

Getting Started

MIRABILIS DESIGN

1159 Sonora Ct,

Suite 116, Sunnyvale,

CA 94086, USA

 Version 19 | Date: 31 October 2019 2

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

©2003-2019 Mirabilis Design Inc. All rights reserved.

The information contained herein is subject to change without notice. While every reasonable effort was
made to ensure the completeness and correctness of this document, Mirabilis Design Inc. makes no
warranty of any kind with regard to this material, including but not limited to any implied warranties.
Mirabilis Design Inc. shall not be liable for errors or omissions contained herein or for any damages
relating to the use of this material.

VisualSim and VisualSim Architect are registered trademark of Mirabilis Design Inc.

Java and all Java-related titles are trademarks or registered trademarks of Sun Microsystems in the
United States and other countries. All other brand or product names may be trademarks of their
respective holders.

This document is protected by US and International copyright laws. No part of this document may be
reproduced in any manner without prior written consent of Mirabilis Design Inc.

Mirabilis Design Inc.
1159 Sonora Ct, Suite 116
Sunnyvale, CA 94086

 Version 19 | Date: 31 October 2019 3

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Revision History

The following table shows the revision history for this document

Date Version Revision
March 27, 2013 13 1
Feb 01, 2014 14 1
June 16 2016 16 2
February 10, 2017 17 1
October 31 2019 19 1

 Version 19 | Date: 31 October 2019 4

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Contents
1. About Mirabilis Design and VisualSim .. 6

Modeling and Analysis .. 6

VisualSim Product Organization .. 7

2. Transform Ideas into Modeling ... 9

Methodology ... 10

How to build a model like one thinks ... 10

Model Questions ... 12

Modeling Topologies ... 13

3. System Modeling .. 16

Why System Modeling .. 17

4. Types of Modeling ... 18

Flow Control and Behavior Modeling ... 19

Performance Modeling ... 19

Algorithmic Modeling ... 20

Mixed Signal and Control Systems .. 21

Hardware and Software Architecture Exploration ... 22

5. Power Exploration ... 23

6. Parts of the Model .. 25

7. Explanation of a System Model .. 26

Source ... 26

System ... 26

Simulator ... 27

Data Structures and Tokens .. 28

Parameter ... 28

Results ... 28

8. Model Abstractions ... 29

Statistical level Modeling .. 29

Hardware Level Modeling ... 30

Cycle-Accurate level model ... 31

9. Assembling a Model in VisualSim Architect .. 33

Model Creation ... 33

 Version 19 | Date: 31 October 2019 5

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Error Messages ... 35

Results ... 35

Analyzing Results .. 36

Model Animation .. 36

10. Understanding Errors and Messages .. 38

Exception Message ... 38

Port Conflict .. 38

11. Online Technical Support .. 40

Creating Customer Self Support Portal Account. .. 40

Submitting a new Request via Customer Self Support Portal... 40

Submitting a new Request via Email ... 43

Managing Requests/queries on Support Portal .. 43

FAQ’s and Solutions .. 44

12. Appendix ... 46

 Version 19 | Date: 31 October 2019 6

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

1. About Mirabilis Design and VisualSim
Mirabilis Design is a leading provider of System-Level Architecture Exploration software
for designing electronics and real-time software. Using VisualSim, designers can
architect the “right” product, i.e. one which minimizes product failures and has not been
over- or under- designed.

Mirabilis Design accelerates Concept Engineering by drastically reducing typical model
development from months to days and overall project time by 25-30%. VisualSim
enables users to design, analyze and validate new system level concepts; and generate a
matching system specification. VisualSim is used for performance, functional and power
exploration of network of systems, large systems, subsystems, components (IC, SoC,
FPGA and boards) and real-time software. Benefits from the solution are a visual
executable specification; easier creation of optimized and differentiated products and;
corporate infrastructure enabling extremely fast design trade-offs for price,
performance and power.

Model constructed in VisualSim can help you make better design specification decisions.
Evaluations of system specification using VisualSim performance, power and
architectural models can help eliminate clearly inferior choices, point out major problem
areas, and evaluate a variety of cost, performance and partitioning trade-offs.
Simulation is cheaper and faster than building hardware prototypes and can also help
with software development, debugging, testing, documentation, and maintenance.
Furthermore, early partnership with customers using visual prototypes improves
feedback on design decisions, reducing time to market and increasing the likelihood of
product success.

Modeling and Analysis

Users assemble a model of their proposed or existing system using a series of icons or
blocks in a graphical schematic capture environment. These icons or blocks are
parameterized modeling components that reduce the learning curve, accelerate model
development and enable accurate design optimization. User can import Third-Party IP
and custom development in various script and programming languages. Multiple levels
of abstraction supported in a single model can include statistical, transaction-level (TLM
2.0) and cycle-accurate. You can develop a detailed specification; and generate the test
benches and assertions for verification. The models are simulated using a highly
optimized simulator to conduct performance, power and functional trade-offs.
Designers and architects can conduct trade-off studies by varying parameter values,
running different stimulus and modifying the system configuration including the
architecture.

 Version 19 | Date: 31 October 2019 7

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 1: Overview

VisualSim Product Organization

VisualSim provides pre-built components that are graphically instantiated to describe system,
environments and output profiles. The traffic is described using transaction generators and
the results are created using statistics report writers and plotters. The applications and use
cases are described as UML-like block diagrams. The models can be simulated as a traffic flow
with delays, or generated by a software execution on target hardware architectures. Traffic
profiles, task characteristics and hardware profiles can be varied to cover a large
experimentation space. Statistics and reports can be viewed in real-time or written to file for
future analysis.

VisualSim is made up of five major products:

• VisualSim License Manager governs the usage of VisualSim products. This is a
proprietary network- and client-based license manager. In addition, VisualSim
supports FlexLM Server on Linux.

