
Mirabilis Design Inc.
Quick Reference Card

1

 What is VisualSim
• System-level modeling and simulation software.
• Systems architecture exploration.
• For electronics, software, network and semiconductors.
• Analyze timing, power, and functionality.
• Validate specification for non-functional

need- requirements, cost, resources etc

Examples of Usage
• Aerospace - avionics, flight control, inertial

navigation, communication, radar
• Communication- Software-Defined Radio, DSP-based

communication systems, Antenna, 5G
• Networking - Custom protocols, arbitration,

flow control
• Automotive - Networks, security, safety, ECU
• Compute - SoC, processor, FPGA, TPU, HPC, media

servers, switch
• Storage - SSD, HDD, NAS, DDRs, LPDDRs, HBM

What can you do in VisualSim?
• Resource sizing and capacity planning
 Size to support use cases and workloads
 Combination of components, topology, speeds, width,

bandwidth, buffers, cache, memory and power states
 Verify that the statistics meets the requirements.

• Failure analysis
 Timing and throughput when processing/ storage/

network failure, change in software scheduling,
network intrusion, reduced power and modify memory
tables.

• Abstract design to cycle accurate design.
 Build models in different levels of abstraction to focus

on specific part of the system or function.
 Hybrid processor with cycle accurate memory

architecture.
 Model behavioural components as resources to

analyse timing and power.
• Power management, sizing and generation
 Experiment with different sets of power states and

power management based on capacity and utilization
Extend the battery life.
 Size the power generator and battery.
 Metrics for instant, total, average and individual device

power.
• Hardware-software partitioning and Task graph analysis
 Sequence the threads and processes across multiple

processors and network nodes.
Partitioning across AI tiles, Tensors, Deep Learning
Units, CPU, GPU, DSP etc
 Select the functions that need acceleration.
Generate document, test bench and UPF power table for
implementation and communication
 Create custom and classified libraries and share it with

others by encrypting the library.
 Software modeling for the hardware components with

simplified methods without affecting the accuracy.
 Run Complex models with different combination of

parameters as a batch run and compare results from
different runs.
 Debug and verify the design using diagnostic feature.

Validate whether it meets the requirement or not.

Working with VisualSim
1. Draw a block diagram of your proposed system on paper.
2. Open a new Block Diagram Editor.
3. Drag blocks from the library, set parameters, and

connect to create an architecture.
4. Define the Task Graph of the system behavior. The

sensors and input interface must be defined in the
architecture

5. Map each task to an element or master in the
architecture

6. Simulate the system model for various configurations,
topologies, workload, and use cases.
7. Define the requirements in the Diagnostic format.

Require Diagnostic block in model
8. Open the model in the Post Processor after adding the

PlotManager in the model. Define the list of parameters
and the ranges of values to simulate. Select the plots and
display to show. An Index file with the list of all possible
runs and a few other configuration files are created.

9. Run the Thread Sim from the command-line to distribute
the selected simulation runs across all available cores.

10. Review the generated statistics text files,
recommendations on the requirements and compare
plots using Post Processor

11. Auto-Save is a setting in the Config.Properties
that determines how often the currently modified file is
being saved to <User Home>/.VisualSim/ directory. The
file name is name+time_and_date.xml. Note: The file is
never deleted.

12. Save and restarts is an option to save the state
of the simulation at distinct points during a simulation

and restart from that point onwards. The sim times at
which to save are set in PauseSimulationAt.txt which is
located in the same directory as the model.

VisualSim Cloud
• Online version of the tool, that user can run without

installing the VisualSim in the local system.
• Requires OpenWebstart and Java 17 or higher.
• User can share the model from installed tool by export to

web optioin and the user with VisualSim cloud can use
that file to run and analyse the deisgn

Parser and External tool support
• In built parser to convert files from external software or

hardware to VisualSim.
ARXML, AXI, GEM5, GCC and Spike

• External tool to VisualSim, Support files from other
software to load in VisualSim models.

Batch Run and Multi Core Processing
• Batch Run
 Inbuilt Post Processor allows user to create batch files

for a particular model to run multiple combinations of
parameters.
 Validate the system stability.
 Enables recrusive analysis and comparison with

different runs.
 Combine plots from different runs in a single window.

• Simulation on Multi core
 Post processor creates files to run the batch simulation

on the local system by assigning different runs to
different cores of the system.
 Increases paralleslism and fast simulation.

GUI Concepts
• Block
 Defines basic functionality such as traffic, FIFO,

arbitration, processor, storage, and statistics
generation.
 Contains input/output ports, parameters.
 Initializes block based on the parameters and

functionality.
 Logic executes when inputs are received.
 Inputs can be read from files
 Contains optional timing and power.

 Blocks are color coded (Yellow – Traffic Generation /
Traffic Reader/ Database, Red –Power Management,
variable list, ExpressionList, Blue – Behavior Mapping,
Queuing/System/Server resources).
 Block Parameters

• Can reference a parameter or data structure field.
 Ports

• Input, Output or multiport (input-output).
• Polymorphic –scalar, string or

data structures.
 Block Ports

• If port has specific data type, then data coming
through the connected port must be the same type.

