What is VisualSim

- System-level modeling and simulation software.
- Systems architecture exploration.
- For electronics, software, network and semiconductors.
- Analyze timing, power, and functionality.
- Validate specification for non-functional need- requirements, cost, resources etc

Examples of Usage

- Aerospace avionics, flight control, inertial navigation, communication, radar
- Communication- Software-Defined Radio, DSP-based communication systems, Antenna, 5G
- Networking Custom protocols, arbitration, flow control
- Automotive Networks, security, safety, ECU
- Compute SoC, processor, FPGA, TPU, HPC, media servers, switch
- Storage SSD, HDD, NAS, DDRs, LPDDRs, HBM

What can you do in VisualSim?

- Resource sizing and capacity planning
- Size to support use cases and workloads
- Combination of components, topology, speeds, width, bandwidth, buffers, cache, memory and power states 5. Map each task to an element or master in the
- Verify that the statistics meets the requirements.
- Failure analysis
- Timing and throughput when processing/ storage/ network failure, change in software scheduling, network intrusion, reduced power and modify memory tables.
- Abstract design to cycle accurate design.
- Build models in different levels of abstraction to focus on specific part of the system or function.
- Hybrid processor with cycle accurate memory architecture.
- Model behavioural components as resources to analyse timing and power.
- Power management, sizing and generation
- Experiment with different sets of power states and power management based on capacity and utilization Extend the battery life.
- Size the power generator and battery.
- Metrics for instant, total, average and individual device power.
- Hardware-software partitioning and Task graph analysis
- Sequence the threads and processes across multiple

- processors and network nodes. Partitioning across AI tiles, Tensors, Deep Learning Units, CPU, GPU, DSP etc
- Select the functions that need acceleration.
- Generate document, test bench and UPF power table for VisualSim Cloud implementation and communication
- Create custom and classified libraries and share it with others by encrypting the library.
- Software modeling for the hardware components with simplified methods without affecting the accuracy.
- Run Complex models with different combination of parameters as a batch run and compare results from different runs.
- Debug and verify the design using diagnostic feature. Validate whether it meets the requirement or not.

Working with VisualSim

1. Draw a block diagram of your proposed system on paper. • External tool to VisualSim, Support files from other 2. Open a new Block Diagram Editor.

- 3. Drag blocks from the library, set parameters, and connect to create an architecture.
- 4. Define the Task Graph of the system behavior. The sensors and input interface must be defined in the architecture
- architecture

6. Simulate the system model for various configurations, topologies, workload, and use cases.

7. Define the requirements in the Diagnostic format. Require Diagnostic block in model

- 8. Open the model in the Post Processor after adding the PlotManager in the model. Define the list of parameters and the ranges of values to simulate. Select the plots and display to show. An Index file with the list of all possible runs and a few other configuration files are created.
- 9. Run the Thread Sim from the command-line to distribute the selected simulation runs across all available cores.
- 10. Review the generated statistics text files, recommendations on the requirements and compare plots using Post Processor
- Auto-Save is a setting in the Config.Properties 11. that determines how often the currently modified file is being saved to <User Home>/.VisualSim/ directory. The file name is name+time and date.xml. Note: The file is never deleted.
- Save and restarts is an option to save the state 12. of the simulation at distinct points during a simulation

and restart from that point onwards. The sim times at which to save are set in PauseSimulationAt.txt which is located in the same directory as the model.

- Online version of the tool, that user can run without installing the VisualSim in the local system.
- Requires OpenWebstart and Java 17 or higher.
- User can share the model from installed tool by export to web optioin and the user with VisualSim cloud can use that file to run and analyse the deisgn

Parser and External tool support

• In built parser to convert files from external software or hardware to VisualSim.

ARXML, AXI, GEM5, GCC and Spike

software to load in VisualSim models.

Batch Run and Multi Core Processing

Batch Run

- Inbuilt Post Processor allows user to create batch files for a particular model to run multiple combinations of parameters.
- Validate the system stability.
- Enables recrusive analysis and comparison with different runs.
- Combine plots from different runs in a single window.

Simulation on Multi core

- Post processor creates files to run the batch simulation on the local system by assigning different runs to different cores of the system.
- Increases paralleslism and fast simulation.

GUI Concepts Block

- Defines basic functionality such as traffic, FIFO,
- arbitration, processor, storage, and statistics generation.
- Contains input/output ports, parameters.
- Initializes block based on the parameters and functionality.
- Logic executes when inputs are received.
- Inputs can be read from files
- Contains optional timing and power.

- Blocks are color coded (Yellow Traffic Generation / Traffic Reader/ Database, Red –Power Management, variable list, ExpressionList, Blue - Behavior Mapping, Queuing/System/Server resources).
- Block Parameters
- · Can reference a parameter or data structure field. Ports
- Input, Output or multiport (input-output).
- Polymorphic –scalar, string or data structures.
- Block Ports
- If port has specific data type, then data coming through the connected port must be the same type.
- Direction can be modified (Customize Ports). Configure > Ports – Can add in/out ports to
- ExpressionList and Script blocks.

• Wires

- Represent a connection between ports.
- Does not introduce any delays.
- To connect port-to-port, press and hold at a port, then drag, and release when connected to the other port.
- If connected, line is thick, else thin.

Relations

- Connect multiple input and Output ports.
- To connect, hold "Ctrl" key, and drag from relation to port.
- Can connect relation to relation to arrange wiring.

Annotation

- Represent comments and documentation about the model.
- Multiple annotation can be added and placed anywhere in the model to describe each block and flow.

