
VISUALSIM TRAINING

Training: Planning, Modeling, Simulation, Advanced Features

Planning

Goals &
Requirements

Tasks or
Operations

Workloads or
Traffic

Hardware or
Platform

Collaboration
& Sharing

Data
Management Support Look & feel

Modeling

Parameters/
Variables/ DS/

Fields

Flow- System,
Beh-Arch,
Data flow

Performance
Power

Functionality

Hierarchical/
Class/ DI

Blocks

Traffic/
Results

Hardware/
Software/
Network

Abstraction Algorithms Task Graph

Simulation and Analysis

Types of
Studies

Parameter
Ranges

Graphical/
Batch/ Multi-

Core

Debugging/
Verification Requirements

Post-
Simulation Types of Plots

Advanced
Studies

Checking

Advanced Features

Failure Integration Generation Encryption

Accuracy Compare

Agenda- Part 2: Modeling
 Parameters/Variables/DS/Fields
 Data Types
 Regex
 Flow- System, Beh-Arch, Data flow
 Hierarchical/ Class/ DI Blocks
 Traffic
 Results
 Abstraction

Variable Vs Parameter Vs Data Structure

Variable
1. 3 types- Block(In

Script and Expression
List only), Local(One
window) and Global
(Full Model)

2. Values change during
simulation

3. Example: Flag,
Statistics

Parameter

1. Fixed for a simulation
and modified for next
run

2. Example: clock speed,
buffer size

3. Used for multi-core and
batch simulation

Data Structure
1. Similar to Struct in C

with Fields and values
2. Contains specific

information for that
Transaction or packet

3. Dynamically add and
destroy fields

Common
-All standard data types supports by Parameters, Variables and fields
-Viewable by Blocks

Data Structure
Data Structure is similar to “struct” in C

Fields of the Data Structure represent

• Data transmitted through the model

• Represents the Control signal info , frames, packets etc.

Data Structures contain 6 standard header

• Block (Source name) and DS_Name (Template name)

• TIME (creation time-stamp) and ID (sequence number)

• INDEX (integer scratch pad) & DELTA (double scratch
pad)

Data Structure Templates
•VisualSim Processor, memory -> Processor_DS

•Network modeling -> Task_Class

•Non-Processor Hardware -> Hardware_DS

•Stochastic -> Header

Processor_DS - template

Replacing the default data structure template which can have 50+ fields with a minimal template (Min DS)
(~10 fields) will show significant improvement in Run Time of the Models

Necessary Fields in the Data Structure
• A_Source

• A_Destination

• A_Command

• A_Bytes

• A_Bytes_Remaining

• A_Bytes_Sent

• A_Task_Flag

Note: Error message will be thrown when one or more required fields are absent

Adding the necessary
fields resolves the issue

Parameter
Used to define values which cannot be changed during simulation but can be changed
between simulation

Usage
• Any block in the BDE can access these values
• Export block parameters to link to the BDE parameters

Types
• Generic parameters - Scalar and String
• Expressions
• File names
• Parameter Set

Variable
Variable is a lookup list, variable or register to store data during the simulation

Variable is a named location
• Local- available in the current window only
• Global- available throughout the model

• Block- available within the Script, ExpressionList

Used to communicate between blocks and routing

Defined in VariableList (Global and local), ExpressionList (Block) and Script (Block)

Supports all standard data types

Data Types supported in VisualSim

1. Scalar
◦ Integer
◦ Double
◦ Long

2. String

3. Array
4. Matrix

Note:

• 1/5 will be 0
• 1.0/5 will be 0.2
• 1/5.0 will be 0.2
• 1.0/5.0 will be 0.2

RegEx
• Collection of Mathematical, Logical, Statistical and Algorithm-Specific Functions

• Popular RegEx are used with Array, Queues, Schedulers, Data Structure, Power and Networking

• Usage
✔Parameters
✔Processing, ExpressionList, Script and Queue/Server for defining logic and decisions
✔Can combine parameters, variable and data structure fields

addToRoutingTable
(String
Architecture_Name,
String Source_Name,
String
Destination_Name,
String Hop_Name,
String
Source_Port_Name)

Adds a line to the
routing table. This
is used to add a
specific
connection.

addToRoutingTabl
e
("Architecture_1",
"IO_2","IO_2",
"Bus_Name_1",
"Bus_Name_2")

getRoutingTable
(String
Architecture_Name)

Get Routing Table
as a Data
Structure.

getRoutingTable("
Architecture_1")

Regex Examples
Hardware Architecture Routing table

addStats
(String
memory_name,
double value)

Updates a statistics memory that is defined
using the Statistics block. If the memory exists,
then add double value and return true, else
returns false.