• VisualSim Architect is the model development, simulation and analysis environment.
This platform contains simulator, large collection of libraries for model construction,
verification and analysis. The parameterized libraries include traffic generators,
statistics viewers, behavior definition language, performance resources, accurate
hardware components and application-specific algorithms.

• VisualSim Post Processor is a standalone application to conduct port-simulation
analysis. This environment can take saved results from multiple runs and combine

 Version 19 | Date: 31 October 2019 8

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

them for comparative analysis. This is a separate product and is used for offline
review.

• VisualSim Batch Mode Simulation is for execution of the simulation from the
command-line without any graphical viewers.

• VisualSim Explorer is a private Web Server that presents the models within Web
Browsers for viewing, running simulation and analyzing the results from any
accessible computer. The Server is maintained within the company firewall.

VisualSim Architect is composed of the following:

• Core: Simulator, Block Diagram Editor, Basic modeling libraries, XML database and
standard interfaces (MatLab, Datagram’s, Serial I/O, C/C++/Java, Python and Tcl)

• Add-on Libraries: Modeling IP are provided for a number of tasks and applications.
The modeling IP are organized into toolkits or libraries. The use of the libraries
requires Architect.

• Utilities: Utilities are tools provided to generate specific analysis. These include model
optimizers and power analysis tools.

• Interfaces: Interfaces are provided to run VisualSim in co-simulation with Verilog,
SystemC and Satellite Toolkit. The Interfaces require the licenses for the relevant tools
that are co-simulated with VisualSim.

VisualSim Post Processor is platform and OS-independent software application, enabling users
to focus on the analysis without involving themselves in the modeling details. In addition, a
mobile provision enables the Post Processor to be used offline. This enables flexible usage
during travel, design review and remote presentations. VisualSim Post Processor can be used to
graphically display and analyze performance data collected from the simulation. The Post
Processor can organize results into a variety of x-y graphs and histogram plots, and displays
them in either graphical format.

VisualSim Batch-mode Simulation enables modelers and verification engineers to conduct
batch simulation for exploring combination of multiple model parameters values. The
simulation can be executed sequentially on a single machine or run in parallel on a server farm.
This approach can also be adopted to run VisualSim with Verilog or software code. This mode
requires that the model has no graphical viewers.

VisualSim Explorer enables the user to embed the models within an html page. This page can
be viewed from within a Web Browser that has the right permissions. The granting of the
permission is the responsibility of the VisualSim user organization. The web user can view the
specific hierarchy exposed, and change parameters, run simulation and view results, if

 Version 19 | Date: 31 October 2019 9

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

permitted. Use the Export to HTML to generate the files for importing into the Explorer
environment.

2. Transform Ideas into Modeling

Figure 2: Transform Ideas into Modeling

To transfer your ideas into a system model, VisualSim offers a number of flexible
methodologies. Irrespective of the preferred method, it is important to follow a Build-Optimize-
Validate approach in constructing a model. Users start from a rough concept of the flow of data
through an execution cycle and a platform architecture consisting of hardware, RTOS and
software middleware. This concept is translated into a block diagram using blocks in VisualSim.
The block parameters determine the specific functionality. After the raw model has been
constructed, the flows and timing are tested against a variety of traffic stimulus. If using the
statistical or scheduling model, the traffic generators emulate the operation of input queues
and software execution. If using an instruction sequence model to emulate the software code,
the code activity generates the stimulus to the model. Either approach can generate a large
variety of test cases to thoroughly test the model. After validation, the model is refined for
algorithm performance, architecture bandwidth and utilization, task deadlines and power
constraints. The same sets of tests are repeated to make sure the block diagram compliant with
the requirements.

 Version 19 | Date: 31 October 2019 10

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Now, the model is iterated over the operating scenarios to determine the functionality,
performance timing, and power or energy consumption. At this point, the user can conduct
intelligent optimization for resource sharing, task partitioning, power minimization and
improved functional operation. Out of these experiments comes the detailed specification that
can then be implemented.

Methodology

A top-down design may be a new design that can start with a “blank piece of paper” or one
that focuses on key algorithms in a new way. Whereas a bottom-up design may focus on
incremental improvements to a successful design, that maintains the same internal structure,
yet may improve the individual elements of the conceptual block diagram. Figure 2 and Figure 3
illustrate concepts relative to the conceptual block diagram, and the type of design one is
creating. The best modeling approach is to use a combination of top-down and bottom-up
design in the same system. This can result in a higher quality design, since concepts and details
are given equal weight from day one.

Using both top-down and bottom-up design in the same system can result in an even higher
quality design, since concepts and details are given equal weight from day one.

How to build a model like one thinks

Building a model like one thinks must relate the concept or idea to a model that is consistent in
terms of the conceptual block diagram, model questions, model abstraction, modeling
topology, and model data structures. In addition, there is notion of how the model might be
built in steps, or phases, that coincide with the top level block diagram. In fact, translating the
concept to a top-level block diagram is the first step to modeling a complete system, or portion
of a system. Figure 2 illustrates a typical performance model that consists of the user’s system
represented as the green “Performance Model”. The model block diagram also has a couple
added items, namely a simulator, “Digital”, a traffic source block, an analysis output block, and
parameters in the upper right corner. Think of the green “Performance Model” as the concept,
or idea, drawn on a napkin, or white board without any of the additional modeling information.
It could be two to twenty interconnected blocks with interconnecting arrows. The arrows
represent the movement of information between the blocks and can be data, control, or status.
The transactions (arrows) can be simplex, or duplex, and there are no restrictions on how to
represent a system.