Block folders

database

Document – Describe the model

• Traffic – Generate transactions

Model Setup – Basic model requirements

Results – Output the simulation results

• Mapper – Map the task to the resource

• File IO – Read or write data from or into files and

• Behavior - Implement the logic for the model

• Resource – Consume time, quantity, and power

• Power - Generate, store, consume, manage, and

1

 report Hardware setup –Device modeling and overall system setup ProcessorGenerator – New processor template and models of commercial processors. Cycle_Accurate_Processor – Pipeline stages for microarchitecture design. Memory – Model statistical and cycle-accurate Memory and cache Hardware Device – DMA, Buses and peripherals Interfaces and Buses – Standards-based buses, interconnects, and networks 	 Listen to block: Right-click on the block and select Listen to Block. Shows the sequence of execution in block. Verify if operation is correct. Listen to block can be enabled for every block except hierarchical blocks. Script Tracer: captures the execution of multiple scripts and write the content in one file. Trace file will be saved in (User folder)/.VisualSim. Helps to check if dependent blocks have deadlock or error. Listen to port: Right-click on the port and select. Check if the field values are correct. Animate Execution: Debug -> Animate Execution. Shows order of execution. Identify if blocks are not executing, executing to many times or executing in 	 is for the whole model. Block variables are defined and used in Script and ExpressionList blocks. Example: Buffer_Usage in Egress Queues or device available flag. Transaction or Data Structure Container with fields of any data type. Represent data details, control, and simulator details. Example: Data, Priority, Command, Source, Destination, Time Stamp SampleDS = {Source_Name = "Sensor1", Destination_Name = "DRAM", 	 (a) Block Name for Resources, Script, Architecture and Application-specific blocks must be unique in entire model (b) Variables: i. Global must be unique in the entire model ii. Local and Global names cannot overlap iii.Local and Block variable can overlap if they are not in the same window or BDE (c) Parameters i. Link from block in lower-level hierarchy to the parameter in the next-level above. Never jump from a lower-level block or hierarchy to top-level parameter ii. SharedParameter are stopTime andtResolution
User Documentation (a)Annotation: Provides textual information in the Block Diagram Window. (b)Block Documentation: Available in all blocks. Details of the block activity	 the wrong order. Block Breakpoints: Right-click on block and select Breakpoint. Stops model at a specific time in the block. Do a Listen to Block or Port at any block 	Priority = 1, DataSize = 64, CRC = "F822", Length = 80}	(d)Instantiating simulator i. Required in top-level of Model, DynamicInstantiation and Class
and internal expressions can be added. Generated with Export to Web. (c)Comments (/**/): Comments can be in parameter, variable list, and any expression or script.	 Pause and resume: Stop and step through each event in the model PauseSimulationAt.txt and store in same directory as model. Simulation stops at each timestamp to save current state of variables, queues, and Script line. Simulation can be started from any of the specified time 	 RegEx (Regular Expressions) Used in Parameter (Processed once at startup), ExpressionList (Every entry), and Script (Every entry or loop). Collection of Math. Logic Statistics power second 	ii. Note: All parameters of the lower-level Simulators are ignored(e)Portsi. Input connect to output, except between block output
 Library Management Creating Reusable Blocks or Class Select blocks and parameters by left click and drag. Click Graph > Create Hierarchy, Disconnect all connections to the created Hierarchical Block. Right-click the block and select 'convert to class'. Right-click the block and select Open Block. File > Save As (Directory must be under 	 Digital Debugger-> Pause / Summary – Only / Run: Pause-stop simulation and restart. Summary – Only / Run: Pause-stop simulation and restart. Summary – consolidated value of time/number of executions of all blocks. Runblock execution sequence. Diagnostic: Add requirements and constraints in a text file and link it to the Diagnostic block. Simulation will generate statistics and recommendation files, user can 	 Conection of Math, Logic, Statistics, power access, resource internal access, array processing, and programming option for popular GUI functions. Example: Buffer=getBlockStatus("Egress"); a = x.cos(90) Can include parameters, variables, and fields in the expression. Parameters can be used in LHS (not in ExpressionLists or Script blocks) 	 and window output ii. Multiport and In-Out port allows input and output of a device to be connected (f) Zero-delay loop When the wires between a set of ports are considered a loop and there is no delay interrupting this loop, a zero-delay loop error will be generated To resolve this add a Delay block with a value of 0.0
CLASSPATH – VS_AR) and select "Save Submodel Only". 6. save the file with .xml extension. • Import Custom Blocks in Model	check if the requirements are met.Additional: Text Display, Plotter, statistics, and fileWriter to trace intermediate activity.	Script Programming language for modeling Used to define algorithm and common data	 II. To resolve this, and a Delay block with a value of 0.0 (g) Virtual Connection IN, OUT, Script to Virtual Connection and scripts.
 Graph > Instantiate Class. Browse and select .xml file. Commit. Adding Reusable Blocks to UserLibrary Add block to model. Right-click block and select "Save Block in Library". UserLibrary.xml is opened and select File > Save. Block available in Folder > UserLibrary. 	Methodology Concepts Parameters Constants during simulation. Model Setup -> Parameter / Range / Pulldown. Example: Processor_Clock = 250.0, Traffic_Interval = 1.0e-6 	 processing operations. Supports RegEx and common C functions. Blocking and non-blocking timing. Supports Virtual Connection Can be modelled to implement any algorithm or logic Can define Queue within a script Gan access and remove content of a Queue block 	global (entire model). Multiple Sources can go to a single Script or OUTblock. ii. Node block- connection-less. No wiring required. Connections attribute are captured in the database associated with the Routing Table.
 Block dvalable in roleer > Oscillability. Block highlighting: When error occurs, the block with the error is highlighted in red. Narrows down which block has the error. Error Messages: Provide block location in design 	 Variables Similar to programming variables or hardware registers. Defined in VariableList (Types – local and global). Script block can define a global variable which can be used in other block with the belo of RegEx commands. 	 Can access and remove content of a Quede block virtually. Power calculations can be made for the application or algorithm implemented in the script. 	 iii. Mapper-to-SystemResource: Names must match (h) Random Number Generators No seed- random() and Gaussian. This means that results from every run are different. It is not deterministic. ii. Seed- rand, irand. Define model seed as a

• Error Messages: Provide block location in design hierarchy and error details.

- used in other blocks with the help of RegEx commands Scope
- Local is accessed only in current window and global

The scope of names plays a major role in VisualSim. Here are the important items.