• Direction can be modified (Customize Ports).
• Configure > Ports – Can add in/out ports to

ExpressionList and Script blocks.
• Wires
 Represent a connection between ports.
 Does not introduce any delays.
 To connect port-to-port, press and hold at a port,

then drag, and release when connected to the
other port.
 If connected, line is thick, else thin.

• Relations
 Connect multiple input and Output ports.
 To connect, hold “Ctrl” key, and drag from relation

to port.
 Can connect relation to relation to arrange wiring.

• Annotation
 Represent comments and documentation about the

model.
 Multiple annotation can be added and placed

anywhere in the model to describe each block and
flow.

Block folders
• Document – Describe the model
• Model Setup – Basic model requirements
• Traffic – Generate transactions
• Results – Output the simulation results
• File IO – Read or write data from or into files and

database
• Behavior – Implement the logic for the model
• Mapper – Map the task to the resource
• Resource – Consume time, quantity, and power
• Power – Generate, store, consume, manage, and

Mirabilis Design Inc.
Quick Reference Card

2

report
• Hardware setup –Device modeling and overall system

setup
• ProcessorGenerator – New processor template

and models of commercial processors.
• Cycle_Accurate_Processor – Pipeline stages for

microarchitecture design.
• Memory – Model statistical and cycle-accurate

Memory and cache
• Hardware Device – DMA, Buses and peripherals
• Interfaces and Buses – Standards-based buses,

interconnects, and networks

User Documentation
(a)Annotation: Provides textual information in the
Block Diagram Window. (b)Block Documentation:
Available in all blocks. Details of the block activity
and internal expressions can be added. Generated with
Export to Web. (c)Comments (/*….*/): Comments can be in
parameter, variable list, and any expression or script.

Library Management
• Creating Reusable Blocks or Class

1. Select blocks and parameters by left click and drag.
2. Click Graph > Create Hierarchy, Disconnect all

connections to the created Hierarchical Block.
3. Right-click the block and select ‘convert to class’.
4. Right-click the block and select Open Block.
5. File > Save As (Directory must be under
CLASSPATH – VS_AR) and select “Save Submodel Only”.
6. save the file with .xml extension.

• Import Custom Blocks in Model
1. Graph > Instantiate Class.
2. Browse and select .xml file. Commit.

• Adding Reusable Blocks to UserLibrary
1. Add block to model.
2. Right-click block and select "Save Block in Library“.
3. UserLibrary.xml is opened and select File > Save.
4. Block available in Folder > UserLibrary.

Debugging
• Block highlighting: When error occurs, the block with

the error is highlighted in red. Narrows down which
block has the error.

• Error Messages: Provide block location in design
hierarchy and error details.

• Listen to block: Right-click on the block and select Listen
to Block. Shows the sequence of execution in block.
Verify if operation is correct. Listen to block can be
enabled for every block except hierarchical blocks.

• Script Tracer: captures the execution of multiple scripts
and write the content in one file. Trace file will be saved
in (User folder)/.VisualSim. Helps to check if dependent
blocks have deadlock or error.

• Listen to port: Right-click on the port and select. Check if
the field values are correct.

• Animate Execution: Debug -> Animate Execution.
Shows order of execution. Identify if blocks are not
executing, executing too many times or executing in
the wrong order.

• Block Breakpoints: Right-click on block and select
Breakpoint. Stops model at a specific time in the block.
Do a Listen to Block or Port at any block

• Pause and resume: Stop and step through each event in
the model PauseSimulationAt.txt and store in same
directory as model. Simulation stops at each timestamp
to save current state of variables, queues, and Script line.
Simulation can be started from any of the specified time
points.

• Digital Debugger-> Pause / Summary – Only / Run: Pause-
stop simulation and restart. Summary –consolidated
value of time/number of executions of all blocks. Run-
block execution sequence.

• Diagnostic: Add requirements and constraints in a text
file and link it to the Diagnostic block. Simulation will
generate statistics and recommendation files, user can
check if the requirements are met.

• Additional: Text Display, Plotter, statistics, and
fileWriter to trace intermediate activity.

Methodology Concepts
• Parameters
 Constants during simulation.
 Model Setup -> Parameter / Range / Pulldown.
 Example: Processor_Clock = 250.0,

Traffic_Interval = 1.0e-6
• Variables
 Similar to programming variables or hardware

registers.
 Defined in VariableList (Types – local and global).
 Script block can define a global variable which can be

used in other blocks with the help of RegEx commands
 Local is accessed only in current window and global

is for the whole model.
 Block variables are defined and used in Script and

ExpressionList blocks.
 Example: Buffer_Usage in Egress Queues or

device available flag.
• Transaction or Data Structure
 Container with fields of any data type.
 Represent data details, control, and simulator

details.
 Example: Data, Priority, Command, Source,

Destination, Time Stamp
• SampleDS = {Source_Name = “Sensor1”,

 Destination_Name = “DRAM”,
 Priority = 1,
 DataSize = 64 ,
 CRC = “F822”,
 Length = 80}

