
VisualSim Training

Training: Planning, Modeling, Simulation, Advanced Features

Planning

Goals &
Requirements

Tasks or
Operations

Workloads or
Traffic

Hardware or
Platform

Collaboration
& Sharing

Data
Management Support Look & feel

Modeling

Parameters/
Variables/ DS/

Fields

Flow- System,
Beh-Arch,
Data flow

Performance
Power

Functionality

Hierarchical/
Class/ DI

Blocks

Traffic/
Results

Hardware/
Software/
Network

Abstraction Algorithms Task Graph

Simulation and Analysis

Types of
Studies

Parameter
Ranges

Graphical/
Batch/ Multi-

Core

Debugging/
Verification Requirements

Post-
Simulation Types of Plots

Advanced
Studies

Checking

Advanced Features

Failure Integration Generation Encryption

Accuracy Compare

Agenda- Part 2: Modeling

 Basic Components for hardware modeling
 Performance, Power and Functionality
 Performance and power Metrics
 Library components and important parameters which affect

performance

Performance, Power and Functionality
VisualSim provides an integrated solution for performance, power and functional

modeling
The details regarding Power modeling have been dealt in a separate presentation
The functional modeling aspect is covered in modeling the task graphs section
The user can also perform functional verification by observing the input, output

values, checking for their correctness
Custom algorithms or functional flows can also be define dusing the Script Block

Basic Components for Hardware Modeling

Architecture Library Overview
•Generate architecture with parameterized blocks

•Define hardware and software components

•Create proposed or derivative architectures in few
minutes

•Rapidly define application flow diagram and behavior

•Optimize architecture and functionality mapping
combination

Hardware Modeling Library

Basic Components to define
1. Hardware modeling requires Architecture_Setup block - has the routing information of all hardware
blocks in the model

2. If using Traffic or other custom block to connect to a Bus, use the Device_Interface block in front of the
Bus port.
◦ Also true for AXI, PCIe and NoC
◦ Not required for Standard Blocks Like Processor

3. Processor block requires Instruction_Set

ArchitectureSetup Block gives
out statistics for all the
hardware blocks in the model

Use of Device Interface Processor Blocks with
InstructionSet

Architecture Setup
All Bus and Hardware block must associate with Architecture Setup

This Block Handles

⮚Routing

⮚Plotting

⮚Statistics

⮚Debugging for all the Hardware components

8/18/2020 MIRABILIS DESIGN INC. 8

1. There can be multiple architecture setup blocks
2. Each block must have unique name

Note: this Block can be used as it is after updating the Architecture_Name field

Custom Routing Table Construction - in Architecture Setup

Format Sample:
 Source_Node Destination_Node Hop Source_Port

 Source Destination Next Block Out Port
 Processor DRAM Port_1 bus_out

Add entries using RegEX
 addToRoutingTable (Architecture_Name, Source_Name, Destination_Name, Hop_Name, Source_Port_Name)

Delete entries using RegEX
 removeFromRoutingTable (Architecture_Name, Source_Name, Destination_Name, Hop_Name,
Source_Port_Name)

8/18/2020 MIRABILIS DESIGN INC. 9

DeviceInterface Block
• Can be used to define the Source Name, data
size, command type and destination for a Master

• Can be used to define the Device name on the
Slave side

• Add the Master or Slave block to the Linear Bus,
Bridge and AHB Buses automatically
✔Generate Hello Messages
✔Eliminates the need for a RegEx functions or

manually generate Hello message

• Map fields of other data structure formats to the
corresponding fields of the Processor_DS

• Used to connect only in the presence of the
Linear Bus, AHB and bridge blocks.