2

parameter with a value of seed(Long Value). For

every seed value, the outputs will be deterministic

across any number of runs	Failure Analysis	Connect Behavior and Architecture	 Random Early Detection
	 Inject fault or error into the system to observe the 	• Examples: Image read, decode, rotate, and transpose on	 The following are the different Scheduling algorithms
Modeling Methodology	stability.	ARM.	supported :
 Select the methodology for your system. 	Can be a data error, unsupported size, variable packet	 Concept: (a) Used to add timing and power for each 	o FIFO
 Criteria for selection – Familiarity with modeling 	arrival rate, link failure, resource failure, etc.	function. (b) Mapper block (Behavior flow) sends	• FCFS
method, shared resources across flows or hardware	 BIOCKS: Traffic, Expression list, script 	 transaction to SystemResource or Processor (Actual 	 Round Robin
or software only.	Modeling Details	Hardware Unit). (c) Can be a static (fixed mapping) or	 Weighted Round Robin
 In-Line Flow Descriptions 	Workload	dynamic (resource selection is based on task type, first	 Deficit Round Robin
 Typical for stochastic studies, protocol, and 	 Examples: Traffic to represent trigger behavior flow, 	available resource or prior executions).	 Weighted Fair Queuing
Ingress-Egress models.	network traffic, instruction sequence, Read/Write	Block: (a) Behaviour: Mappers, SoftwareMapper.	 Strict Priority
Shared resources accessed by individual flow	request, Customers arriving at a bank teller.	DynamicMapper, (b) Architecture: SystemResource.	 Round Robin Priority
in a central location.	 Description: Data Structure sent out to emulate the 	SystemResource Extend SystemResource Done	• If the user selects Deficit round robin or Weighted fair
 Main blocks: Traffic, packet attributes (ExpressionList), 	packet/command/customer.	Operation: (a) Required fields for the SystemResource	queueing, a field called Task_Size is necessary.
timing (Queue, Server), and Script for arbitration	 Blocks: Two main types – Distribution based (Traffic 	are A. Time field has execution time. A. Priority field has	
 Separation of Behavior and Architecture 	block), Trace file based (TrafficReader).	the task Priority and A Task ID field has task identifier	Queuing Resources with pre-determined processing time
 Y-chart design approach 	 Use Script block to generate custom traffic. 	(h) Manning name must match a System Persource (c)	• Examples: (a) Bus or network delay, processing with po
 Behavior flow is the sequence of functional operation 	Workload Attributes	 (b) Mapping name must match a system resource. (c) Mappar (babayiar control black) sonds the transaction to 	nre-emption (b) Cross a traffic intersection (c) All
in concurrent threads. No algorithm details or delays	• Examples: Defines the workload such as priority data	the System Persource or System Persource. Extend	hardware blocks that consume time. Model time – and
considered.	size data value type address	(followed by Done block) for processing	nartition-based scheduling
 Architecture describes the platform – electronics, 	 Concent: (a) Undate existing or new fields of incoming 	(Tonowed by Done block) for processing.	- Concerts (a) Combines the guesse and the processing in a
RTOS, and middleware.	transaction (b) Use PegEx parameters fields and	Resources	• Concept: (a) Combines the queue and the processing in a single block. (b) Los multiple consurrent flows
For each task in the now, use mapper block to	variables to provide computed values or to select	• Examples: (a) Processor, memory, bus, queue and switch.	single block. (b) Has multiple concurrent nows
Main fields: Timing (A. Delay) Priority (A. Priority)	ontions	(b) Bank teller, shop-floor employee, toll road. (c)	represented. (c) Slot based schedule provides different
Task ID (A Task Address) and	Blocks: (a) ExpressionList and Script (b) Support blocks	Concept: Defines the entities that consume time and	processing time for each queue in order.
Task Name (A. Task, Name).	are Boolean switch fork and join	quantity resources.	Block: Server
Hardware-only flow		 Queueing Resource with time not known in advance. 	 Input and Output: Transactions
 Architecture is built using cycle-accurate 	In-line behavior and architecture	Examples: (a) FIFO, Processor, (b) Bank teller, Traffic	 Key Fields: Queue_Number_Field (A_Task_Address),
hardware blocks.	Examples: Multi-port network switch, DSP functions in an	intersection. Concept: (a) FIFO to wait for previous	Priority (A_Priority), Max_Queue_Length (Can be a
 Traffic triggers the Processor, DMA or 	FPGA, manufacturing flow.	transaction to complete processing. (b) Processing time	Parameter), Number_of_Queues (Can be a Parameter),
Device Interface.	• Concept: Define the sequence of activity with queues,	is performed out.	Time_Field (A_Time)
 Traffic can be data arriving at an interface, 	arbitration, flow control, and processing times.	 Blocks: SystemResource, SystemResource_Extend, 	Access a shared System Resource from multiple
Instruction sequence to a processor and Read/Write	Blocks: Traffic, ExpressionList, Script, Queue, Server	_ SystemResource_Done, Queues, Servers,	concurrent flows
to Memory.	Behavior Flow, Process, Thread and Tasks	QuantityResource	• Examples: (a) Model the Y-chart concept of separating
 Main blocks: Processor, Memory, Cache, DMA, 	Examples: Imaging pipeline, Customer consumption of	• Operation: (a) Transaction is first placed in the queue. (b)	the behavior and architecture. (b) Processor, shared
Bus, Switch, Bridge.	resources at a restaurant.	Queue is ordered based on priority of each transaction.	robot on a shop-floor.
Define Accelerator: DeviceInterface +	Concept: (a) List the sequence of functional processing	(c) Transaction at head of the queue is delayed before	• Concept: (a) Modeling of Hardware Resources such as
SystemResource + Bus Link for resource access.	on the data. (b) without the functional description. (c)	being sent out.	Processor, Cache, Bus, DRAM, and Accelerators, (b)
 Software and hardware 	Can be hardware or software implementation.	Scheduler Block with added functionalities	Consumes time period as defined in the behavior flow.
 Instruction sequence and processing elements 	 Block: ExpressionList, Mapper, Script, FSM, Fork, and 	Provides more scheduling algorithms for the user to	(c) Select scheduling from FCFS. Round-Robin, and pre-
 Define software functionality using the Instruction set 	Join.	• From the scheduling agont this for the different Queue	emption (d) Simplify the flows without having multiple
and Instruction mix table.	• Operation: (a) Behavior flow is modeled with Expression	rejection mechanisms supported i	flows connected with wires to a single Server (e) Support
Generate tasks based on the instruction mix table and	List and Mapper blocks. (b) Each function in the	rejection mechanisms supported :	nreemption across request from multiple flows
allocate task to specific resource or processing element	sequence can update field values. (c) and decision trees	Incoming Token Rejected/ Tall drop	Blocks: SystemResource
Dased on the allocation algorithm.	and map to the SystemResource. (d) Use Fork and Join	Lowest Phoney Token Rejected Denders Drag as full	 Input and Output: Block receives and conds completed
- main blocks. Processor, system Resource, mapper,	for visual appeal.	Kandom Drop on tull	transactions virtually from or to the Manner block
Dunamic Manner Tack Constator Instruction Set		 Drop tropt op tull 	Transactions virtually from or to the Manner blocks

- Operation: (a) Arriving transaction are stored in the Queue. (b) Head of the queue gets delayed by the A Time. (c) Return to Mapper. (d) Time Type is set to "Relative Time", then A Time is seconds. Time Type is set to Number Clocks, then the A Time is number of clocks and is multiple by Clock Speed.
- Key Parameters
- SchedulerName: Name referenced by Mappers
- Clock_Rate_Mhz (Can be a Model Parameter)
- Time_Type (Relative Time or Number_Clocks)
- Max Scheduler Length (Can be a model parameter)

Extend SystemResource timing with more architecture details

• Examples: (a) Cache and memory hierarchy. (b) Separate the behavior flow or data flow from the architecture definition.

Use as a processing resource when processing time is unknown and the processing has dependency on some other processing.

For example, usage can be a processor: as processor requests memory devices for accessing the data, time taken for memory device supply data is unknown.