• RegEx (Regular Expressions)
 Used in Parameter (Processed once at startup),

ExpressionList (Every entry), and Script
(Every entry or loop).
 Collection of Math, Logic, Statistics, power access,

resource internal access, array processing, and
programming option for popular GUI functions.
 Example: Buffer=getBlockStatus(“Egress”);

a = x.cos(90)
 Can include parameters, variables, and fields in

the expression.
 Parameters can be used in LHS (not in ExpressionLists

or Script blocks)
• Script
 Programming language for modeling
 Used to define algorithm and common data

processing operations.
 Supports RegEx and common C functions.
 Blocking and non-blocking timing.
 Supports Virtual Connection
 Can be modelled to implement any algorithm or logic
 Can define Queue within a script
 Can access and remove content of a Queue block

virtually.
 Power calculations can be made for the application or

algorithm implemented in the script.

Scope

The scope of names plays a major role in VisualSim. Here
are the important items.

(a) Block Name for Resources, Script, Architecture and
Application-specific blocks must be unique in entire
model
(b) Variables:

i. Global must be unique in the entire model
ii. Local and Global names cannot overlap
iii.Local and Block variable can overlap if
they are not in the same window or BDE

(c) Parameters
i. Link from block in lower-level hierarchy to the
parameter in the next-level above. Never jump from a
lower-level block or hierarchy to top-level parameter
ii. SharedParameter are stopTime and tResolution

(d)Instantiating simulator
i. Required in top-level of Model, Dynamic Instantiation
and Class

 ii. Note: All parameters of the lower-level Simulators are
ignored
(e)Ports
i. i. Input connect to output, except between block output

and window output
ii. Multiport and In-Out port allows input and output
of a device to be connected

(f) Zero-delay loop
i. When the wires between a set of ports are
considered a loop and there is no delay
interrupting this loop, a zero-delay loop error will
be generated
ii. To resolve this, add a Delay block with a value of 0.0

(g) Virtual Connection
i. IN, OUT, Script to Virtual Connection and scripts.
Target names can be local (same window) or
global (entire model). Multiple Sources can go to a
single Script or OUT block.
ii. Node block- connection-less. No wiring
required. Connections attribute are captured
in the database associated with the Routing
Table.

iii. Mapper-to-SystemResource: Names must match
(h) Random Number Generators

i. No seed- random() and Gaussian. This means
that results from every run are different. It is
not deterministic.
ii. Seed- rand, irand. Define model_seed as a
parameter with a value of seed(Long Value). For
every seed value, the outputs will be deterministic

Mirabilis Design Inc.
Quick Reference Card

3

across any number of runs

Modeling Methodology
• Select the methodology for your system.
• Criteria for selection – Familiarity with modeling

method, shared resources across flows or hardware
or software only.

• In-Line Flow Descriptions
 Typical for stochastic studies, protocol, and

Ingress-Egress models.
 Shared resources accessed by individual flow

in a central location.
 Main blocks: Traffic, packet attributes (ExpressionList),

timing (Queue, Server), and Script for arbitration
• Separation of Behavior and Architecture
 Y-chart design approach
 Behavior flow is the sequence of functional operation

in concurrent threads. No algorithm details or delays
considered.
 Architecture describes the platform – electronics,

RTOS, and middleware.
 For each task in the flow, use mapper block to

link to SystemResource or Processor.
 Main fields: Timing (A_Delay), Priority (A_Priority),

Task ID (A_Task_Address), and
Task Name (A_Task_Name).

• Hardware-only flow
 Architecture is built using cycle-accurate

hardware blocks.
 Traffic triggers the Processor, DMA or

Device Interface.
 Traffic can be data arriving at an interface,

Instruction sequence to a processor and Read/Write
to Memory.
 Main blocks: Processor, Memory, Cache, DMA,

Bus, Switch, Bridge.
 Define Accelerator: DeviceInterface +

SystemResource + Bus Link for resource access.
• Software and hardware
 Instruction sequence and processing elements
 Define software functionality using the Instruction set

and Instruction mix table.
 Generate tasks based on the instruction mix table and

allocate task to specific resource or processing element
based on the allocation algorithm.
 Main Blocks: Processor, System Resource, Mapper,

Dynamic Mapper, Task Generator, Instruction Set

• Failure Analysis
 Inject fault or error into the system to observe the

stability.
 Can be a data error, unsupported size, variable packet

arrival rate, link failure, resource failure, etc.
 Blocks: Traffic, Expression list, script

Modeling Details
Workload
• Examples: Traffic to represent trigger behavior flow,

network traffic, instruction sequence, Read/Write
request, Customers arriving at a bank teller.

• Description: Data Structure sent out to emulate the
packet/command/customer.

• Blocks: Two main types – Distribution based (Traffic
block), Trace file based (TrafficReader).

• Use Script block to generate custom traffic.
Workload Attributes
• Examples: Defines the workload such as priority, data

size, data value, type, address.
• Concept: (a) Update existing or new fields of incoming

transaction. (b) Use RegEx, parameters, fields and
variables to provide computed values or to select
options.

• Blocks: (a) ExpressionList and Script. (b) Support blocks
are Boolean switch, fork, and join.