 Version 19 | Date: 31 October 2019 11

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 3: Model Block Diagram

Top-Down Modeling: This figure illustrates how one might consider the system choices and
modeling choices at the same time. A model is like Einstein’s “mental model” except it moves
to a framework that can be tested and probed in the real world. It can be shared with other
departments, or dispersed to groups around the world, so the mental model becomes an
objective, real thing to discuss and evaluate.

Figure 4: Top down Modeling

 Version 19 | Date: 31 October 2019 12

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 5: Bottom-Up Modeling

Bottom-Up modeling is analogous to top down modeling, except it starts with known details
and builds into an existing framework. One will notice that the same considerations arise, just
in the context of existing elements of a system or subsystem. Now let’s look at the Model
Choices in more detail. The model choices might be considered the alter ego of the system
itself, in that it looks at the system differently than a set of interconnected blocks in a block
diagram.

Model Questions

The most important aspect of modeling is the question, or questions, to be answered by the
model. While this step may seem intuitively obvious in one respect, modeling questions may be
overlooked too quickly. This is true if one starts to build a model before the modeling intent is
crystal clear. First time modelers sometimes think the entire system, or chip, needs to be
modeled to sufficient accuracy to obtain good modeling results. While there are cases where
the entire system, or chip, may need to be modeled, there may be many cases where it does
not, just the portion of the system that may be of concern in terms of utilization, throughput, or
latency. Building a portion of a system as a model can reduce the modeling effort without
sacrificing the quality of results in terms of accuracy or insight. If one questions the bus
throughput in a new high speed multi-core processor, for example, then a bus centric model
may provide quality results without all of the processor detail in many cases.

 Version 19 | Date: 31 October 2019 13

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

So, what are some typical questions one might be interested in modeling? If one assumes new
software tasks, or threads, are going to be processed with differing priorities, how do the
priorities and task arrival time impact overall processing? If one changes the priority on a
critical task, will this be sufficient to improve throughput, and reduce task latency? In most
cases, this will be true, but there may be a relative time aspect to the critical task that may
reduce latencies on lower priority tasks, such that both benefit from the new ordering.

A big consideration of what questions one may want to answer relative to specific design,
relates to what information is available, as well. If one wants to model a specific cache at a
detailed level, but does not have the cache replacement policy from the data sheet, then one
might consider using existing cache replacement algorithms in the architecture block first.

Another important modeling question that typically cannot be answered with a spreadsheet or
many golden C models (not all): what are the peak utilizations for system processing elements?
If the “peak” processing is above 80% for a system processing element, then the system may be
vulnerable to last minute tasks added, or future growth of system itself. So, peak utilization,
throughput, and latency are typical modeling questions of importance for different blocks in a
conceptual block diagram.

After postulating the questions a model might answer, one might also consider what the
output, or analysis of the model might look like. This is a useful step in creating mental models,
building them, and running them: what type of output does one expect? In some cases, even
very simple models can have outputs that are somewhat different than envisioned. This is
useful in understanding the underlying system processes, interactions, and/or potential
bottlenecks.

Modeling Topologies

The performance model shown in figure 2 is one type of modeling topology. There are other
modeling topologies that may be more pertinent to a particular system or design. The modeling
topology is getting closer to creating the conceptual block diagram in VisualSim. Typically, one
adds a hierarchical block for each block in the conceptual block diagram and adds input and
output ports to match the flow in conceptual block diagram. It is here that the simulator, traffic,
analysis, and parameters can be considered for a performance model. One may want to contain
the conceptual block diagram inside a hierarchical block to present the system as a full system,
for a marketing or application engineering use, making the model easier to understand.

A platform model consists of behavior, or pure functionality, mapped to architectural elements
of the platform model. Figure 6 shows an illustration of this mapping. The key advantage of a
platform model is that the behavior algorithms may be upgraded without affecting the
architecture they execute on. In addition, the architecture could be changed to a completely

 Version 19 | Date: 31 October 2019 14

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

different processor to see the effect on the user’s algorithm, simply by changing the mapping of
behavior to architecture. The mapping is just a field name (string) in a data structure transiting
the model, so it is very easy to make this change.

Some platform models may have more than one architectural platform at the same time in the
same model to compare them side-by-side, again modifying the mapping from one architecture
platform to another. So, instead of a separate model for each architectural platform, one could
have up to three architectures in one model, to compare side-by-side.

Figure 6: Platform Model

VisualSim can support static or dynamic behavior to architecture mapping, simply by changing
the destination during execution. The destination resource might be modified based on actual
processor loading to affect dynamic mapping. The architecture portion is where time-based
events are executed and the behavior is where application-specific algorithms are executed.

An example platform model, shown Figure 7, has a simple behavior to architecture mapping.
The behavior generates instructions to the Processor block. The Processor block sends fetched
instruction and data cache information from the external cache, SDRAM blocks via the Bus
blocks, for example. The user can modify the behavioral task, while the platform architecture
remains the same. This means the processor, bus, cache and SDRAM blocks are fixed, while the
behavior is modified.

 Version 19 | Date: 31 October 2019 15

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 7: A Simple behavior to Architecture Mapping block diagram

The model can be further refined by adding a Finite State Machine (FSM) or script-based block
to refine the performance or platform level models. The support blocks such as traffic and
analysis, are quite similar between all the topologies. In general, custom models provide a
higher level of accuracy for those portions under investigation, such as a new cache policy in a
multi-core environment.

A good example of a custom model is the Audio Video Bridging libraries in Figure 8 which can
be used to design a completely new AVB-based network to integrate all the equipment,
upgrade existing networks, and to design the electronics that are used in such networks. The
AVB system can include the talkers and listeners such as video cameras, radars, broadcast
systems, displays, and Electronic Control Units. The network can include AVB interfaces,
bridges, switches and gateways.