- Concept: SystemResource is the Processor and Bus/Cache/Memory can be attached to the output.
- Blocks: SystemResource Extend and SystemResource Done (terminate a task).
- Input and Output: Block receives transaction virtually from Mappers, delays internally, and then sends to output port. SystemResource Done receives the transaction and returns to the Mapper to complete the architecture operation.
- Operation: (a) Same operation as SystemResource. (b) Difference is that the delayed transaction is sent to output port for executing additional blocks. Return to Mapper when encounters Done.
- Key Parameters: Same as SystemResource.
- Choose nonblocking FCFS type if none of the packets have to wait for it's chance
- For plotting power consumed by this block, use the following format in power table: Scheduler (SystemResource Extend Name)

Power

• Examples: Generators, Battery, hardware systems that consume power, power management algorithms • Concept: (a) Used to understand all the parts of the power system for non-functional analysis. (b) The focus is on consumption, sizing the devices, losses, battery life, and so on. This does not focus on the change in Voltage or current.

(c) LDO Efficiency is a variable that modifies the amount of power consumed by a device in a state. (d) Determine minimum power needed to run the system. (e) Provide input to mechanical team for cooling.

- Blocks: PowerTable, Battery, and Energy Harvesters. • Input and Output:
- PowerTable comprises the following three output ports: (a) Instant power output sends out the instantaneous power consumption of all devices at this level and the levels below in the tree. (b) Average power output sends the average power consumed by the devices over time. (c) State change in comma-separated list of time, hierarchy name, device name, the new state and the power consumed.
- Battery comprises the following ports: (a) From powerTable – Receives the current load from the PowerTable. (b) Battery Charge Input - Receives the charge from the charging source. (c) Battery External Aging -Percentage of battery loss as a double. Represents external factors - shock and dropping battery. Reduces battery life by percentage. (d) Available Energy Capacity(watt-Hr) provides energy available in the battery. (e) Battery Life Remaining(%) – Output battery charge remaining. (f) stats - outputs initial and final states, and warnings.
- Key parameters
- PowerTable
- · Power Manager Table: Define the list of states for all devices, special states (Existing, On and Off), and transition time between states. Define any parameter that is required - can reference a variable.
- State Can be any list. Active state and standby states must be defined in the On and Off state columns.
- Existing-Initial state.
- · Delay to Change State Time in a state before transition to lower power state.

- ExpressionList Create variables that can be used for the state power and transition.
- Battery: (a) Battery type (b) Charging mechanism standard, threshold before charging starts, turbo charging.
- Generator: Define attributes of the charger such as Sun activity, motor rotations, and so on.
- Temperature and Heat: Plot the heat dissipation and temperature of the entire system while each device consumes power. Also provides the max and average of temperature and heat of each device in the system. Input and output:

Power input: power consumption from the power table's instant pwr out port

- State Change input: state change of each device from Power table's state change port Temp output: temperature value
- Heat_output: heat dissipation value
- Device output:max and mean values of each device at the end of simulation.

Statistics

- Two types: (a) Statistics block: Input values are aggregated to generate statistics on demand. (b) Reports with list of pre-defined statistics for Resources and hardware.
- List of Outputs Available: (a) Utilizations (Min, Max, Mean, and Standard Deviation). (b) Occupancy (Min, Max, Mean, and Standard Deviation). (c) Number of Transactions Entered, Exited, and Rejected. (d) Instantaneous and Average Power consumption for system, subsystem, and components. (e) Battery Life in Percentage, Available Charge, and Discharge.
- Custom Output: Compute latency and throughput in ExpressionList and send to Plotter.
- Saving Statistics: Statistics can be saved as text, csv, and .plt (Plot format) files located in any directory. The Digital simulatior supports to store the statistics in a file by enabling writeStatsToFile parameter. The statistics • Workload: Alternate term of traffic. from Architecture Setup will be saved in a file and placed • Statistics: Recording of the model activities and in the Result folder which will be in the model location.
- Interpretation: (a) Statistics like utilization, Queue length vs throughput, (b) Data size vs latency, instantaneous power consumption, and so on are used to decide the efficiency, resource usage,

and scalability. (c) Example utilization of a resource above 90% suggests that the resource is being over utilized and the user must increase the processing speed or reduce the workload arrival time. (d) Buffer occupancy is the minimum queue depth required to prevent data loss.

 Bottleneck or Problem: (a) Bottlenecks are identified by continuous increase in latency. (b) Must check buffer usage and utilization for all resources in the flow to determine actual bottleneck.

Glossary

- Modeling Concept: Type of modeling approach.
- Simulator: Model of computation that determines the interaction between blocks.
- Discrete-event or Digital: Sequence of synchronous (same-time) events executing between asynchronous (different but not periodic) time.
- Behavior: Sequence of tasks that describe a process or application. Focused on the flows and the delay to complete a task. Does not include the functional details like the math and algorithms.
- Architecture: Platform to execute the application. Can contain hardware, network, middleware and RTOS.
- Timing: Measured in seconds.
- Data: Size is always in bytes.
- Power: Consumption of energy by a device.
- Functionality: Behavior of a certain sequence of tasks.
- Stochastic: Using random values to define the time and other attributes.
- Process: Sequence of tasks. Typically for a behavior flow. Can be implemented in hardware or software
- Task: Part of a behavior flow. Defines a specific action.
- Thread: A behavior flow that executes on a single processor.
- Traffic: Start of an activity.
- Traffic attributes: Details of the traffic.
- interpreting them in a decision form.
- Plotting: Display the statistics.
 - Latency can be end to end latency of the system or latency across a particular block.
 - Throughput can be extracted by the specific field of