In-line behavior and architecture
• Examples: Multi-port network switch, DSP functions in an

FPGA, manufacturing flow.
• Concept: Define the sequence of activity with queues,

arbitration, flow control, and processing times.
• Blocks: Traffic, ExpressionList, Script, Queue, Server
Behavior Flow, Process, Thread and Tasks
• Examples: Imaging pipeline, Customer consumption of

resources at a restaurant.
• Concept: (a) List the sequence of functional processing

on the data. (b) without the functional description. (c)
Can be hardware or software implementation.

• Block: ExpressionList, Mapper, Script, FSM, Fork, and
Join.

• Operation: (a) Behavior flow is modeled with Expression
List and Mapper blocks. (b) Each function in the
sequence can update field values. (c) and decision trees
and map to the SystemResource. (d) Use Fork and Join
for visual appeal.

Connect Behavior and Architecture
• Examples: Image read, decode, rotate, and transpose on

ARM.
• Concept: (a) Used to add timing and power for each

function. (b) Mapper block (Behavior flow) sends
transaction to SystemResource or Processor (Actual
Hardware Unit). (c) Can be a static (fixed mapping) or
dynamic (resource selection is based on task type, first
available resource or prior executions).

• Block: (a) Behaviour: Mappers, SoftwareMapper,
DynamicMapper. (b) Architecture: SystemResource,
SystemResource_Extend, SystemResource_Done

• Operation: (a) Required fields for the SystemResource
are A_Time field has execution time, A_Priority field has
the task Priority, and A_Task_ID field has task identifier.
(b) Mapping name must match a SystemResource. (c)
Mapper (behavior control block) sends the transaction to
the SystemResource or SystemResource_Extend
(followed by Done block) for processing.

Resources
• Examples: (a) Processor, memory, bus, queue and switch.

(b) Bank teller, shop-floor employee, toll road. (c)
Concept: Defines the entities that consume time and
quantity resources.

• Queueing Resource with time not known in advance.
Examples: (a) FIFO, Processor, (b) Bank teller, Traffic
intersection. Concept: (a) FIFO to wait for previous
transaction to complete processing. (b) Processing time
is performed out.

• Blocks: SystemResource, SystemResource_Extend,
SystemResource_Done, Queues, Servers,
QuantityResource

• Operation: (a) Transaction is first placed in the queue. (b)
Queue is ordered based on priority of each transaction.
(c) Transaction at head of the queue is delayed before
being sent out.

Scheduler Block with added functionalities
• Provides more scheduling algorithms for the user to

choose from. The following are the different Queue
rejection mechanisms supported :

o Incoming Token Rejected/ Tail drop
o Lowest Priority Token Rejected
o Random Drop on full
o Drop front on full

o Random Early Detection
• The following are the different Scheduling algorithms

supported :
o FIFO
o FCFS
o Round Robin
o Weighted Round Robin
o Deficit Round Robin
o Weighted Fair Queuing
o Strict Priority
o Round Robin Priority

• If the user selects Deficit round robin or Weighted fair
queueing, a field called Task_Size is necessary.

Queuing Resources with pre-determined processing time
• Examples: (a) Bus or network delay, processing with no

pre-emption.(b) Cross a traffic intersection. (c) All
hardware blocks that consume time. Model time – and
partition-based scheduling.

• Concept: (a) Combines the queue and the processing in a
single block. (b) Has multiple concurrent flows
represented. (c) Slot based schedule provides different
processing time for each queue in order.

• Block: Server
• Input and Output: Transactions
• Key Fields: Queue_Number_Field (A_Task_Address),

Priority (A_Priority), Max_Queue_Length (Can be a
Parameter), Number_of_Queues (Can be a Parameter),
Time_Field (A_Time)

Access a shared System Resource from multiple
concurrent flows
• Examples: (a) Model the Y-chart concept of separating

the behavior and architecture. (b) Processor, shared
robot on a shop-floor.

• Concept: (a) Modeling of Hardware Resources such as
Processor, Cache, Bus, DRAM, and Accelerators. (b)
Consumes time period as defined in the behavior flow.
(c) Select scheduling from FCFS, Round-Robin, and pre-
emption. (d) Simplify the flows without having multiple
flows connected with wires to a single Server. (e) Support
preemption across request from multiple flows.

• Blocks: SystemResource
• Input and Output: Block receives and sends completed

transactions virtually from or to the Mapper blocks.

Mirabilis Design Inc.
Quick Reference Card

4

• Operation: (a) Arriving transaction are stored in the
Queue. (b) Head of the queue gets delayed by the
A_Time. (c) Return to Mapper. (d) Time_Type is set to
“Relative_Time”, then A_Time is seconds. Time_Type is
set to Number_Clocks, then the A_Time is number of
clocks and is multiple by Clock_Speed.

• Key Parameters
 SchedulerName: Name referenced by Mappers
 Clock_Rate_Mhz (Can be a Model Parameter)
 Time_Type (Relative Time or Number_Clocks)
 Max_Scheduler_Length (Can be a model parameter)

Extend SystemResource timing with more architecture
details
• Examples: (a) Cache and memory hierarchy.