Figure 8: Custom Model

 Version 19 | Date: 31 October 2019 16

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

3. System Modeling
System modeling is all about designing the right product and implementing the product right.
System design gives a greater flexibility in designing. Modeling can initiate from a block diagram
(work out in paper with all objectives and flows finalized). The system model consists of
simulator, parameter, traffic, system and Analysis. Simulator should be selected based on the
user requirement. Parameters are used for performance analysis of the system and it is set
fixed till the simulation completes.

Traffic blocks generates input stimulus based on the user-preferred timings. The input stimulus
must contain the details about the type of operation (read or write), priority, etc. System blocks
will process the input stimulus from traffic and the performance can be analyzed (in term of
throughput, latency, utilization, etc...). Before assembling a model, user has to decide on:

• Questions answered by the model (eg, speed of the bus, total channel needed)
• Data Structures to support the information flow
• Topology (type of communication network)
• Once the System model is ready to simulate, the user must match the system output

with the requirements. The user may try out different parameters and topology.

Figure 9: Modeling Flow Diagram

 Version 19 | Date: 31 October 2019 17

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Why System Modeling

Figure 10: System Exploration Complexity

Figure 10 shows the hardware and software complexity of today’s systems. It is difficult to conduct
exploration with so many variables in Verilog or using cycle-accurate models. Hence a better alternate is
required. This alternate is system design using VisualSim.

If there is only one application or the application is fully pipeline with no contention for resources, then
a simple Spreadsheet can be used to compute the throughput and latency. The applications can be
easily scheduled and the arbitration will be straight-forward.

Unfortunately, most of today’s systems have multiple applications. Take a look at the flow and the
allocation on Figure 11. There are multiple data flows through the system. There is contention at the
processors, I/O such as USB, bridge and the buses. It is very difficult to predict the system performance
with multiple variables, different distributions of traffic patterns and multiple hardware and software
components, and all the flows. The knowledge of all the flows, traffic rate and execution time is
required to create a high performance scheduling scheme.

 Version 19 | Date: 31 October 2019 18

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 11: Complexity of System Design

VisualSim provides the ability to quickly construct a system and run a large number of design variations.
A real system is always migrating from one application or throughput to multiple application and higher
throughputs. The designer must look at system requirements, the increased traffic, the application
flows and has conducted a variety of trade-studies. Such models can be assembled using VisualSim, run
analysis and determine the optimal system configuration. The configuration is based on the power and
performance consideration.

In VisualSim, you can start the analysis for a specific sub-system and then extend for the full system.
There is no need to build the full system at the beginning.

4. Types of Modeling
There are many types of system modeling possible in VisualSim including:

o Flow control and behavior modeling
($VS/demo/networking/Flow_Control/Flow_Control_Xon_Xoff.xml)

o Performance Modeling (Open the following model in the BDE:
$VS/demo/performance/VME/ VME_Bus_Model.xml)

o Signal Algorithmic Modeling (Open Help Page or the following model in the BDE:
$VS/demo/signal_processing/ConvolutionalCoder/ConvolutionalCoder.xml)

o Control and Mixed Signal Modeling ($VS/demo/analog/SigmaDelta/SigmaDelta.xml)

o Architecture Modeling (Open the following model in the BDE:
$VS/demo/Partitioning/SoC/Power_Perf_example.xml)

 Version 19 | Date: 31 October 2019 19

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

o Software design and verification
$VS/demo/others/EnergyConsumptionModel/EnergyConsumptionModel.xml

Flow Control and Behavior Modeling
Queue management, flow control, arbitration and scheduling are design trade-offs that are based on
variable

1. Number of input streams
2. Data rates
3. Queue depths
4. Scheduling or scanning or polling logic
5. Credit policy
6. External flags

This analysis is a stochastic simulation to explore the quality of service and to determine whether the
required throughput has been achieved. This model requires knowledge of buffer state and usage at
multiple locations, before making a decision on data transfer. The ingress and egress can have a large
number of channels or virtual connections. These are modeled using Traffic, ExpressionList, Queue and
Server. The logic is constructed using the Script or Finite State Machine. Output analysis will be latency,
buffer occupancy, and throughput. Figure 12, shows an example of a Xon-Xoff flow control logic.

Performance Modeling

Performance models will be created using the Resource and Processing blocks. Performance
modeling focuses on the overall system metrics such as power, performance and cost. This

Figure 12: Workload and Flow Control Studies

 Version 19 | Date: 31 October 2019 20

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

analysis is used to identify capacity limitations and system bottlenecks. These models tend to
be based on event trigger and do not run at cycle-accuracy. At this stage of the design, a lot of
unknowns need to be captured, specification is under development and software is not
available yet. Figure 13 shows the performance model of a Hardware Sub-System- Bus +
Master/Slave devices.

Figure 13: Performance Modeling

Algorithmic Modeling

Figure 14 shows a signal processing algorithmic model that is assembled using the Functions
and Application-specific libraries. Algorithmic modeling is related to control, DSP, image
processing and analog functions. The emphasis is on the correctness of the mathematics. The
standard analysis recorded would be Bit-error rate, Signal-to-noise ratios, waveforms and pole
diagrams.

 Version 19 | Date: 31 October 2019 21

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 14: Signal Processing Algorithm model of a Convolution Encoder

Mixed Signal and Control Systems

Mixed Signal and control system modeling requires the knowledge of two different time
domains- one where the time changes in a continuous manner (Continuous) and the other
where the time moves in discrete but random distances (Discrete Event). Good examples of
control system design are MEMS accelerometers and evaluating the impact on the engine
control in a noisy car tracking situation. For mixed signal, the Sigma-Delta A/D converter in
Figure 15 is a good design target. Here the evaluation is to look at the impact of frequency and
signal changes over time. Another aspect is the loss of data when moving from one time
domain to another.