the data structure coming out of the block.	Input/Output: (a) Can add as many ports as required for	received at Pop. (c) Used when the processing delay is	block. Used by Mappers, RegEx function, and other
Key Blocks	connection by right-clicking and selecting "Configure	not known in advance.	SystemResource block to call this block.
Traffic: Outputs a new Data Structure (DS) at time intervals	Ports".	Input/Output: (a) Input: Transactions (b) Pop_Input:	• Scheduler Type: FCFS. Preemptive or Round-Robin.
specified by the "Time Distribution" setting.	Note that Type need not be defined. (b) Ports receive Data	Integer or array (Queue, position) (c) Output: Transactions,	Maximum Scheduler Length: Queue length
Input/Output: Output is a transaction. Can also be called a	Structure or a value of any data type (Polymorphic).	(d) reject_output: Transactions	Reports: Number, Entered, Number, Exited,
packet or data request.	(c) With multiple input port, block executes the expression	Key Data Structure fields	Number Rejected, Occupancy, Utilization, Delay
Key Traffic block Parameters: (a)Data Structure Name: Se	after all ports receive data. (d) In the expression, the data	 Priority_Field, Queue_Number_Field 	SystemPasource Extend
to "Header" or "Processor DS". (b)Start Time: Offset for	on a port is identified by port name +"." + field name. (e)	Key Queue block Parameters	• Same as System Persource
the first transaction. (c)Value 1 and Value 2 are used in	Number and order of items in Output_Values,	• Max Queue Length: The maximum queue length for	• Same as system resource.
the distributions. (d) Distributions: single transaction.	Output_Ports, and Output_Condition must match. (f) All	each queue (can be a parameter)	No support for Pre-emption.
transactions at fixed interval (Value 1), exponential	output ports must be listed. (g) Output_Condition is a	Number of Queue: Number of independent queues (car	Cannot call another SystemResource.
distribution, uniform between Value1 and Value2, and	Boolean that determines if data is to be sent on a particula	he a parameter)	• Can add more processing activity at the output port.
normal with mean Value 1 and standard deviation of	port.	De a parameter).	 Return to Mapper when output flow encounters a
Value 2. (e) FileOrURL: If we want to read the traffic from	Fork and Join: (a) Fork: Outputs a single transaction into	Queue_Reject_iviechanism : incoming Token rejected or	SystemResource_Done.
file, then provide the address of the file here. (f)	two output transactions. (b) Join: Combines two	 Queue_Type: choose between FIFO or LIFO 	Input/Output:
Random Seed: the value defined by default is 123457L.	incoming transactions into one flow.	 Initial_Queue_State: Refers to the first transaction when 	 Transactions, Task_Plot
Used to determine the beginning random sequence of data	Input/Output: Transactions.	queue is empty – output if none are waiting or wait until	Key SystemResource block Parameters:
structures generated. (g) Number_of_Transactions:	Note: There is no delay between input and output, and	a pop has been received.	Resource Name: Name of this SystemResource block.
Specifies the max number allowed and by default it is	between output ports. Fork output is first the top port and	Reports: Number_Entered, Number_Exited,	Used by Mappers, RegEx function, and other
MaxInt whose value is 2147483647	then the lower. Join sends out the transaction in	Number_Rejected, Occupancy, Utilization, Delay	SystemResource block to call this block.
TrafficReader:	the order received.	Server: (a) Combines a queue and a processing time delay.	Scheduler, Type: ECES or Bound-Robin or non-
Import trace files from network sniffer or	SoftwareMapper and Dynamic Mapper: (a) Sends the	(b) Used when the processing time is known in advance.	blocking_ECES
hardware capture.	transaction to the Processor (DynamicMapper only),	If the transaction can be preempted, use SystemResource.	Diocking_FCF3
Input/Output: Output the next row as a data structure for	SystemResource or SystemResource_Extend.	Input/Output: Transactions	• Maximum_Scheduler_Length: Queue length
every input.	(b) Mapper block immediately sends the transaction to	Key Data Structure fields Queue_Number_Field	Reports:
Database: Lookup table containing rows and columns.	the Resource.	(A_Task_Address), Priority (A_Priority),	Number_Entered, Number_Exited, Number_Rejected,
Each row is a data structure and the field names are the	Input/Output: Transactions	Max_Queue_Length (Can be a Parameter),	Occupancy, Utilization, Delay
columns.	Key Data Structure fields: (a) A_Time, A_Priority, A_Task_IE	Number_of_Queues (Can be a Parameter),	PowerTable: Study and model the power infrastructure,
Input/Output: Transactions	for SystemResource, (b) Task_Instruction, Task_Priority,	Time_Field (A_Time)	Determine the consumption by operations on resources,
Key Database block Parameters	Task_ID, Task_Name, Task_Destination for Processor	Key Server block Parameters	and Design the best power management algorithm.
 Linking Name: Name to link multiple Database blocks 	Key Mapper block Parameters	 Number_of_Queues: Number of independent queues in 	Input/Output: Output: Instantaneous Power output,
using the same table.	 Target_Resource: Identifies the SystemResource. 	this block.	Average Power output, Device State change.
• fileOrURI : file name containing the table (txt_csv_xml)	 Task_Number: The Task_Number is the position on 	 Queue_Type: choose between FIFO, LIFO or SLOT 	Key Power lable block Parameters
Data Structure Taxt: Table values or 'extern' to	the Y-axis.	• Max Queue Length: Maximum queue length for each	Manager_Setup: Contains the list of states and
Data_structure_rext. Table values of extern = to reference enotions database block	• Task Priority: Used to reorder the input gueue and for	Queue.	associated power levels, reference to the Active (On)
reference another database block.	preempting the current task.	• Time Field: Predetermined delay time, can be a field or	and Standby (Off), transition time from one state to
 Input_Fields: List of incoming data structure fields for . . 	• Task Time: Processing time at the SystemResource	double value	another and parameters.
lookup.	Mutual Evolution anabled (SoftwareMapper):	Poports: Number Entered Number Evited	Delay_to_Change_State: Time in a state before changing
 Lookup_Fields: List of column names to match with 	Transaction cannot be pre-ompted	Number Rejected Occupancy Utilization Delay	to another state.
Input_Fields in same order.	Current Tech Neur Ceffrigre Manager een he succed le selle	System Resources (a) Used when multiple flows need	• Expression_List: Computes expression for variables that
 Output_Expression: Specifies the match type and the 	Queueraskinow: Softwareiviapper can be queued locally	to access a single resource. (b) Used when	are used in the Manager Setup. (a) stateChange- RegEx
value to be placed on the output port.	until Resource of available of sent immediately.	to access a single resource. (b) used when	function to change the state in ExpressionList or Script.
 Mode: Search (Read), Update (Write), or delete 	Database_Lookup (DynamicMapper): Database Name	queue overflows (error will be thrown)	(b) AsyncStateChange can be define externally using an
(Remove).	that contains the attribute values. Matched by the	Input/Output: Transactions Task Plot	FSM, or Verilog/C/Script blocks.
ExpressionList: Execute a sequence of expression in-order.	Task_Name.	- Key SystemResource block Parameters	Reports: Cumulative power consumption per device.
Can be used to update field, compute statistics. and make	Queue: (a) Defines a buffer or a FIFO/LIFO in the flow.	Resource Name: Name of this SystemResource	Cumulative power consumption per device at a particular
decisions.	(b) Removes the first transaction when trigger is		state, Cumulative power consumption of all devices,