(b) Separate the behavior flow or data flow from the
architecture definition.
Use as a processing resource when processing time is
unknown and the processing has dependency on some
other processing.
For example, usage can be a processor: as processor
requests memory devices for accessing the data, time
taken for memory device supply data is unknown.

• Concept: SystemResource is the Processor and
Bus/Cache/Memory can be attached to the output.

• Blocks: SystemResource_Extend and
SystemResource_Done (terminate a task).

• Input and Output: Block receives transaction virtually
from Mappers, delays internally, and then sends to
output port. SystemResource_Done receives the
transaction and returns to the Mapper to complete the
architecture operation.

• Operation: (a) Same operation as SystemResource.
(b) Difference is that the delayed transaction is sent to
output port for executing additional blocks. Return to
Mapper when encounters Done.

• Key Parameters: Same as SystemResource.
• Choose nonblocking_FCFS type if none of the packets

have to wait for it’s chance
• For plotting power consumed by this block, use the

following format in power table:
Scheduler_(SystemResource_Extend_Name)

Power
• Examples: Generators, Battery, hardware systems

that consume power, power management algorithms

• Concept: (a) Used to understand all the parts of the
power system for non-functional analysis. (b) The
focus is on consumption, sizing the devices, losses,
battery life, and so on. This does not focus on the change
in Voltage or current.
(c) LDO Efficiency is a variable that modifies the amount
of power consumed by a device in a state. (d) Determine
minimum power needed to run the system. (e) Provide
input to mechanical team for cooling.

• Blocks: PowerTable, Battery, and Energy Harvesters.
• Input and Output:
• PowerTable comprises the following three output

ports: (a) Instant power output sends out the
instantaneous power consumption of all
devices at this level and the levels below in
the tree. (b) Average power output sends the
average power consumed by the devices
over time. (c) State change in comma-separated
list of time, hierarchy name, device name, the new state
and the power consumed.

• Battery comprises the following ports: (a)
From_powerTable – Receives the current
load from the PowerTable. (b) Battery_Charge_Input
– Receives the charge from the charging
source. (c) Battery_External_Aging –
Percentage of battery loss as a double.
Represents external factors – shock and
dropping battery. Reduces battery life by
percentage. (d) Available_Energy_Capacity(watt-Hr)
provides energy available in the battery. (e)
Battery_Life_Remaining(%) – Output battery charge
remaining. (f) stats – outputs initial and final states, and
warnings.

• Key parameters
 PowerTable

• Power_Manager_Table: Define the list of states for
all devices, special states (Existing, On and Off), and
transition time between states. Define any
parameter that is required – can reference a
variable.
State – Can be any list. Active state and standby
states must be defined in the On and Off state
columns.
Existing- Initial state.

• Delay_to_Change_State – Time in a state before
transition to lower power state.

• ExpressionList – Create variables that can be used
for the state power and transition.

 Battery: (a) Battery type (b) Charging mechanism –
standard, threshold before charging starts, turbo
charging.

• Generator: Define attributes of the charger such as
Sun activity, motor rotations, and so on.

• Temperature and Heat: Plot the heat dissipation and
temperature of the entire system while each device
consumes power. Also provides the max and average of
temperature and heat of each device in the system.
Input and output:
Power_input: power consumption from the power
table’s instant_pwr_out port
State_Change_input: state change of each device from
Power table’s state_change port
Temp_output: temperature value
Heat_output: heat dissipation value
Device_output:max and mean values of each device at
the end of simulation.

Statistics
• Two types: (a) Statistics block: Input values are

aggregated to generate statistics on demand.
(b) Reports with list of pre-defined statistics for
Resources and hardware.

• List of Outputs Available: (a) Utilizations (Min,
Max, Mean, and Standard Deviation). (b) Occupancy
(Min, Max, Mean, and Standard Deviation). (c) Number
of Transactions Entered, Exited, and Rejected.
(d) Instantaneous and Average Power consumption
for system, subsystem, and components. (e) Battery
Life in Percentage, Available Charge, and Discharge.

• Custom Output: Compute latency and throughput in
ExpressionList and send to Plotter.

• Saving Statistics: Statistics can be saved as text, csv,
and .plt (Plot format) files located in any directory.
The Digital simulatior supports to store the statistics in a
file by enabling writeStatsToFile parameter. The statistics
from Architecture Setup will be saved in a file and placed
in the Result folder which will be in the model location.

• Interpretation: (a) Statistics like utilization, Queue
length vs throughput, (b) Data size vs latency,
instantaneous power consumption, and so on
are used to decide the efficiency, resource usage,

and scalability. (c) Example utilization of a resource
above 90% suggests that the resource is being
over utilized and the user must increase the
processing speed or reduce the workload arrival
time. (d) Buffer occupancy is the minimum queue
depth required to prevent data loss.

• Bottleneck or Problem: (a) Bottlenecks are identified
by continuous increase in latency. (b) Must check
buffer usage and utilization for all resources in the
flow to determine actual bottleneck.

