiles				New	E dit	Delata	
Desktop settings related to your sign-in			L	New	Edit	Delete	
	Settings	System variables					
Startup and Recovery		Variable	Value			^	
System startup, system failure, and debuggi	ng information	CLASSPATH	C:\VisualSim\VisualSim	C:\VisualSim\VisualSim2340_64\VS_AR			
		ComSpec	C:\Windows\system32	\cmd.exe			
	Settings	DriverData	C:\Windows\System32	C:\Windows\System32\Drivers\DriverData			
		GNUPLOT_LIB	C:\Program Files\gnup	C:\Program Files\gnuplot\demo;C:\Program Files\gnuplot\demo			
Environment Variables			OCESSORS 4				
		- OS	Windows_NT				
		Path	C:\Program Files\Com	mon Files\Orac	cle\Java\javapath;(C:\Progra	
ОК	Cancel App	ly PATHFXT	.COM:.FXF:.BAT:.CMD:.'	VBS:.VBF:.JS:.JS	SE:WSE:WSH:MS	<u>C.</u>	
				New	Edit	Delete	
	Windows spe	ecifi					
asking	Edition	Winc			ОК	Cancel	
	Varsian	2242					

Support

online_support@mirabilisdesign.com

Skype, Whatsapp, Wechat (China)

Teams, Zoom

Look and Feel of the Hardware and Behaviour in VisualSim

VISUALSIM TRAINING