Average power consumption of all devices, State change details of a device.	 Ports – input – A multiport which means that each port or relation can be connected directly to this port and is 	Basic required fields common to all blocks - A_Source (starting device) A Destination (final point such as a	Instruction_Set: Lists the instruction for each execution unit of the processor.
Script: (a) Implements the VisualSim Script Janguage This	treated as a unique dataset.	memory or display or HDMI). A Command (action to be	Error: Missing semicolon at the end of a line, columns are
language combines standard programming constructs with	Statistics	taken- Read. Write, Erase, Prefetch, and so on).	missing, instruction not found
the RegEx functions and is fully integrated with the	• Compiles the statistics for a sequence of scalar values-	• Each hardware block must have a unique name.	Demo:VS_AR\doc\Training_Material\Architecture\Setup\In
graphical editor. (b) Supports blocking and non-blocking	integer, double or long.	ArchitectureSetup: Handles all the address mapping.	str_Set.xml
wait statements, ability to create or wait for events, and	Ports	routing, debug messages, plotting and statistics generation.	Integrated Cache:
has multiple threads defined and call between threads and	\circ stats_data - An input port for the data samples.	Ports:	The cache can be used as a stochastic cache block or cycle
modules. (c) Supports the following Methods:	\circ stats_trigger - An input port that triggers the current	 plots out - Generates the values for each 	accurate cache block by a parameter that the user can
(a)WAIT(<time> or <event> or <clock mhz="" rate="">): A delay</clock></event></time>	statistics to be placed on the output port.	Statistics_to_Plot name as a separate dataset.	select in drop-down menu(Stochastic_or_Address_Based).
that holds the Script from operating on any data structure	\circ stats_reset – An input port that resets all internal	 internal_stats_out - Generates all the general statistics 	Ports:
until the time has expired. (b)SEND(<port name=""> or <label< td=""><td>statistics.</td><td>for the number of times specified in the</td><td> fm_cache, to_cache – Connects to bus or lower-level </td></label<></port>	statistics.	for the number of times specified in the	 fm_cache, to_cache – Connects to bus or lower-level
name> or <block name="">): Send to a port, virtual</block>	 histo_output - The values can be plotted on a 	Number_of_Samples.	cache closer to processor
connection, another Script or to a LABEL. (c)QUEUE(<queue< td=""><td>histogram Plotter block in VisualSim.</td><td>• util_stats_out – Generates all the utilization statistics for</td><td> miss_in, miss_out – Connects to bus or next level cache </td></queue<>	histogram Plotter block in VisualSim.	• util_stats_out – Generates all the utilization statistics for	 miss_in, miss_out – Connects to bus or next level cache
name>, <token>, <priority>, <queue operation="">): Stores</queue></priority></token>	 output - Outputs the current Statistics when trigger on 	the number of times specified in the	that is closer to memory
and removes the token in the Queue in a FIFO method. The	the stats_trigger port.	Number_of_Samples.	 stats – Sends out debug messages and statistics
queue is reordered based on the priority of the incoming	Resourcestatistics	Error: Invalid architecture block name used, routing table	Key Data Structure fields: A_Source, A_Command, A_Bytes,
token.(d)TIMEQ (<queue name="">, <token>, <priority>,</priority></token></queue>	Generates and resets statistics for one of many Schedulers and Smart Resources in the model	conflicts, field name mapping conflict.	A_Address
<queue operation="">, <delay expression=""> or <clock_hertz>):</clock_hertz></delay></queue>	Ports - Stats Out - Output a data structure for a single	Demo:VS_AR\doc\Training_Material\Architecture\Setup\A	Error: Invalid higher memory name
Used to define, put, pop time, and do processing in a Timed	• Forts - Stats_Out - Output a data structure for a single	rcn_Setup.xmi	
Queue. (e)EVENT(<event name="">,) or newEvent(<event< td=""><td>Resource List : Specifies the Names of Resources</td><td>DeviceInterface: Enables users to connect custom blocks to</td><td>Coherence Cache: Enables multi-core architecture to</td></event<></event>	Resource List : Specifies the Names of Resources	DeviceInterface : Enables users to connect custom blocks to	Coherence Cache: Enables multi-core architecture to
name>) or <event name="">.event(): Creates a new Event. (f)</event>	ResourceLength List : Length of all resources in the	the bus, not needed for standard hw blocks.	access shared memory with data consistency. Support
PLOT(<plot name="">,<destination>,<plot color="">,</plot></destination></plot>	Resource List	Ports:	MESI coherence protocol in both shooping and directory-
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Number of Samples : defines how many stats output	Input, output – connected to device or logic blocks fm hus to hus input connected to the hus part	Dased architecture.
diagrams or latency or resource activity. (g)	has to be done within the simulation time	Im_bus, to_bus = input connected to the bus port, Output connected to the bus	 input output - Connects to processor or bus which
CLOCK("MyEvent") : This is an added variation of EVENT	• Statistics : Boolean field which when enabled generates	Timing Diagram Concretes timing diagram for key arch	connects lower level caches
that selectively fires a WAIT ("MyEvent") or TIMEQ	the statistics and resets when disabled	heads Connects output part to timed platter	 To Bus Em Bus – Connects to bus or interconnect that
("MvEvent"). This acts as a virtual clock.Input/Output:	Key Hardware Blocks	blocks. connects output port to timed plotter.	allows data transfer to higher level cache or main
Transactions , values of any data type	Note:	Processor: Models commercial and proprietany processors	memory.
Key Script block Parameters: SelfStart - Create a new	• Architecture setup is required for all hardware modelling.	Processor. Models commercial and proprietary processors.	Key Data Structure fields: A Source, A Command,
parameter called SelfStart and set the value to true to start	 Must use Processor_DS as the Data Structure. 	 instr in instr out - Connects to any VisualSim library 	A Bytes, A Address
execution of script without a need for trigger.	• All hardware blocks have the data structure as the input	hlock	Snooping protocol connects to coherent buses such as ACE.
Reports: Statistics for internal queue, generate plot.	and output.	 bus in bus out – Bus input and output ports 	Directory based protocol connects to NoC.
	 Listen to block on Architecture Setup by selecting the 	 bus in2, bus out2 – Bus input and output ports 	TaskGenerator: Generates profile based sequence of
Key Plotters	listen to option. This provides details about the block	• reject out – When the instruction queue is full, the	instructions to emulate the software task on the processor.
l extDisplay	activity.	incoming data structure is not executed and placed on	Ports:
 Display the values arriving on the input port in a text display dialog 	 Customizable hardware blocks have ports at the bottom for debug messages and statistics. 	this port	 port- receives data structure with A_Task_Name containing the name of the task
 Ports – input – Default input port 	Standard block statistics are output at Architecture	Key Data Structure fields:	 nort2 – outputs ds with undated instruction field
TimeDataPlotter	Setup.	A_Source, A_Destination, A_Variables, A_Hop,	debug – Outputs status and debug information
 Depicts latency, throughput, and other variables that 	 Buses use multiport. So, input and output of device. 	A_misculul and A_FIULILY Dependencies: Instruction Set	Key Data Structure fields:
vary against time	bridge and other buses must be connected to the same	Error: Missing Instruction Set or an instruction processor	A TaskName, A Instruction
 Ports – input – accepts multiple datasets 	port.	clock speed less than cache speed inipeline stalled for than	Key Parameters:
HistogramPlotter	• CycleAccurateCache, CycleAccurateDRAM, Interfaces and	5000 cycles for response from external data request	Block Name, My Path, mode of operation and
 Plots a histogram using the input data 	Buses have debug and statistics ports.	Demo:VS AR\doc\Training Material\Architecture\Setup\Ti	Instruction_Mix_File
		ming_Diagram.xml	