• Not useful with a single AXI or a single PCIe

Set field values here or
keep default to use
existing field values

Stochastic Components in the Library

Concept of System Resource
Concept
◦ Split operation into two parts
◦ Behavior or mapper
◦ Resource (similar to Server)

Blocks
◦ Behavior: Mapper, SoftwareMapper, DynamicMapper
◦ Architecture: SystemResource_Extend, SystemResource
◦ Notify: SystemResource_Done

 Multiple concurrent requests
◦ Send from Mapper (Behavior) to the SystemResource with the delay

information
◦ Can be static or dynamic reference
◦ Scheduler: First Come-First Serve, Round-Robin, Preemption, Non-

Locking

 SystemResource_Done block
◦ Release appropriate SystemResource_Extend block by signaling the

completion of an external task

12

Architecture

Behavior
SoftwareMapper

DynamicMapper

Mapper to System Resource
•Mapper blocks define the connectivity between the behavior flow and the architecture flow,
and within the architecture flow using a named connection

• The block takes the incoming Data Structure and send it to the Scheduler virtually
• This block can send a request to either the SystemResource or SystemResource_Extend.

Task
IN

Task
Done

System_Resource

SystemResource_Extend SystemResource_Done

Mapper

HW

SW

TC

Mapper
Request

System Resource

Mirabilis Design Inc. 14

This is the name of this
SystemResource block and is used by
Mappers, RegEx and other
SystemResource block to call this
block to execute a transaction.

Next_Resource is the name of the
next hierarchical System Resource,
which can be SystemResource or
SystemResource_Extend block.

System Resource (Cont.)

Mirabilis Design Inc. 15

Set Scheduler type from the range
of schedulers

Time the scheduler will devote to
each task for Round Robin

Application comparisons

System Resource Extended

16 ReturnMirabilis Design Inc.

Application comparisons

- Double click to configure

What is Mapper?
Connect behavior flow with architecture resources

▪ Takes incoming Data Structure and sends to
▪ SystemResource
▪ SystemResource_Extend blocks

▪ Placed in the behavior flow where timed resources required
▪ Consumes zero time, no queue, no arbitration

 Mapper System Resource

8/18/2020 MIRABILIS DESIGN INC. 17

Software Mapper
Hardware or Software Task issuer

▪ Sends tasks to SystemResource or SystemResource_Extend based on Target_Resource
▪ Block can either Queue incoming Data Structure or send to SystemResource immediately

8/18/2020 MIRABILIS DESIGN INC. 18

Attributes to issue
the task to
System Resource

Lock out all other tasks from
preempting this Task at the
SystemResource

Example Model 1 – System Resource

3 tasks competing for the
same resource

$VS/doc/Training_Material/Tutorial/General/System_Resources/Scheduler_Sw_2.xml

Plots and Stats for Example Model 1

Tasks are not
concurrent

Different Types of Scheduling Algorithms in SystemResource

Scheduler_FCFS FCFS+ Preempt – Start at different times with Context Switching- 1 Sec

Scheduler_RR Scheduler_FCFS+Preempt

Example Model – System Resource Extend

22

Queue

23 ReturnMirabilis Design Inc.

Provides the priority number
for reordering the queue.

Set how the packets should
flow

Queue – First Token Flow Through

“Queue”

Queue Number = 1
Position=
1Position=
2Position=
3Position=
4Position=
5

Time = 0.0

Packet
– P1

P1
Queue=

1

P1

Time=100 msec

P1

Time=200 msec

Packet
– P2

P2
Queue=

1

P2

Time=300 msec

Packet
–P3

P3
Queue=

1

P3

Time=400 msec

P4

Time=500 msec

P5

Time=600 msec

P6

Time=700 msec

P7
P7

Rejected
Only first packet goes out without

any pop input. Other packets need
pop input

Queue – First token Enqueue

• pop_input is required to send all the packets including the
first one

Multiple number of Queues

“Queue”

Q Num=1
Pos=
1Pos= 2
Pos= 3
Pos= 4
Pos= 5

Q Num=2 Q Num=3
P1
P2

P3

P4

P5

pop_input value can be 1, 2 or 3

Internally, it look like this

Queue Operation - Summary
• Data Structures are queued based on priority from high to low number
• Data Structures in the queue are arranged based on FIFO or LIFO setting
• Number_of_Queues defines the number of parallel queues contained by a

single Queue block
• Queue Number Field selects the queue to place
• To pop a packet

– From the head of a queue, Queue_Number must be sent to pop_input port.
• When Maximum_Queue_Length is reached, packets are Rejected based on

Rejection_Mechanism and sent to Reject_output
• Based on initial Queue State parameter,

– Enqueue: First Transaction can be enqueued and wait for the pop
– First_Packet_Flow_Through: First transaction send without pop. After first packet, head of

queue sent if prior was acknowledged with pop

Server
• Define multiple {queues + time delay}

• Active Resource
• DataStructures queued in FIFO or LIFO order

• Processing time is known in advance
• Provided along with the transaction to this block.