Statistics

powerManager
(String power_table_name)

Gets the complete
power table. This
will get the details
for all devices that
are associated with
this PowerTable

powerManager
("ARM_Table_Manager ")

stateChange
(String power_manager_name,
String Device Name String
Operating State, String State
name)

Changes the
state of a device
dynamically. See
device list above.

stateChange("Manager_1
",
"ARM","Standby","Idle“)

Power Regex

readFile
(String filename)

Get the string text
contained in the
specified file.

readFile("File_Name")

writeFile
(String filename,
java.lang.Object
token)

Write the token to the
specified file.

writeFile("File_Name",port_tok
en)

File I/O

Expression List
Sequence of mathematical expressions

Requires one transaction on all input ports to fire the
block

Assign values to fields or variables
◦ Execution starts when data arrives on all input ports
◦ Data at each port is identified by the port name
◦ Queued if multiple values arrive at one port

Usage
◦ input.field_name = value

Output
◦ Condition can use any expression containing fields, variables

and logical operators

8/18/2020 MIRABILIS DESIGN INC. 14

Some Commonly used Expressions in
ExpressionList

Can use
conditional
statements

Execution is
sequential

Using Regex in ExpressionList – Demo Model

Demo Models – Regex in script block

$VS/doc/Training_Material/Tutorial/Gener
al/RegEx/RegEx_Power_Test.xml

$VS/doc/Training_Material/Tutorial/General/RegEx/
RegEx_File_Test.xml

Hierarchical/ Class/ DI Blocks

Hierarchical Blocks
• Grouping a set of functional blocks

that combine to define a function or

device

Construct Hierarchical Block
• Select the blocks to be grouped. Select Edit -> Create Hierarchy

• Drag from Model Setup -> HierarchicalBlock

• Add input and output ports, Parameters

• To view inside the Block, Right click- > Open Block

Class
• A class is a master version of the block.

• Class is an XML sub-model

• Can be instantiated multiple times in the model.

• Changes made to class block are replicated to all
linked instances

• All sub-models need a Simulator

How to construct a Class?
• Assemble the initial block diagram
✔Use the library blocks to assemble the model
✔Create a Hierarchical block of this block diagram

• Create a class
✔Convert the Hierarchical block into a Class
✔Save as a sub-model

• Instantiate a new class for use in a model
✔To use the Class, you need to instantiate the block in

the model using Graph> Instantiate. Entity. Make
sure the Class is located within the
VS_Model_Library directory

• To test the class
✔ Test the class by constructing a simple model

around it.

• Save in Library
✔Right-click the block and select Save Block in Library.

CREATE HIERARCHY CONVERT TO CLASS OPEN CLASS AND SAVE AS

Constructing a class

Instantiating the Class

Creating Sub Class
• Right click on the Class Block

• Select Class Actions > Create Subclass

• Can add additional parameters and Blocks

Do’s and Don’t for Class Block
Save all class blocks in a common location

Make sure the location is below a Classpath

Organize the Classes in folders under this Classpath

Use the Open Instance for Listen to Block and Listen to Port ONLY

Do not modify any functionality inside the Open Instance.
◦ This will reflect only in that instance of this Class.
◦ Any changes to the instance is extremely hard to debug.

Dynamic Instantiation
• Creates multiple instances of itself during the
preinitialize phase of model execution.

• Each instance of this block behaves exactly like a
Hierarchical block.

• Helps significantly in building large designs where the
model structure scales.

Example of Dynamic Instantiation

DI block from
Model -> Hierarchical_Blocks

Specifies instance
on input & output

Advantages of Dynamic Instantiation

• Dynamic Instances solves modeling problems where objects are arbitrarily required.

• Examples are:

✔ Mobile units entering, traversing and exiting a coverage area
✔ Creation and deletion of virtual circuits
✔ Peer-to-peer protocol connections

• Above problems are difficult to model using Static Instantiation
✔ Place many copies of a block in a diagram and use block logic to emulate creation and deletion and to branch data to/from

the appropriate blocks.

✔ Create a primitive that does all the work.