RAM : Combines the memory controller and memory array	 port - outputs the debug messages 	Bridge: Connects two buses	 stats_out – Connects to a text display to observe the
to model SRAM, DRAM, Flash, and ROM	Key Data Structure fields: A_Address_Col, A_Address_Row ,	, Ports:	statistics of TileLink
Ports:	A_Command, A_Bytes	 port, port2 – Connects to one bus 	 plot – connects to a Time Data Plotter to display activity
 input, output – Connects to a bus 	Dependency: Connected to Memory_Controller	 port3, port4 – Connects to another bus 	diagram
 input2, output2 – Connects to a bus 		 status – receives message about bridge operation 	Key Data Structure fields: A_Command, A_Source,
 output3- ds with write operation and A_Task_Field is 	BusArbiter: Provides arbitration for bus and combines with	Key Data Structure fields: A_Source, A_Destination	A_Destination, A_Bytes
false is sent here	multiple instances of the BusInterface to create a Shared	Key Parameters:	Key Parameters: Speed, Bus_Width
Key Data Structure fields: A_Source, A_Destination,	Bus topology.	Bridge_Speed_in_Mhz, Bridge_Width_in_Bytes,	Dependency: TileLink Client, TileLink Manager
A_Command, A_Bytes, A_Bytes_Remaining and	Ports:	Overhead_Cycles	NoC: It is a scalable interconnect for an SoC to enable data
A_Bytes_Sent	 input - Connected to the top port of the BusInterface 	AFDXSwitch:	transfer between multiple devices and the memory.
Error: Invalid parameters, invalid access time entry.	 input1, output1 - Defines the custom logic when 	Standard: ARINC Specification 664 Part 7, a profiled version	Ports:
Memory Controller: Emulates the memory controller at	Arbitration Mode is set to Custom	of an IEEE 802.3 network per parts 1 & 2	 Master NIU: Connects master devices to the router
cycle accurate level.	Key Data Structure fields:	Ports: Debug	 Device In, Device Out – Receives and Sends
Standard: EDEC/JESD Standard	A Source, A Destination, A Command, A Task Flag,	Key Data Structure fields: Task Source, Task Destination,	transactions to Device.
Ports:	A Bytes, A Bytes Remaining	Task Type, Task Size	\circ NW Out, NW In – Send and receive packets from
 rd wr data fm bus rd wr data resp to bus-receives 	Key Parameters:	Dependencies: AFDXNode, AFDXTraffic, and AFDXConfig	router.
the read request or writes data from the hus port sends	Bus Speed Mhz. Bus Size Bytes. Width Bytes.	blocks	 Slave NIU: Connects Slave devices to the router
the read data out and the acknowledgement out for	Arbiter Mode	AMBA AHB: High performance buses for interconnecting	 Device In. Device Out – Receives and Sends
write through this port to the bus	Dependency: BusInterface	nerinheral IP to any independent processor/memory	transactions to Device.
• rd data fm mam rd wr data to mam receives the	Businterface: Connects devices to the hus	_peripricial in to any independent processory memory	\circ NW Out NW In – Send and receive packets from
 Id_data_ini_ineni, id_wi_data_to_ineni - receives the read data returned from the DRAM block and condc out 	Ports:	Porte:	router.
the transaction to the DRAM	 input1 output1: Connects to a device/bus - can be 	Port1 port3 port5 port7- connects to master	Router: transfer data to other routers or devices
	• Inputt, outputt. connects to a device/bus - can be Master or slave	Port2 port4 port6 port8, connects to slave	\circ Device Port In Device Port Out – connects to master
ctrl_tm_mem, ctrl_to_mem - sends and receives control signals such as tPAS_tPD_tPCD to memory or from the	• input2 output2: Connects to a device/bus, can be	Key Data Structure fields: A Command A Source	or slave NILL
signals such as tras, tre, tred to memory or from the	• Inputz, outputz. connects to a device/bus- can be	A Destination A Hon A Bytes A Bytes Sent	○ Device? Port In Device? Port Out – connects to
memory	illastel OF slave	A Bytes Remaining A Task Flag A Prefetch A Interrunt	master or slave NILI
Status - outputs the debugging messages when the	 child_in, child_out = Provides the connection to other businterfaces and the BusArbiter 	AMPA AVI: Advanced high performance, on chin	○ North In North Out South In South Out Fast In.
DEBUG parameter is true	businterfaces and the BusArbiter.	ANIBA_AXI: Advanced high performance on chip	Fast Out West In West Out – directional ports to
Key Data Structure fields:	A Course A Han A Destination A Duton	interconnect protocol to enable data transfer between Soc	connect an adjacent router
A_Address_Col, A_Address_Row, A_Bytes_Lotal,	A_Source, A_Hop, A_Destination, A_Bytes,	devices.	Wire: Connects two router ports
A_IVIEM_ID	A_Bytes_Remaining, A_Bytes_Sent, A_Command	Ports:	\circ Mile: connects two router points. \circ Delay. In Delay. Out – forward the data from input to
Key Parameters:	Dependency: BusArbiter	All input ports (left side) are connected to masters	output
DRAM_Type, Controller_Speed_Mhz, Mfg_Suggest_Timing	Error:	 All output ports (right side) are connected to slaves 	Key Data Structure fields: A Command A Destination
Extra_liming, Memory_Width_Bytes ,	Invalid bus name, similar bus port names	• When using AXI bus, make sure to give the value for the	A Putor
Command_Buffer_Length, Burst_Length	DMA:	parameter Threshold_Trans_T_Bytes_F as true	A_bytes Koy Paramotors: Elit Sizo Bytes Buffer Sizo OoS
Error: Invalid DRAM type	Ports:	 When using AXI bus, generate traffics with an offset 	Dependency: Master NILL Slave, NILL Wire Pouter
CycleAccurateDRAM: Captures the functionality and	 Req, Dout – Receives transactions, Sends out 	 stats_out – Outputs the statistics 	Dependency. Master Mo, Slave_Mo, Wile, Kouter
accurate timing of many variations of DRAM.	transactions,	Key Data Structure fields: A_Command, A_Source,	AVB: Designs a completely new AVB-based network to
Ports:	 Ack, Din – Sends dma requests to the device, Connects to 	A_Destination, A_Bytes, A_Priority	Integrate all the equipment, upgrade existing networks,
 port_1, port_2 - receives the read request or write data 	bus.	TileLink: It is a chip-scale cache coherent interconnect	and design the electronics that are used in such networks.
from the memory controller and sends out data to	• reject – Sends out transactions when the channel buffer	standard. It enables coherent memory access in an SoC	Standard: IEEE 802.1BA
memory controller	overflows	which contains multi core processor, accelerators, DMA	• StreamRP-
 fm_ctrl, to_ctrl - receives the RAS, RP, RCD commands 	Key Data Structure fields: (with database dependency)	and IO devices.	 IG_in, IG_rth – Receives traffic, Sends out
from the memory controller and sends the RAS, RP, RCD	A_Task_Name, A_Instruction	Ports:	transactions
response commands back to the memory controller	Key Data Structure fields: (without database)	• All Multi ports (left side) are connected to TileLink Client	 strm_rtn, strm_out – Receives returned transactions,
 port_4, port_3 - connected to external logic for reading 	A_DMA_Command, A_DMA_Destination, A_Priority,	• All Multi ports (Right side) are connected to TileLink	Sends out traffic
data from an address location and making a read request	A_DMA_Bytes, A_DMA_Channel, A_DMA_Burst_Bytes.	Manager	AVB_Node
or write data to an address location		-	