• SLOT
• Special operation mechanism
• Models any slot-based architecture such as multiple

virtual RTOS, TDMA etc.

28

Server

ReturnMirabilis Design Inc. 29

Server has a special
parameter called “Time
field” to delay head of queue
before sending out

Number_of_Queues can be
multiple in the Server as well

Server - Summary
• Queue_Number_Field selects the queue

• Queue is reordered based on Priority field

• Queue data in FIFO or LIFO based on Queue_Type

• Delayed by Time_Field value at head of queue and
sent out

• Packet is sent to reject_output when
Max_Queue_Length reached

Performance and Power Metrics
•Common Statistics

✔ End-to-end latency and Task Delay
✔ Throughput (MIPS or MB/s), Utilization (%)
✔ Minimum, maximum, mean and standard deviation statistics
✔ Power – Instantaneous, Average and Cumulative
✔ Battery – Current Capacity(Watt - Hr), Battery Life Remaining (%)

•Processor
✔ Individual statistics for Caches, Execution Units and Pipeline Stages
✔ Flush Time, Stall (%), Thread swaps and Context switching
✔ Listener for Real-Time pipeline activity

•Cache
✔ Hit-miss Ratio
✔ Requests, utilization, evictions, prefetches and latency and throughput

Hardware Statistics
Name Value

Bus_1_Utilization_Pct_Max 10.1,

Cache_1_Utilization_Pct_StDev 1.05689435,

Processor_1_D_1_Utilization_Pct_Max 1.45,

Processor_1_INT_1_Utilization_Pct_StDev 0.10969973,

Processor_1_INT_2_Utilization_Pct_Max 24.55,

Processor_1_I_1_Utilization_Pct_StDev 0.01500007,

Processor_1_L_2_Utilization_Pct_Max 3.1,

Processor_1_PROC_Utilization_Pct_StDev 0.03489914,

Processor_1_Pipeline_Utilization_Pct_Max 50.2,

Processor_1_Register_Rd_Utilization_Pct_StDev 0.19330594,

Processor_1_Register_Wr_Utilization_Pct_Max 49.55,

SDRAM_1_Utilization_Pct_StDev 1.91E-07

32

Name Value

Bus_1_Delay_Max 3.600004E-8,

Bus_1_IOs_per_sec_StDev 634428.24721,

Bus_1_Input_Buffer_Occupancy_in_Words_Max 32.0,

Bus_1_Preempt_Buffer_Occupancy_in_Words_StDev 0.0,

Bus_1_Throughput_MBs_Max 176.0,

Cache_1_Delay_Time_StDev 1.499871E-8,

Cache_1_Hit_Ratio_Max 100.0,

Cache_1_Memory_Used_By_Processor_1_MB_StDev 8.455181E-5,

Cache_1_Memory_Used_By_SDRAM_1_MB_Max 2.56E-4,

Cache_1_Memory_Used_By_Total_MB_StDev 8.455151E-5,

Cache_1_Throughput_MBs_Max 116.0,

Processor_1_Context_Switch_Time_Pct_StDev 0.0,

Name Value

Processor_1_D_1_Hit_Ratio_Max 100.0,

Processor_1_D_1_KB_per_Thread_StDev 0.0,

Processor_1_I_1_Hit_Ratio_Max 100.0,

Processor_1_I_1_KB_per_Thread_StDev 0.0,

Processor_1_L_2_Hit_Ratio_Max 100.0,

Processor_1_L_2_KB_per_Thread_StDev 0.0,

Processor_1_Stall_Time_Pct_Max 1.35,

Processor_1_Task_Delay_StDev 2.9502E-7,

SDRAM_1_Delay_Time_Max 1.5E-7,

SDRAM_1_Memory_Used_By_Processor_1_MB_StDev 0.0,

SDRAM_1_Memory_Used_By_Total_MB_Max 2.56E-4,

SDRAM_1_Throughput_MBs_StDev 0.0,

DMA_IO_per_sec_Max 7.45E6,

DMA_Throughput_MBs_StDev 3.463999999,

Analyzing Performance in VisualSim – Important Parameters
in Library Components

Hybrid Processor

Processor
Unique Name

Key Parameters to modify

Required

Outstanding_Req_Count is used
for External Cache

Number of
Pipeline
Stages is
important

Processor – Internal Cache Configuration