 Version 19 | Date: 31 October 2019 22

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 15: Mixed Signal Modeling

Hardware and Software Architecture Exploration

Figure 16 shows an Architecture model that will combine the Architecture library components
with the Processing and Resource blocks. Architecture exploration is a detailed and accurate
exploration of a system platform. The system platform can be a SoC, software or a network of
systems containing hardware and software. The focus is on sizing the individual components,
distribution of tasks on to the distributed system connected by networks, partition into
hardware and software. The evaluation is for both Power and Performance.

 Version 19 | Date: 31 October 2019 23

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 16: Architecture modeling using the hardware architecture library

5. Power Exploration
The VisualSim Power Modeling Toolkit is a System-Level Power exploration solution that
captures dynamic power of the entire system in a model. The solution enables the Architect to
trade-off performance and power in a single architecture model. The model can be of a SoC or a
Distributed, Networked system. The Power Analysis is conducted in the specification phase.
The Power Analysis does not require detailed software code, RTL or placement information to
execute the simulation.

Using this solution, an Architect can determine the instantaneous and average power
consumed by the entire system or a specific component. The power exploration can handle
both standard components such as processors, and custom components such as hardware
accelerators.

Figure 17: Battery Charge Remaining

 Version 19 | Date: 31 October 2019 24

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 18: Instantaneous Power Sample

The Power Modeler updates the instantaneous, average and cumulative power using dynamic
state change information of the individual devices. The power can be analyzed on an existing
system model by instantiating this power module and entering certain power attributes for
each device or IP block. The effect of the power management performance such as transition
cycles is available as a definition.

The power manager is fully integrated with the Architecture Modeling Toolkit, scheduler blocks
and Script. Moreover there are function calls to view current power consumed by device,
update the power levels, change the power state and charge the battery.

 Version 19 | Date: 31 October 2019 25

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

6. Parts of the Model

1. Create a functional decomposition of all the operations in the system.

2. List the types of resources and the level of detail that each resource must be described
at. The refinement of the resources creates architectures. At that point, what types of
architectures must be evaluated.

3. Determine the input stimulus to the model. This can be the use cases, arrival rate of
packet, sensor traffic or an instruction stream.

4. Create a list of analysis by resource or by behavior that needs to be evaluated. This is
the evaluation criteria.

5. Behavior Flow: Draw or create a flow diagram to identify all the steps that the incoming
data request is going to go through. For example a packet in a router will go through an
Input Port->PHY->Mac->TCP Offload Engine->Processor (Side Path to CAM and SRAM)-
>Output Port.

6. Control Decisions: Examples are a lookup in a CAM (Content Addressable Memory) to
determine the action to be performed on the packet based on a content of the header
field. The control operation in the processor decode stage will trigger the dispatch
queue to send the next instruction to the Stage 1 of the pipeline.

 Version 19 | Date: 31 October 2019 26

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

7. Explanation of a System Model
System Model = Source + System + Results + Simulator + Parameters

System Model is the mathematical representation of the stimulus, description of the actual or
theoretical physical system and the viewers for the output. It consists of a Source, System,
Results, Simulator and Parameters. VisualSim library contains an individual directory for Source
and Result. System Model is used to analyze the performance of large network in term of
utilization, throughput, or latency and estimates the power. A System Model consists of traffic
sources sent to a block diagram of a system that generates real-time results, based on top level
parameters for a given simulation and simulator setup. VisualSim also provides many pre-built
libraries of common system components that can be drag-n-dropped into a model and
configured with a few block-level parameters. Unlike EXCEL spreadsheets, VisualSim can
determine peek loading conditions based on concurrent, or parallel execution using a global
simulation time.

To Monitor Real Time Execution : Right-Click (on Block) -> Listen to Block

To Monitor Real Data Flow : Right-Click (on Block port) -> Listen to Port

More Info on Block : Right-Click (on Source Block) -> Get Documentation

Source

This is the stimulus to the model. This can be a distribution-based, sequence of reads and
writes, and triggers the series of activity that the system under test responds too. The traffic
can be either a data structure (transaction containing fields), pin value or token (any data type).
The rate of arrival of the data can be modeled as a fixed sequence, distribution-based,
standards-defined or a trace from an existing system. Designing the right traffic generator is
important in developing a reliable model. Traffic Generators can represent packet data at an
input port or a stream of instruction to a Processor/RTOS.

System

This is the design. This can be Hardware oriented, Traffic oriented, Network oriented, Multi Bus
Topology, etc. The System construction contains Behavioral flow and System flow. The behavior
flow describes the order and dependency of the tasks that are processed on the data. The
behavior can contain multiple flows that are dependent or independent. The behaviors have no
notion of an implementation. In a performance model, they do contain the timing information.
The actual execution of the timing is performed on the architecture. Architectural definition
focuses on the hardware executing custom instruction and processors executing software

 Version 19 | Date: 31 October 2019 27

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

instructions, or software tasks. For advanced models that require cycle-accurate and instruction
accuracy, and use standard component definitions, the Architecture library components are
very well suited. VisualSim contain large number of IP Blocks such as Processor, Cache, SDRAM,
SRAM, DRAM, Memory Controller and Flash. Large numbers of bus model such as Shared and
Linear Bus, Request Acknowledge Bus Controller, Point-to-Point Bus Controller, DMA Controller
and I_O Controller. Some example systems are categories based on operation are:

Behavior flow + Architecture Flow

Pre-Built Models ->Popular Examples ->Application -> Multi functional FAX System

More Hardware Oriented

Pre-Built Models ->Popular Examples -> Network Equipments -> 3G Data Router

More Traffic Oriented

Pre-Built Models -> using performance modeling library block -> Arbitration -> Systems with
multiple sets of queue, muxes, flow control and credit policy

Cycle Accurate Modeling

Pre-Built Models -> Processor, Bus and Networking Standard Models -> AHB to AXI

Simulator

The simulation engine, or simply simulator, controls and coordinates all system components
executing in time simultaneously through a digital event mechanism. The digital event
mechanism insures that all concurrent events execute the same way each time the simulator is
started. In addition, the top digital event mechanism can support analog execution and finite
state machine execution in lock-step. The simulator has a parameter for the stopTime of the
simulation, and during execution of the model coordinates control, data, and status being sent
between system components, or blocks. There are also blocks, called hierarchical blocks, that
simply contain more blocks to make the top level system model look exactly like the original
block diagram. For time-based simulators such as Discrete-event simulator, it is important to
add the local simulator icon to large models with many levels of hierarchy. This will keep the
events occurring at that level of hierarchy local and maintain a smaller calendar of events, thus
increasing simulation performance.