Glossary
• Modeling Concept: Type of modeling approach.
• Simulator: Model of computation that determines the

interaction between blocks.
• Discrete-event or Digital: Sequence of synchronous

(same-time) events executing between asynchronous
(different but not periodic) time.

• Behavior: Sequence of tasks that describe a process or
application. Focused on the flows and the delay to
complete a task. Does not include the functional details
like the math and algorithms.

• Architecture: Platform to execute the application. Can
contain hardware, network, middleware and RTOS.

• Timing: Measured in seconds.
• Data: Size is always in bytes.
• Power: Consumption of energy by a device.
• Functionality: Behavior of a certain sequence of

tasks.
• Stochastic: Using random values to define the time and

other attributes.
• Process: Sequence of tasks. Typically for a behavior flow.

Can be implemented in hardware or software
• Task: Part of a behavior flow. Defines a specific action.
• Thread: A behavior flow that executes on a single

processor.
• Traffic: Start of an activity.
• Traffic attributes: Details of the traffic.
• Workload: Alternate term of traffic.
• Statistics: Recording of the model activities and

interpreting them in a decision form.
• Plotting: Display the statistics.
 Latency can be end to end latency of the system or

latency across a particular block.
 Throughput can be extracted by the specific field of

Mirabilis Design Inc.
Quick Reference Card

5

the data structure coming out of the block.
Key Blocks
Traffic: Outputs a new Data Structure (DS) at time intervals
specified by the "Time_Distribution" setting.
Input/Output: Output is a transaction. Can also be called a
packet or data request.
Key Traffic block Parameters: (a)Data_Structure_Name: Set
to “Header” or “Processor_DS”. (b)Start_Time: Offset for
the first transaction. (c)Value_1 and Value_2 are used in
the distributions. (d) Distributions: single transaction,
transactions at fixed interval (Value_1), exponential
distribution, uniform between Value1 and Value2, and
normal with mean Value_1 and standard deviation of
Value_2. (e) FileOrURL: If we want to read the traffic from
file , then provide the address of the file here. (f)
Random_Seed: the value defined by default is 123457L.
Used to determine the beginning random sequence of data
structures generated. (g) Number_of_Transactions:
Specifies the max number allowed and by default it is
MaxInt whose value is 2147483647
TrafficReader:
Import trace files from network sniffer or
hardware capture.
Input/Output: Output the next row as a data structure for
every input.
Database: Lookup table containing rows and columns.
Each row is a data structure and the field names are the
columns.
Input/Output: Transactions
Key Database block Parameters
• Linking_Name: Name to link multiple Database blocks

using the same table.
• fileOrURL: file name containing the table (.txt, .csv, .xml).
• Data_Structure_Text: Table values or ‘extern’ - to

reference another database block.
• Input_Fields: List of incoming data structure fields for

lookup.
• Lookup_Fields: List of column names to match with

Input_Fields in same order.
• Output_Expression: Specifies the match type and the

value to be placed on the output port.
• Mode: Search (Read), Update (Write), or delete

(Remove).
ExpressionList: Execute a sequence of expression in-order.
Can be used to update field, compute statistics, and make
decisions.

Input/Output: (a) Can add as many ports as required for
connection by right-clicking and selecting “Configure
Ports”.
Note that Type need not be defined. (b) Ports receive Data
Structure or a value of any data type (Polymorphic).
(c) With multiple input port, block executes the expression
after all ports receive data. (d) In the expression, the data
on a port is identified by port name +”.” + field name. (e)
Number and order of items in Output_Values,
Output_Ports, and Output_Condition must match. (f) All
output ports must be listed. (g) Output_Condition is a
Boolean that determines if data is to be sent on a particular
port.
Fork and Join: (a) Fork: Outputs a single transaction into
two output transactions. (b) Join: Combines two
incoming transactions into one flow.
Input/Output: Transactions.
Note: There is no delay between input and output, and
between output ports. Fork output is first the top port and
then the lower. Join sends out the transaction in
the order received.
SoftwareMapper and Dynamic Mapper: (a) Sends the
transaction to the Processor (DynamicMapper only),
SystemResource or SystemResource_Extend.
(b) Mapper block immediately sends the transaction to
the Resource.
Input/Output: Transactions
Key Data Structure fields: (a) A_Time, A_Priority, A_Task_ID
for SystemResource, (b) Task_Instruction, Task_Priority,
Task_ID, Task_Name, Task_Destination for Processor
Key Mapper block Parameters
• Target_Resource: Identifies the SystemResource.
• Task_Number: The Task_Number is the position on

the Y-axis.
• Task_Priority: Used to reorder the input queue and for

preempting the current task.
• Task_Time: Processing time at the SystemResource.
• Mutual Exclusion enabled (SoftwareMapper):

Transaction cannot be pre-empted.
• QueueTaskNow: SoftwareMapper can be queued locally

until Resource or available or sent immediately.
• Database_Lookup (DynamicMapper): Database Name

that contains the attribute values. Matched by the
Task_Name.