Hit_Ratio by
default will be
0.99

Micro Architecture details – Number
of Registers, ROB size, Number of
Registers

Mention next Level
Cache to be
accessed in case of
misses

Processor Instruction Set
begin execUnit_config ;
Queue_Size INT_1 16 ;
Queue_Size INT_2 16 ;
Queue_Size INT_3 16 ;
Queue_Size INT_4 16 ;
Queue_Size INT_5 16 ;
Queue_Size FP_1 16 ;
Queue_Size FP_2 16 ;
Queue_Size INT_6 12 ;
Queue_Size INT_7 12 ;
end execUnit_config ;

Processor name

Execution and Load
Store Units within
RISCV and the
corresponding
instruction groups
they execute

Instruction Group
Queue_Size
for each
Instruction
Group

Instruction width in bits can
vary for different load/store
instructions

Example of Pipeline usage

There can be multiple rows for each pipeline
stage, but the last row number should be equal to
the Number_of_Pipeline_Stages

Execution_Location can be:
1. Internal to the Processor (configured in

Processor_Setup)
2. External Resource (typically a System Resource Block)

A condition can be
specified for
External Resource

1. Req port receives request from
the source (Traffic generator in
this case). It will be connected to
DeviceInterface

2. Ack port will have transactions
received with additional fields
like Time_Array, Trace_Array
useful for debug

3. Ack and Din are connected to
the output blocks via
DeviceInterface or directly

4. Dout carries response from
output devices like Memory.
Connected to Bus,
DeviceInterface or Memory

5. Dout will have Task_Latency and
Task_Throughpout as additional
fields

Input to
DMA block

Use Input (none) while using data
structure and database name when
using DMA database

Required

Per channel, num sent before Ack

If the user wants to define actions for the DMA from Data
structure fields, then above fields are necessary

Match input fields

Sequence
Operation Destination Send as

Burst size
Channel
Number

Transfer
Size

DMA Controller Block

Model Location :
$VS/doc/Training_Material/Tutorial/Architecture/DMA/DMA_Demo_Model_Field_n_DB.xml

Model Location :
$VS/doc/Training_Material/Tutorial/Architecture/DMA/Processor_DMA.xml

List all devices connected via
this port. Index is in order of
name- Port_1, Port_2 etc

Unique Name
Required

{Read, Write}

Model Location :
$VS/doc/Training_Material/Architecture/AHB_AXI/Bus_Arbiter_Read_Write.xml

1. Source (master devices that request data) like Processor and DMA (standard blocks) have to be connected to the master
ports via TileLink_Client (Library -- > Interfaces and Buses --> Tilelink --> TileLink_Client)

2. If the Master device is designed with simple library block (as logic) then user has to
include Device Interface block to provide the interface with master.

3. If the TileLink_Client is connecting to another BUS like PCIe or AMBA-AXI, then the user has
to use a Bridge (Library --> HardwareDevices --> Bridge)

Required

From Architecture Setup
TileLink Block

TileLink_Client

TileLink_Manager

All the
fields are
Required

refers to how many times a TileLink client will attempt to
send a burst of data to a target device before giving up
and retrying the transaction.