 Version 19 | Date: 31 October 2019 28

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Data Structures and Tokens

A model is simulated by sending information across the topology of blocks and wires. The
information can be a single value such as integer, double/float, string, complex vector, arrays or
matrix. Alternately a set of these values in a single package called Data Structure can be passed.
The approach of using single values is suitable for algorithm, control systems and
implementation -level co-simulation. Data Structures are best suited for conducting
performance and architecture analysis.

Parameter

Parameters can be added to any model and at any level of hierarchy. These are added to the
BDE by selecting the parameter from the Library Folder at Model->Parameter. Parameters are a
convenient way to modify fixed model attributes to create different simulation runs and
conduct different scenarios. A parameter can be used to define the number of input queues,
processor speed, input rate or the number of statistics bins. Parameters can be linked to the
equivalent parameters in the blocks of the same level by using the parameter name within the
block parameter. Parameters can be expressions containing other parameter names.
Parameters are constant during the simulation. They will be evaluated at the start of a
simulation and will be constant for the duration of that simulation.

Results

Simulation results can be user defined metrics, such as the best bus latency for a given packet
size; or more common results like end-to-end system latency. Users can also calculate data path
throughput, and the utilization percent of individual system components, like a cache. In
addition, the results from a detailed traffic model can be imported into a larger system model,
or be reused for verification of the implementation.

 Version 19 | Date: 31 October 2019 29

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

8. Model Abstractions

Statistical level Modeling

Statistical level models are constructed to gain a better understanding of the whole system
which would not otherwise be possible with analytical methods. Refinement models are done
for potential problem areas to explore in detail. For example a higher level of
abstraction/statistical level mean it is modeled at the transaction level. Such models will have
an accuracy range of 60% to 80% for functionality and 80% for the transaction flow to the
element being investigated. 75% to 80% accurate traffic profile with a detailed processing
element is sufficient to make valuable design decisions on peak utilization, throughput, or
latency.

Abstract model provide an insight into system in an entirely different light. In terms of
innovation, thinking along parallel, but separate lines of thought, can provide insight into a
system that was otherwise hidden in the details.

Statistical level of modeling is the right choice if the user is doing first level of system sizing to
complete system architecture.

Figure 19 is an example statistical processor based system with three levels of cache hierarchy.
The Statistical process is actually a traffic which generates statistical stream of instructions
based on the processor speed. The Statistical cache hierarchical block accepts cache requests
and it delays the request based on the instructions defined, and also it checks for the cache hit
and miss ratio to transfer the control to other blocks for further processing.

 Version 19 | Date: 31 October 2019 30

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 19: Statistical Processor Model

Hardware Level Modeling

Hardware level models are constructed to determine the system impact of particular
technology detail of the hardware then one should choose Hardware level modeling or timing
accurate abstraction level. Accuracy range of Hardware level models are of 80% to 95% based
on the level of details at which model has been developed.

Figure 20 is an example hardware level accuracy model which is developed using prebuilt
library blocks which are timing and functionally accurate. At this level of modeling there will be
a very limited scope for modifying the system topology and parameterization. This level of
modeling methodology will be ideal when the architecture is finalized but needs further
verification of specification.

 Version 19 | Date: 31 October 2019 31

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 20: Hardware level model

Cycle-Accurate level model

At this level of abstraction, the models will be close in accuracy to the implementation. The
quality of the models is only as good as the data provided. For example, a key ingredient of
response times in storage devices is cache-hit ratio. System designers generally have limited
knowledge of the exact cache-hit ratio. The actions leading up to and after this specific
function are modeled in detail. Here experiments with different attributes of the cache
algorithm are used to determine the average and worst-case response times.

If the user is concerned about tuning of specific parameters of a bus or developing a new
arbitration algorithm or enhancing an existing bus then Cycle accurate level modeling approach
should be used.

Figure 21 is a cycle accurate level model with trace file based traffic generator, Cycle accurate
cache and AHB bus. The model developed at this level needs very detailed level of details on
each transactions happening between different devices on system. The Architecture may not be
suggested to make any modifications but is purely developed to verify details in RTL. User has
freedom to change the parameters like clock speed and buffer size.

 Version 19 | Date: 31 October 2019 32

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 21: Cycle accurate level model

 Version 19 | Date: 31 October 2019 33

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

9. Assembling a Model in VisualSim Architect

Model Creation

This section is about creating new system models using VisualSim library blocks and run
simulations to validate the functionality of the model developed.

Example:

Goal: This tutorial will teach you how to use the Block Diagram Editor (BDE), construct models
out of the blocks contained in the VisualSim libraries, run dynamic simulations, combine
different outputs, and interpret the simulation results. The following summarizes the concepts
and tasks you will learn in this session.

1. Understanding the Block Diagram Editor: It is very important to know how to populate
the required library blocks from the modeling library section on tool and also
understanding the GUI features. In a modeling and simulation environment one should
aware of making connections between different blocks in a system model.