• Static Instantiation requires over-specification and makes model engineering and presentation difficult.

Differences
• Modification in one Hierarchical block does not affect another

• Changes in Open Block of Class block will be reflected at all places were used

• Changes in Instance will only be reflected in that one location

• Open Block for Dynamic Instantiation and Hierarchical Block for Listeners

• Open Instance for Classes for Listeners

Traffic

Data Structure Generation
• Traffic
✔ Time distribution

• TriggeredTraffic
✔ Requires an input trigger to generate DS

• Transaction Sequence
✔ Custom list of operations

• Custom Traffic
✔ Periodic distribution

• Trace
✔ Read from a file

• Using RegEX
✔ newToken(Value)

Defining Data Structure in Traffic Blocks
Data Structures template
• .txt can be located anywhere
• .class located in VS_AR/VisualSim/data

● Absolute path is required for accessing
files located anywhere.

● File name if located in the
$VS/VisualSim/data directory.

Types
• Statistics Distribution- Single request, periodic or fixed, uniform within a range, normal,

exponential
• Custom- Based on a combination of data size and interface speed. Can also be triggered by

external event
• Trace file- Existing file from hardware bus, network, software thread execution sequence,

instruction order
• Sequence- Special case to typically debug with a order such as command of “Read, Write,

Write, Read , or packet sizes of “128, 1512, 256”

34 Return

This Parameter is an alternate to the
Data_Structure_Name field above. If the user defines a
file name here, the above parameter is not considered.

Traffic

Mirabilis Design Inc.

Select the “Time_Distribution”
according to design

Restrict the number of
transactions

- Double click to configure

Type I - Statistical
• Define a distribution

• Parameters for mean and standard distribution

• Specify values for the Data Structure fields. It can be source, destination, data, priority or bus
delay

Type II - Custom
• If a custom distribution is required or the

Data Structure is generated as a function of
another activity, or triggered during the
flow, use the Triggered Traffic.

• Every time the input port is triggered the
Triggered Traffic block generates a
transaction

Type III – Transaction Sequence
•Generate transactions or Data Structures in a
specific sequence

•Define sequences in the parameter window or
specify a file + path

• Time interval between Data Structure is a
parameter

• Specify an output processing using the Regular
Expression (RegEx) Language

Type IV – Custom Traffic
•Generate data structure during the T_Interval
period

•Stalls all transmission during the T_Pause.
•Equally distributes the Number_Of_Transactions
during the T_Interval range.

Plotting, Displays and Statistics

Result
• Statistics

✔ ResourceStatistics
✔ Statistics blocks to collect statistics at intermediate points

• Assertions or tests
✔ High/low value for scalar
✔ Conditional model activity
✔ Model termination

• Collect data
✔ Write to screen or to files (Excel, text or XML)

• Plot data
✔ Bar, Histogram or XY plots
✔ Special viewers- Matrix, Image, MPEG and speakers

• 3D- Interactive Creation
✔ Create custom animated views that resemble the system

Using TimeData Plotter

X-axis : Sim Time (s), Y-axis : Utilization

• Plot double values against simulation time

• View or save the results of the simulation in a
XY format.

• Used to depict latency, throughput and other
variables that vary against time.

XY Plotter
• Any scalar value against any other scalar value.

Both values must arrive synchronously.

• The X- and Y-axis can have different data values.

• Plots can be Latency vs. Packet Size or Task Delay vs.
Processor Speed.

• The parameters of this block match the fields (or
RegEx) of the incoming Data Structure to determine
the coordinates, color and trace identifier (Dataset).

• Values, color, legend defined in fields of incoming
data structure. Plot similar to XYPlotter

Histogram
• The plotter accepts data on the input and plots them as a
histogram.

• View the plot in real-time or save for future viewing.

Using Bar Graph

• The bar graph plots series
• The input is an array

Using Timing Diagram

Need to add details

Text Display
• Output to text the data structure and statistics

• The input type can be of any type.