Model Location : $VS/demo/Bus_Std/TileLink_Models/TileLink_RISCV_SoC_Approach.xml

Timing Diagram for TileLink Bus showing the
messages that were sent during the transactions

Processor Stats
Channel wise Occupancy and
Delay for TileLink

• Support 16 masters and 8
slaves

• Master and slave ports can be
increased if it is required. Eg:
AXI_16_x16 block

• Master and Slave Ports :
• Port type – Multi Port (input and output in a

single port)
• Port data type – general
• Support only 2 wire connection per port (input

and output)
• Input ports: Accept read/write requests from

master devices and forward read/write respons to
master devices

• Output ports: Forward read/write requests to slave
devices and accept read/write response from slave
devices.

• Stats_out: provide debug messages during the
simulation if “DEBUG” parameter is set.

• Plot_out: Not used in the current version.

• AXI_Speed_Mhz: Bus speed in Mhz
• Bus_Width: Width of the AXI Data and response

channel
• Read_Threshold: Total number of outstanding reads

in each slave ports.
• Write_Threshold: Total number of outstanding writes

in each slave ports if A_Task_Flag is true.
• Master_Request_Threshold: Input queue size of

master ports. • Device_Attached_to_Slave_by_Port:
List of slave devices connected in
each slave port.

• Arbiter_FIX_1_RR_2_CUSTOM_3:
Arbitration algorithm for multi master
single slave cases. (fixed priority uses
Fixed_Priority_Array parameter)

Model Location : $VS/demo/memory/Cache_Demo.xml

• Support existing AMBA AXI protocol.
• Coherency can be enabled for specific masters
• If coherency is not enabled for any master, bus acts like

a AXI bus and performs non coherent data transfer
• Coherency channels will not be used.

Lis of coherent masters in an
array.
Empty array is acceptable, and
it implies none of the masters
are coherent

Model Location : $VS/demo/Coherency/Snooping_Protocol.xml (2340 version)

• Blocking
• Delay is variable based on data size and speed

Unique Name

Width of the bridge

Bridge synchronization clock

Model Location :
$VS/doc/Training_Material/Architecture/bus/AHB_AXI/AHB_AXI_Bus.xml

Blocking
◦ Single interconnect
◦ 4 connected Devices and can add more
◦ Single-cycle delay for Read and Multi-cycle delay for Write
Non blocking
◦ Point-to-point mesh with multiple channels per wire
◦ Basic block contains for 4 device connections; Can be expanded
◦ Single-cycle delay for Read and Multi-cycle delay for Write

Width of the switch

Blocking or non blocking mode

Unique Name

Model Location :
$VS/doc/Training_Material/Architecture/Processor/Cortex_M0/ARM_CortexM0_Demo.xml

• Master devices can be connected
to the top multi ports of the block

• Slave blocks can be connected to
the bottom multi ports of the
block

• The packet can reach a slave
device that is in different
crossbar by hopping through the
crossbar according to the
configuration in Crossbar_Setup
block.

Buffer Size – Max number of frames that
can be stored at the port interface

Crossbar QoS – Rate Regulation or
Bandwidth limitation

Width of the crossbar

Routing option – Address based or
interleave (detailed configuration in
Crossbar_Setup)

Specifies the Crossbar routing and
bandwidth configuration

Specifies the addressing parameters
and interleave settings

Model Location :
$VS/demo/NoC/Crossbar/20220527_5M_4S_CX_Demo_Model_17.xml

Router RN Array Path, RNI, HNI and SNF

HN Array path
Router
Coordinates

Router width in
bytes

VC size and
device interface
queue size

Number of
Virtual channel

Interface buffer size

HNF cache name

Model Location : $VS/demo/networking/Noc/NoC_Demo_Updated.xml

Device Interface
and Virtual Channel
Buffer Size

Router
Coordinates

Flit Size in bytes

Request and
response queue
size

Wire ID if power
enabled

Router
connections

Wire width in bits

Switch (Router)

NIU (Network Interface
Unit)

Wire

Model Location : $VS/demo/NoC/Arteris/Noc_Arteris_Demo.xml

HNF

RNF, RNI, HNI and SNF

XP (Router)