2. Generate transactions: Input transactions play a very important role in analyzing the
system performance whether it could be latency, throughput etc.

3. Add content to the transaction: The data structure fields are required to carry out
various computations in the system models, identifying and including those contents or
data structure fields in a transaction will be done in multiple ways.

4. Manipulate FIFOs/Queues: FIFO’s/Queues are crucial part of a performance level
model. One can manipulate a FIFO/Queue block by providing values such as Priority,
FIFO/Queue depth, Reject mechanisms etc.

5. Display output and generate latency graphs: Output results provide the answers that
one is looking for from the system model developed. Results are mainly provided in Text
and Plot formats using which users can analyze them based on their requirements and
the level of detail provided for the system model

Block diagram overview:

This model will be used to study the performance of a system that has a priority-based
FIFO/Queue. The block diagram is shown in Figure 22. A Traffic Generator sends data packets
or requests to the FIFO. The FIFO outputs the next transaction after the previous transaction
has been processed.

 Version 19 | Date: 31 October 2019 34

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 5.1: System Block diagram

Figure 22: VisualSim Model

Construction Steps:

1. Open a Block Diagram Window.
2. Select the desired Simulator, as this example is for performance analysis; select Digital

Simulator.
3. Define the data structure fields in a text file. The contents in data structure fields will be

parsed as transaction.
4. Drag and drop the required library blocks from Libraries section in BDE.
5. Configure the parameters in library blocks as required.
6. Drag and drop Plotters and text display blocks from library section in BDE. These will

show contents of each transaction and end to end latency achieved.

Please refer our Tutorials section for detailed instructions here.

Process
Delay

 Display
 Transaction

 Latency

Generate
Transaction or
Data Structure

Transaction Information
Size = 64 Bytes
Priority = Between (1 to 5)
Time to Process =
Between(1.0 to 2.5) secs

Queue

 Version 19 | Date: 31 October 2019 35

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Error Messages

If during model simulation you encounter error messages due to the following type conflicts:

(VisualSim.actor.TypedIOPort(..Expression2.output),general)<=
(VisualSim.actor.TypedIOPort(..xTime_yData_Plotter.input), double)

Right-click on ExecutionList2 block and select Customize->Ports. The second port in the list is
output, which is mentioned in the error message. In the column called Type, select "double" to
fix this problem (note that step 4b above must not have been completed).

Results

Figure 23: Latency Plot

 Version 19 | Date: 31 October 2019 36

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 24: Text Output

Analyzing Results

1. Vary the parameter “Execution_Length” in “ExecutionList” block and
analyze the Latency plot.

2. Vary the Inter-arrival time in Transaction source by varying “Value1” and
“Value2”

Model Animation

You can animate block diagrams to debug your simulation or simply to view the dynamic

operation of the system model. VisualSim animates a model by highlighting the executing block,

based on the 'Debug/Animate Execution' time setting (msec). One can also turn off animation

by using the main menu bar 'Debug/Stop Animating'. The figure below illustrates

“ExpressionList” Block is currently firing with animation enabled.

 Version 19 | Date: 31 October 2019 37

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 25: Model Animation

 Version 19 | Date: 31 October 2019 38

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

10. Understanding Errors and Messages
Exception Message

If incorrect value is set for the parameters you will find an exception message with following details:

1. Block Name - Specify the exact location of the problem in which Block

 Format: Model name.Block name.

2. Error - Specify the outline of Error.

3. Error_Number - For related error number refer the Debugging Document

4. Possible_Solution - It displays the probable solution to rectify the error.

5. Description - It displays a brief description on the error

An example exception message is given below:

Figure 6.1: Exception Message for incorrect value set

Port Conflict

The Exception windows describe that conflict in data type occurred between input and output port.
The possible solution for this exception is to set the data type of both port to be same.

 Version 19 | Date: 31 October 2019 39

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Figure 6.2: Exception message due to Port Conflict

 Version 19 | Date: 31 October 2019 40

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

11. Online Technical Support
Creating Customer Self Support Portal Account.

a. Accept the invitation from Mirabilis Design to join Customer Support portal

b. After accepting the invitation, you will be redirected to a page where you should create

a password for your account.

Submitting a new Request via Customer Self Support Portal

c. Go to www.mirabilisdesign.com, VisualSim Cloud Support. Click on Support
(https://desk.zoho.com/portal/mirabilisdesign/home)

Click on “Sign In”.

Click on “Sign In”

http://www.mirabilisdesign.com/
https://desk.zoho.com/portal/mirabilisdesign/home

 Version 19 | Date: 31 October 2019 41

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Enter your Email address and Password.

d. After login to Support Portal, To create a new Request, click on Add Request,

Login here using your email
address and password

Click on Add Request

 Version 19 | Date: 31 October 2019 42

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

e. Enter the details and relevant files to add request.

Commit Save, once you filled required
fields

 Version 19 | Date: 31 October 2019 43

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

Submitting a new Request via Email

a. You can send Requests via email to online_support@mirabilisdesign.com

Your email requests will be updated in your Support Portal account

Managing Requests/queries on Support Portal
To view your Requests, click on “My Requests”, "Open Requests", or "Closed Requests".

mailto:online_support@mirabilisdesign.com

 Version 19 | Date: 31 October 2019 44

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

You can reply to the response from Mirabilis Design Support team by selecting “Post Reply”

FAQ’s and Solutions

Select the "Solutions" tab to view some of the solution. This is a growing section and currently
does not cover all the answers.

 Version 19 | Date: 31 October 2019 45

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

 Version 19 | Date: 31 October 2019 46

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

12. Appendix
1. Modeling is the act of representing a system or subsystem formally using modeling IP

blocks, Custom-code or scripts.