 port_in, port_out – Receives transactions, Sends 	 stats, msg_out – Sends out Statistics (Data Structure) 	the standards which define mechanisms for the time-	node (existing), adding a link, removing a node, or
transactions	information, Debugging (String) Information.	sensitive transmission of data over Ethernet network.	removing a link.
AVB_Traffic	Key Parameters: Number_of_Lanes, Max_Payload_Size,	Has multiple gateways through which sensors, Ethernet	 stats_input, stats_output - Generates statistics reports
 net_tg_in, net_tg_out – Receives traffic, Sends out 	Max_Payload_Req_Size	traffic etc. are connected	for the referenced routing table, driven by the type of
generated traffic	UCIe: It is a die to die interconnect to integrate various	Key features:	'stats_input'
 data out – Sends out latency of the transaction 	chiplets. It provides high bandwidth with low power and	(a)IEEE 802.1Qbv	Routing Table
• AVB Stats	low latency data transfer between chinlets	(b)IEEE 802.1Qbu	 No ports
 stats in – Receives transactions 	Porte	(c)IEEE 802.3br	Multicast
Dependencies : AVB Traffic, AVB SRP, AVB Node, AVB	 multi-norts (input and output) connected to a chinlet 	(d)IEEE 802.1Qca	o fr layer, to layer - From the Application layer. To the
Bridge, Network Setup, Config table, AVB Statistics	 Dobug, port – sonds dobug mossages about LICIo 	(e)IEEE 802.1Qcc	Application laver
CAN: Based on the Bosch specification and the	Debug_poir = senus debug messages abour ocie	(f)IEEE 802.1Qci	\circ fr Node, to Node – From the Node block. To the Node
international standard defined in the ISO 11898-1 and	Processing. Koy Data Structure fields: A Command A Source	(g)IEEE 802.1Qch	block
combines both the standards in a single block	A Destination A Bytes	(h)IEEE 802.1AS	• Switch Four X One
Standard: ISO 11208 1	A_Destination, A_Dytes		o zero input - input port Zero for data tokens
Dorts:	Max Road Rog Size Putes Puffer Size Putes	Notworking	 one_input - input port One for data tokens
CAN Node		Networking.	 o two_input - input port one for data tokens
• CAN_NOUP	PCI_RAD: It is an arbitration based bus which is used for	POILS.	○ two_input - input port Three for data tokens
o hode_in, hode_out = Receives messages, sends	interconnecting peripheral chips to any independent	• Ethernet_Inditic	\circ control - Input port for control takens, which selects
messages	processor/memory subsystems	o het_tg_in, het_tg_out - Returns the AVB stream status	the output based on the matching with the relative
O IX, IX – Connects to CAN_Bus wire port	Key features:	to the block, all the stream traffic will be output at this	switch address
• CAN_BUS	(a)Implements arbitration algorithm according to which	port	\circ no. output - If the control port value is out of the
o wire – Helps in connections	masters are given access to the bus	 data_out - outputs the traffic streams that treat this 	Switch Address range then the incoming token is
Fibre_Channel:	(b)Terminate/Wait: It is possible to terminate the current	block as the Listener	nlaced on this nort
Ports:	access by a master or make that master wait for a specified	Layer_Protocol	 switch output - If the control port value is out of the
• FC_N_Node:	cycles	 o ds_up_input, ds_up_output - input port for connection 	Switch Address range then the incoming token is
 Device_In, Device_Out – Receives and Sends 	(e)Provides block debug feature	from upper Layer_Protocol, Output port for	nlaced on this port
transactions to Device		connection from this block to the upper	placed on this port.
 frm_switch, to_switch – Receives and Sends 	TimeTriggeredEthernet: Provides the capability for	Layer_Protocol	
transactions to switch	deterministic, synchronous, and congestion-free	 as_an_input, as_an_output - input port for connection 	
 Debug – Enable debug and connect text display to 	communication, unaffected by any asynchronous Ethernet	from upper Layer_Protocol, Output port for	
capture debug information	traffic load.	connection to lower Layer_Protocol or Node.	
 FC_96_Nodes 	Standard: IEEE 802.3	 up_ext_output, an_ext_output - Output port for 	
• FC_Link	Ports:	external processing in the Up direction, Output port for	
FC_Switch	• TTE_Traffic	external processing in the Down direction.	
FC_Config	\circ net_tg_in, net_tg_out – Receives and sends	Layer_Complete	
FC_Traffic	transactions	 Input - Input port to Layer_Complete from 	
 net_tg_in, net_tg_out 	\circ data_out – Outputs the traffic streams	Protocol_Layer block.	
○ data_out	TTE_Node	Layer_Table	
ASM_Traffic	 port_in, port_out – Input and output interfaces to the 	 No ports 	
 net_tg_in, net_tg_out 	upper layers of the protocol stack	NODE	
o data_out	TTE_Stats	\circ route_input, route_output – Receives and sends	
Dependencies: ConfigTable, DeviceInterface block	\circ stats_in – Input from the Node or TrafficGenerator	packets	
PCIe Bus: Provides a scalable high-speed serial I/O hus	 Error: Multiple RiO_Node, Serial switch blocks with 	 node_input, node_output – Receives and sends 	
that maintains backward compatibility with PCI	similar name, error due to missing architecture setup	packets	
annlications and drivers	TSN: Implements IEEE standard called IEEE 802.10 Time	NODE_Master	
Ports:	Sensitive Networking	 request_input - updating the referenced routing table 	
All input norts (left side) are connected to masters	TSN is a set of standards defined by Time-Sensitive	in terms of recalculating the routing table, adding a	
All output ports (right side) are connected to slaves	Networking task group of the IEEE 802.1 working group,		