Wire

Size of Virtual Channel and
device interface queue

Router Coordinates

Bit error ratio

Number of VC

Flit size in bytes

Device buffer size

No of VC in the router

Packet Priority

HNF input Queue
size

HNF cache size

Router connections

Delay cycle for flits

Model Location : $VS/demo/NoC/Corelink/CMN600_with_A77_DDR5.xml

Master and slave ports are multi
port connections.
Msg_out: provides debug
messages of PCIe
Stats_out: not used in the current
version

Can be common or array for each port in order starting from
top-left and continuing through top-right

Required: List of all the Devices
connected to each End-Point

Required: Determines speed

Model Location : $VS/doc/Training_Material/Architecture/bus/PCIe/PCIe_DMA.xml

Master and slave connections
use multi port for input and
output.
Debug_port: provides debug
message of the PCIe6 bus

Number of Lanes

List of Devices connected to each
of the port

Maximum request size of a packet

Maximum bytes that can be
stored in Rx and Tx buffer

Model Location : $VS/doc/Training_Material/Architecture/bus/PCIe6/PCIe6_Device
Interface2x2_base_model.xml

Integrated Cache
Integrated Cache can be used as L1(Instruction and/or Data), L2 and L3 cache in both stochastic and
cycle accurate mode.

Stochastic Mode:
◦ Hit or miss of input request will be determined by the instruction hit ratio/data hit ratio.

◦ If it is a hit, request will be processed and response will be returned to the source. If it is a miss, request
will be sent to next level cache or memory to fetch whole block of data, while the request is waiting in
the buffer,.

Address_Based Mode
◦ Hit or miss of the input request will be determined by the availability of the requested address in the

cache.

◦ If it is a hit, request will be processed and response to the requested address will be returned. If it is a
miss, whole block of address range will be fetched from next block of memory and the request waiting
in the buffer will be processed.

 Flow control:
◦ User can run the model either with flow control or without flow control. By default block will be used in

without flow control.

◦ Input flow control can be achieved by including a field named “Event_Name” in the input data structure
and a TIMEQ to trigger the next request. The next request will be triggered only when the data is
processed by the cache.

◦ Output flow control can be achieved by setting the “Output_Flow_Control” parameter as true.

Required Parameters

• Outstanding_Requests
• Number of Outstanding

misses and prefetches
• Number of Hit before

Prefetch

Integrated Cache Statistics
Number of Statistics samples can
be generated during the simulation
time using the parameter
“No_of_Statistics’

Stochastic Cache
Emulate a cache in stochastic architecture mode where
addresses are not available- Used with hit=ratio
Handles
oRequest are Queued
oMeasures actual Cache hit-miss ratio
oCache Prefetch,
oRead/Write
oCache miss activity to the next level of memory

8/18/2020 MIRABILIS DESIGN INC. 117

Configuration

8/18/2020 MIRABILIS DESIGN INC. 118

Route the requests to the next level of
memory to access when a cache miss
occurs or a prefetch is requested

Expression for the cache hit using RegEx
language.
• true, then the task had a cache hit
• else a miss occurred.

Number of outstanding requests that
need to be processedCache_Speed

is necessary

Stochastic Memory

For SRAM, set to false

In ns for one width access

Required field

Activate & Overhead cycles
Value is expression, variable or
field

RAM
1. Models the memory controller and memory array
2. Handles
◦ Read
◦ Write
◦ Refresh
◦ Erase

3. Applications
⮚ ROM, RAM, SRAM, DRAM or SDRAM
⮚ DDR, DDR2, DDR3
⮚ SDR, QDR
⮚ VRAM, Direct Rambus, PSRAM, SGRAM
⮚ NAND and NOR flash

8/18/2020 MIRABILIS DESIGN INC. 121

Important Concepts
1. Controller Time – Scheduling + Activation
▪ Cycle Time = 1/Memory Speed Mhz

2. Access Time
▪ Access time for Read, Write, Prefetch and Erase is in nanoseconds
 Example : Read 1000.0/Memory_Speed_Mhz
▪ Default value

▪ Read 5.0
▪ Prefetch 6.0
▪ Write 7.0
▪ ReadWrite 8.0
▪ Erase 9.0

Read Operation

Input Output

c

input

output
c

Request goes as a Read,
Response returns as a Write

Request goes as a Write,
Ack returns as a Read

• The On chip network (pink
surface) is designed as per
the Mask R-CNN
specification

• The Task Graph in the
bottom defines the
behavioral flow for software
and trigger the hardware
devices.