2. Design is the act of defining a system or subsystem. Usually this involves defining one or
more models of the system and refining the models until the desired functionality is
obtained within a set of constraints.

3. Model is the mathematical representation of the stimulus, description of the actual or
theoretical physical system and the viewers for the output. A model will consist of traffic
or input, system or sub-system and analysis or results.

4. Simulation is the discipline of executing the model on a digital computer, and analyzing
the execution output. Simulation embodies the principle of ``learning by doing''. To
learn about the system, we must first build a model of some sort and then operate the
model.

5. Traffic is the test values that represent the flow of data through the system. In a real
system, this can represent video frames, signals through pins, network packets and
control messages in hardware or software.

6. System is the physical entity that requires to be analyzed. A system can be a computer,
SoC, Processor, network, FPGA or any combination of the above.

7. Abstraction represents the type and detail of the information used to describe the
system. The abstraction closely aligns the modeling question. The model can be
described as un-timed algorithmic, timed performance or queuing, cycle-approximate
architecture or control theory. For example, a processor can be described as a queue +
processing time, scheduler or a pipeline-based system. A network can be described with
latency for the links and a scheduler for the processing nodes.

8. Model Question is the purpose of the simulation and will determine the model
abstraction.

9. Analyses are the output of the simulation that will provide sufficient information to
make decisions and to answer the modeling questions.

10. Methodology: A top-down design may be a new design that can start with a “blank
piece of paper” or one that focuses on key algorithms in a new way. Whereas a bottom-
up design may focus on incremental improvements to a successful design, that

 Version 19 | Date: 31 October 2019 47

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

maintains the same internal structure, yet may improve the individual elements of the
conceptual block diagram. The best modeling approach is to use a combination of top-
down and bottom-up design in the same system. This can result in a higher quality
design, since concepts and details are given equal weight from day one.

11. Hierarchy is a modeling method to hide the details of a particular component in the
graphical editor. Hierarchical modeling is a flexible and organized method to create
larger and reusable models. This approach allows for easy understanding and replacing
with instances from another simulator or containing different amount of detail.

12. Modeling Topologies is getting closer to creating the conceptual block diagram in
VisualSim. Typically, one adds a hierarchical block for each block in the conceptual block
diagram and adds input and output ports to match the flow in conceptual block
diagram. It is here that the simulator, traffic, analysis, and parameters can be
considered for a performance model.

13. Links are used to connect blocks and describe the flow of data through a model. A link is
created by drawing a line from the output port of one block the input port of another
block. Certain blocks allow multiple connections to and from the ports. These ports
contain a white port icon. To connect a Hierarchical block port to the port of a block or
to connect a port to a relation, click on control and then drag a line between the ports
and relations. The links indicate the flow of data through the model, i.e. which block will
execute next. No timing or value change is associated with links.

14. Relations are used to propagate values from one port to multiple ports or to present
values from multiple ports to a single input port. If multiple connections are required
from an input port or to an output port, a black diamond called relation is required. This
is placed on the BDE by clicking (not dragging) on the icon. The relation will be placed in
the middle of the screen. Move this icon to an appropriate location. Multiple relations
can be connected together to provide wire routing, as well. To connect a relation to a
port, click on control and then drag a line from the relation to the port. To automatically
place a relation at a point in the BDE, Select down on Control + mouse click at the
required position.

15. Parameters can be added to any model and at any level of hierarchy. These are added to
the BDE by selecting the parameter from the Library Folder at Model->Parameters.
Parameters are a convenient way to modify fixed model attributes to create different
simulation runs and conduct different scenarios. A parameter can be used to define the

 Version 19 | Date: 31 October 2019 48

G

e
tt

in
g

 S
ta

r
te

d
 –

 V
is

u
a

lS
im

 A
r

c
h

it
e

c
t

|
 M

ir
a

b
il

is
 D

e
s

ig
n

number of input queues, processor speed, input rate or the number of statistics bins.
Parameters can be linked to the equivalent parameters in the blocks of the same level
by using the parameter name within the block parameter. Parameters can be
expressions containing other parameter names. Parameters are constant during the
simulation. They will be evaluated at the start of a simulation and will be constant for
the duration of that simulation.

16. Hierarchical block is used to encapsulate a number of blocks of the same modeling
domain, or different domains. To create a hierarchical block, drags "Hierarchical Block"
from the Library Folder Model->Basic Blocks into an existing BDE window. To view the
inside of the Hierarchical block, right-click on the icon and select “Open Block”. Select
the input and output button Icons to add input and output ports to a hierarchical block.
These will show as input/output ports at the parent level model.

	1. About Mirabilis Design and VisualSim
	Modeling and Analysis
	VisualSim Product Organization

	2. Transform Ideas into Modeling
	Methodology
	How to build a model like one thinks
	Model Questions
	Modeling Topologies

	3. System Modeling
	Why System Modeling

	4. Types of Modeling
	Flow Control and Behavior Modeling
	Performance Modeling
	Algorithmic Modeling
	Mixed Signal and Control Systems
	Hardware and Software Architecture Exploration

	5. Power Exploration
	6. Parts of the Model
	7. Explanation of a System Model
	Source
	System
	Simulator
	Data Structures and Tokens
	Parameter
	Results

	8. Model Abstractions
	Statistical level Modeling
	Hardware Level Modeling
	Cycle-Accurate level model

	9. Assembling a Model in VisualSim Architect
	Model Creation
	Error Messages
	Results
	Analyzing Results
	Model Animation

	10. Understanding Errors and Messages
	Exception Message
	Port Conflict

	11. Online Technical Support
	Creating Customer Self Support Portal Account.
	Submitting a new Request via Customer Self Support Portal
	Submitting a new Request via Email
	Managing Requests/queries on Support Portal
	FAQ’s and Solutions

	12. Appendix