• Can be set to Save/View from Post Processor

• Cannot be viewed from the Post Processor

writeStats To File
• Generates Statistics for all the blocks in the model

at the end of simulation

• Writes into a Text File in the model directory

Differences between ArchitectureSetup
and Resource Statistics Blocks

Resource Statistics from Architecture setup – Covers all the hardware Blocks

Using Resource Statistics – Generates Stats for Stochastic Blocks like queues, servers ,
system resources

Model Location:
$VS/doc/Training_Material/Tutorial/General/Statistics_Plotting/Resource-Statistics.xml

Resource Statistics Block output – Covers all the Blocks in Resource_List

Abstraction

Multiple Levels of Abstraction
Stochastic vs Hybrid vs Cycle Accurate

Stochastic

• Easy to build the target
SoC/System (Starting version)

• Stochastic subsystems can be
replaced with more accurate
blocks as required

• Get an early estimate on Power
and Performance metrics

Hybrid – More detailed than stochastic, focus
on the application than on the processor
micro architecture
Cycle Accurate – Very detailed
implementation, focus on processor micro
architecture

Algorithms - Adding Custom
Block

Script
•Used for :

• Custom logic

• Scheduling algorithm

• Arbitration algorithm

• Statistics and plot generation

•Can be used to define Resources, Cycle-accurate hardware components and algorithmic behaviors
•Can use if, else-if, else, while, for, SWITCH/CASE/BREAK
•Can implement dependencies, Task Graphs etc.

A VERY POWERFUL MODULE

Getting Started with Script
Drag and drop the Script block from the library1

Right Click on script -> Customize -> configure ;
give a unique Block Name

2

Getting Started with Script
Double click on Script; It already has default contents. Delete them3

Now we can add our logic here. 4

NOTE
Model has to be saved
before running a model

which has script

How Does Script block work?

• When the packets comes into the script, they will be put into a queue called Input Queue
• If a script was idle and a packet comes, then it will be processed immediately.
• If a script was busy executing a packet and another packet comes into the script, then the latest packet will

be in the Input Queue until the current execution finishes/stops.
• until the current execution finishes, it can also start the next one when the block DS stalls at a TIMEQ.

The Input Queue is a Virtual Queue

Even if the script has multiple
input ports, the script

doesn’t have to wait for all
input ports to have data to

start execution

Script Overview

1. port_token is the pointer to the currently executing data structure.

2. Do not use the port name to identify the data structure.

3. Script block maintains the currently executing Data Structure at each line.

SEND

FORMAT

What is happening here?

Here, the data coming to the
script is send out through the
output port

destination can be a
port or a virtual
connection like
another script

LABEL:BEGIN
Implementing counter logic: Left or Right

Counter = 0 is executed every time script is
triggered

Counter = 0 is only executed once during
initialize

All lines of code defined before LABEL:BEGIN is executed at
initialize and all lines of code after LABEL:BEGIN are executed
when an input comes to script

Can we use “SEND” to send packet to
another Script block?

YES

Packet comes into the second script through
a port_name called “virtual”

GTO

GTO -> Go To
GTO(END) -> finish script execution at this line
So script execution stops at line 7.

Line 8 and 9 not executed

GTO(LABEL name) -> sends the execution to that LABEL
Line 7 to Line 9.
Line 8 wont be executed.

FORMAT

What happens here?

SWITCH

By using a SWITCH CASE logic, we select appropriate operation as per
the parameter value.

FORMAT

Note: Switch always requires a case (default)

if – else
FORMAT

Here, when the counter value reaches 10, we
stop the script execution. Otherwise, we
send the output.

port_name

When a packet comes into the script, the port
through which it came in will be the port_name.

port_name = input

port_name = input2

TNow and TStop

TNow -> gives the current time in simulation
Tstop -> gives the simulation stop time

TStop is obtained from the top level Digital Simulator

WAIT

WAIT(time) -> Provides delay for the time specified
Until the delay is over, script cannot execute other transactions

FORMAT

During the delay
period, entire script is
locked up. No other
line or transaction
can be executed

TIMEQ

FORMAT

With TIMEQ, we get line number 5 to execute at simulation
stop time while other Data Structures (DS) will be executed

With TIMEQ, the current port_token
is stored in the Queue and a new
one can be read from the input
queue to start executing from

LABEL:BEGIN

getBlockStatus

FORMAT

Keyword can be any of the following:
“length” -> gives us the current buffer occupancy (no need to specify Queue Position)
“copy” -> gives us the copy of the packet present in the specified Queue
“pop” -> pop the Specified Queue virtually

Arbitration algorithm : Queue + Script

Using regex to send data to script Virtually
Virtual (<script_block_name>, <data_to_be_sent>)

Task Graph Modeling

Blocks Required To Model a Basic Task
Graph in VisualSim
Traffic Block – Explained in the Section Traffic