• Each of the layers are defined as
different tasks in the task graph and the
dependency between them is modeled.

• A database is used to list the
layers/functions and the parameters
associated with them.

• These will be used to determine
the number of Multiply Accumulate
(MAC) operations corresponding to
each layer/function

Model Location : $VS/demo/DNN /DNN_Model_Mask_R_CNN.xml

	Slide Number 1
	Training: Planning, Modeling, Simulation, Advanced Features
	Agenda- Part 2: Modeling
	Performance, Power and Functionality
	Basic Components for Hardware Modeling
	Architecture Library Overview
	Basic Components to define
	Architecture Setup
	Custom Routing Table Construction - in Architecture Setup
	DeviceInterface Block
	Stochastic Components in the Library
	Concept of System Resource
	Mapper to System Resource
	System Resource
	System Resource (Cont.)
	System Resource Extended
	What is Mapper?�Connect behavior flow with architecture resources
	Software Mapper�Hardware or Software Task issuer
	Example Model 1 – System Resource
	Plots and Stats for Example Model 1
	Different Types of Scheduling Algorithms in SystemResource
	Example Model – System Resource Extend
	Queue
	Queue – First Token Flow Through
	Queue – First token Enqueue
	Multiple number of Queues
	Queue Operation - Summary
	Server
	Server
	Server - Summary
	Performance and Power Metrics
	Hardware Statistics
	Analyzing Performance in VisualSim – Important Parameters in Library Components
	Hybrid Processor
	Processor
	Processor – Internal Cache Configuration
	Processor Instruction Set
	Example of Pipeline usage
	DMA Block and its usage
	Ports and How to connect?
	DMA – defining actions using data structure
	Using The DMA database
	DMA – Demo models and results
	Model showcasing DS fields as well as DMA Database option
	Results for the previous model
	Connecting Processor – DMA - DRAM
	Results for the previous model
	Bus Arbiter and Bus Interface Blocks and its usage
	Ports and how to connect
	Key configuration
	Demo model
	Results for the previous model
	TileLink and its usage
	Ports and how to connect?
	Continued
	Continued
	Key configuration
	Demo model
	Plots for the previous model
	Stats for the previous model
	AXI Block and its usage
	Ports and How to connect?
	Key Configuration
	Demo model
	Results for previous model
	CHI Block and its usage
	Ports and How to connect
	Key configuration
	Demo model
	Results for previous model
	Bridge Block and its usage
	Ports and how to connect
	Key configuration
	Demo model
	Results for the previous model
	Switch Block and its usage
	Ports and how to connect
	Key configuration
	Demo model
	Results for the previous model
	Crossbar Block and its usage
	Ports and how to connect
	Key configuration-crossbar
	Key configuration-crossbar setup
	Demo model
	Results for the previous model
	Generic NoC Blocks and its usage
	Ports and How to connect
	Key Configuration
	Demo model
	Results for previous model
	Arteris NoC Blocks and its usage
	How to connect?
	Key Configuration
	Demo model
	Results for previous model
	CMN600 Blocks and its usage
	Ports and How to Connect
	Key Configuration
	Demo model
	Results for previous model
	PCIe Block and its usage
	Ports and how to connect
	Key configuration
	Demo model
	Results for the previous model
	PCIe6.0 Block and its usage
	Ports and how to connect
	Key configuration
	Demo model
	Results for the previous model
	Integrated Cache and Its usage
	Integrated Cache
	Required Parameters
	Integrated Cache Statistics
	Stochastic cache and it’s usage
	Stochastic Cache
	Configuration
	Stochastic memory and it’s usage
	Stochastic Memory
	RAM
	Important Concepts
	Read Operation
	DNN (MASK-R-CNN) usage
	Ports and how to connect
	Key configuration
	Demo model
	Results for the previous model