Queue: (a) Defines a buffer or a FIFO/LIFO in the flow.
(b) Removes the first transaction when trigger is

received at Pop. (c) Used when the processing delay is
not known in advance.
Input/Output: (a) Input: Transactions (b) Pop_Input:
Integer or array (Queue, position) (c) Output: Transactions,
(d) reject_output: Transactions
Key Data Structure fields
• Priority_Field, Queue_Number_Field
Key Queue block Parameters
• Max_Queue_Length: The maximum queue length for

each queue (can be a parameter).
• Number_of_Queue: Number of independent queues (can

be a parameter).
• Queue_Reject_Mechanism : Incoming Token rejected or
• Queue_Type: choose between FIFO or LIFO
• Initial_Queue_State: Refers to the first transaction when

queue is empty – output if none are waiting or wait until
a pop has been received.

Reports: Number_Entered, Number_Exited,
Number_Rejected, Occupancy, Utilization, Delay
Server: (a) Combines a queue and a processing time delay.
(b) Used when the processing time is known in advance.
If the transaction can be preempted, use SystemResource.
Input/Output: Transactions
Key Data Structure fields Queue_Number_Field
(A_Task_Address), Priority (A_Priority),
Max_Queue_Length (Can be a Parameter),
Number_of_Queues (Can be a Parameter),
Time_Field (A_Time)
Key Server block Parameters
• Number_of_Queues: Number of independent queues in

this block.
• Queue_Type: choose between FIFO, LIFO or SLOT
• Max_Queue_Length: Maximum queue length for each

Queue.
• Time_Field: Predetermined delay time, can be a field or

double value.
Reports: Number_Entered, Number_Exited,
Number_Rejected, Occupancy, Utilization, Delay
SystemResource: (a) Used when multiple flows need
to access a single resource. (b) Used when
pre-emption is required. (c) Model stop execution if
queue overflows (error will be thrown).
Input/Output: Transactions, Task_Plot
Key SystemResource block Parameters:
• Resource_Name: Name of this SystemResource

block. Used by Mappers, RegEx function, and other
SystemResource block to call this block.

• Scheduler_Type: FCFS, Preemptive or Round-Robin.
• Maximum_Scheduler_Length: Queue length
Reports: Number_Entered, Number_Exited,
Number_Rejected, Occupancy, Utilization, Delay
SystemResource_Extend
• Same as SystemResource.
• No support for Pre-emption.
• Cannot call another SystemResource.
• Can add more processing activity at the output port.
• Return to Mapper when output flow encounters a

SystemResource_Done.
Input/Output:
• Transactions, Task_Plot
Key SystemResource block Parameters:
• Resource_Name: Name of this SystemResource block.

Used by Mappers, RegEx function, and other
SystemResource block to call this block.

• Scheduler_Type: FCFS or Round-Robin or non-
blocking_FCFS

• Maximum_Scheduler_Length: Queue length
Reports:
Number_Entered, Number_Exited, Number_Rejected,
Occupancy, Utilization, Delay
PowerTable: Study and model the power infrastructure,
Determine the consumption by operations on resources,
and Design the best power management algorithm.
Input/Output: Output: Instantaneous Power output,
Average Power output, Device State change.
Key PowerTable block Parameters
• Manager_Setup: Contains the list of states and

associated power levels, reference to the Active (On)
and Standby (Off), transition time from one state to
another and parameters.
Delay_to_Change_State: Time in a state before changing
to another state.

• Expression_List: Computes expression for variables that
are used in the Manager Setup. (a) stateChange- RegEx
function to change the state in ExpressionList or Script.
(b) AsyncStateChange can be define externally using an
FSM, or Verilog/C/Script blocks.

Reports: Cumulative power consumption per device,
Cumulative power consumption per device at a particular
state, Cumulative power consumption of all devices,

Mirabilis Design Inc.
Quick Reference Card

6

Average power consumption of all devices, State
change details of a device.
Script: (a) Implements the VisualSim Script language. This
language combines standard programming constructs with
the RegEx functions and is fully integrated with the
graphical editor. (b) Supports blocking and non-blocking
wait statements, ability to create or wait for events, and
has multiple threads defined and call between threads and
modules. (c) Supports the following Methods:
(a)WAIT(<time> or <event> or <clock rate Mhz>): A delay
that holds the Script from operating on any data structure
until the time has expired. (b)SEND(<port name> or <label
name> or <block name>): Send to a port, virtual
connection, another Script or to a LABEL. (c)QUEUE(<queue
name>, <token>, <priority>, <queue operation>): Stores
and removes the token in the Queue in a FIFO method. The
queue is reordered based on the priority of the incoming
token.(d)TIMEQ (<queue name>, <token>, <priority>,
<queue operation>, <delay expression> or <clock_hertz>):
Used to define, put, pop time, and do processing in a Timed
Queue. (e)EVENT(<Event Name>,) or newEvent(<event
name>) or <event name>.event(): Creates a new Event. (f)
PLOT(<plot_name>,<destination>,<plot_color>,
<plot_offset>,<plot_value 1.0 or 0.0>): Plots timing
diagrams or latency or resource activity. (g)
CLOCK(“MyEvent”) : This is an added variation of EVENT
that selectively fires a WAIT (“MyEvent”) or TIMEQ
(“MyEvent”). This acts as a virtual clock.Input/Output:
Transactions , values of any data type
Key Script block Parameters: SelfStart - Create a new
parameter called SelfStart and set the value to true to start
execution of script without a need for trigger.
Reports: Statistics for internal queue, generate plot.