Traffic Generator – Explained in the next section

Trace Mapper – Explained in the next section

Mapper Blocks – Explained in the Library Blocks Power Point

System Resource or Processor to represent the hardware on which the task graph will be executed -
Explained in the Library Blocks Power Point

Task Generator Module
•Custom Task generator – number of instructions, type of instructions, order of tasks (loop,
random) can be set

•More dynamic and distributed traffic profile can be generated

•“n” number of Software tasks can be defined

•In case software development hasn’t started yet, we can use this module to generate the
instruction traces

5/14/2024 MIRABILIS DESIGN INC. 76

Task Generator – Config File (Instruction Mix Table)

5/14/2024 MIRABILIS DESIGN INC. 77

Software tasks
Number of

instructions per
task

The Total Number of instructions are made up of instructions of
different types. The percentages of each type of instruction is

specified here.

Task Generator - Config File (Instruction Mix Table)

5/14/2024 MIRABILIS DESIGN INC. 78

This type descriptor is used in the previous slide.
User can specify the percentage of each type of

instruction for each software operation

Trace Mapper and structure of CSV File
containing traces

Note: File name to be specified
in CSV format only

Trace Generation using GEM5 or other
simulators compatible with VisualSim

riscv64-
unknown-elf-

gcc
./Source_Code/

main.c

./riscv-isa-
sim/build/spik

e -l --log-
commits --

isa=RV64IMAC
./riscv-

pk/build/pk
a.out

2>gcc_out.log

VisualSim
Architect

Source Code Compile Run on Spike Generate log Parse log – remove pk
overhead

Gen.
data in
csv
format

Load
into the
model

Dynamic Mapper

Mapping of tasks on
▪ Target processor,
▪ SystemResource
▪ SystemResource_Extend

8/18/2020 MIRABILIS DESIGN INC. 81

Model Showcasing the usage of TraceMapper and Task generator

	Slide Number 1
	Training: Planning, Modeling, Simulation, Advanced Features
	Agenda- Part 2: Modeling
	Variable Vs Parameter Vs Data Structure
	Data Structure
	Data Structure Templates
	Processor_DS - template
	Necessary Fields in the Data Structure
	Parameter
	Variable
	Data Types supported in VisualSim
	RegEx
	Slide Number 13
	Expression List
	Using Regex in ExpressionList – Demo Model
	Demo Models – Regex in script block
	Hierarchical/ Class/ DI Blocks
	Hierarchical Blocks
	Construct Hierarchical Block
	Class
	How to construct a Class?
	Slide Number 22
	Instantiating the Class
	Creating Sub Class
	Do’s and Don’t for Class Block
	Dynamic Instantiation
	Example of Dynamic Instantiation
	Advantages of Dynamic Instantiation
	Differences
	Traffic
	Data Structure Generation
	Defining Data Structure in Traffic Blocks
	Types
	This Parameter is an alternate to the Data_Structure_Name field above. If the user defines a file name here, the above parameter is not considered.
	Type I - Statistical
	Type II - Custom
	Type III – Transaction Sequence
	Type IV – Custom Traffic
	Plotting, Displays and Statistics
	Result
	Slide Number 41
	XY Plotter
	Histogram
	Slide Number 44
	Slide Number 45
	Text Display
	writeStats To File
	Differences between ArchitectureSetup and Resource Statistics Blocks
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Abstraction
	Multiple Levels of Abstraction�Stochastic vs Hybrid vs Cycle Accurate
	Algorithms - Adding Custom Block
	Script
	Getting Started with Script
	Getting Started with Script
	How Does Script block work?
	Script Overview
	SEND
	LABEL:BEGIN
	Can we use “SEND” to send packet to another Script block?
	GTO
	What happens here?
	SWITCH
	if – else
	port_name
	TNow and TStop
	WAIT
	TIMEQ
	getBlockStatus
	Arbitration algorithm : Queue + Script
	Using regex to send data to script Virtually
	Task Graph Modeling
	Blocks Required To Model a Basic Task Graph in VisualSim
	Task Generator Module
	Task Generator – Config File (Instruction Mix Table)
	Task Generator - Config File (Instruction Mix Table)
	Trace Mapper and structure of CSV File containing traces
	Trace Generation using GEM5 or other simulators compatible with VisualSim
	Dynamic Mapper
	Model Showcasing the usage of TraceMapper and Task generator