Key Plotters
TextDisplay
• Display the values arriving on the input port in a text

display dialog
• Ports – input – Default input port
TimeDataPlotter
• Depicts latency, throughput, and other variables that

vary against time
• Ports – input – accepts multiple datasets
HistogramPlotter
• Plots a histogram using the input data

• Ports – input – A multiport which means that each port
or relation can be connected directly to this port and is
treated as a unique dataset.

Statistics
• Compiles the statistics for a sequence of scalar values-

integer, double or long.
• Ports
o stats_data - An input port for the data samples.
o stats_trigger - An input port that triggers the current

statistics to be placed on the output port.
o stats_reset – An input port that resets all internal

statistics.
o histo_output - The values can be plotted on a

histogram Plotter block in VisualSim.
o output - Outputs the current Statistics when trigger on

the stats_trigger port.
ResourceStatistics
• Generates and resets statistics for one or many

Schedulers and Smart Resources in the model.
• Ports - Stats_Out - Output a data structure for a single

queue statistics.
• Resource_List : Specifies the Names of Resources
• ResourceLength_List : Length of all resources in the

Resource List
• Number_of_Samples : defines how many stats output

has to be done within the simulation time
• Statistics : Boolean field which when enabled generates

the statistics and resets when disabled
Key Hardware Blocks
Note:
• Architecture setup is required for all hardware modelling.
• Must use Processor_DS as the Data Structure.
• All hardware blocks have the data structure as the input

and output.
• Listen to block on Architecture Setup by selecting the

listen to option. This provides details about the block
activity.

• Customizable hardware blocks have ports at the bottom
for debug messages and statistics.

• Standard block statistics are output at Architecture
Setup.

• Buses use multiport. So, input and output of device,
bridge and other buses must be connected to the same
port.

• CycleAccurateCache, CycleAccurateDRAM, Interfaces and
Buses have debug and statistics ports.

• Basic required fields common to all blocks - A_Source
(starting device), A_Destination (final point such as a
memory or display or HDMI), A_Command (action to be
taken- Read, Write, Erase, Prefetch, and so on).

• Each hardware block must have a unique name.
ArchitectureSetup: Handles all the address mapping,
routing, debug messages, plotting and statistics generation.
Ports:
• plots_out - Generates the values for each

Statistics_to_Plot name as a separate dataset.
• internal_stats_out - Generates all the general statistics

for the number of times specified in the
Number_of_Samples.

• util_stats_out – Generates all the utilization statistics for
the number of times specified in the
Number_of_Samples.

Error: Invalid architecture block name used, routing table
conflicts, field name mapping conflict.
Demo:VS_AR\doc\Training_Material\Architecture\Setup\A
rch_Setup.xml
DeviceInterface: Enables users to connect custom blocks to
the bus, not needed for standard hw blocks.
Ports:
• input, output – Connected to device or logic blocks
• fm_bus, to_bus – Input connected to the bus port,

Output connected to the bus
TimingDiagram: Generates timing diagram for key arch
blocks. Connects output port to timed plotter.

Processor: Models commercial and proprietary processors.
Ports:
• instr_in, instr_out – Connects to any VisualSim library

block
• bus_in, bus_out – Bus input and output ports
• bus_in2, bus_out2 – Bus input and output ports
• reject_out – When the instruction queue is full, the

incoming data structure is not executed and placed on
this port

Key Data Structure fields:
A_Source, A_Destination, A_Variables, A_Hop,
A_Instruction and A_Priority
Dependencies: Instruction_Set
Error: Missing Instruction_Set or an instruction, processor
clock speed less than cache speed, pipeline stalled for than
5000 cycles for response from external data request
Demo:VS_AR\doc\Training_Material\Architecture\Setup\Ti
ming_Diagram.xml

Instruction_Set: Lists the instruction for each execution
unit of the processor.
Error: Missing semicolon at the end of a line, columns are
missing, instruction not found
Demo:VS_AR\doc\Training_Material\Architecture\Setup\In
str_Set.xml

Integrated_Cache:
The cache can be used as a stochastic cache block or cycle
accurate cache block by a parameter that the user can
select in drop-down menu(Stochastic_or_Address_Based).
Ports:
• fm_cache, to_cache – Connects to bus or lower-level

cache closer to processor
• miss_in, miss_out – Connects to bus or next level cache

that is closer to memory
• stats – Sends out debug messages and statistics
Key Data Structure fields: A_Source, A_Command, A_Bytes,
A_Address
Error: Invalid higher memory name

Coherence Cache: Enables multi-core architecture to
access shared memory with data consistency. Support
MESI coherence protocol in both snooping and directory-
based architecture.
Ports:
• input, output – Connects to processor or bus which

connects lower level caches.
• To_Bus, Fm_Bus – Connects to bus or interconnect that

allows data transfer to higher level cache or main
memory.

 Key Data Structure fields: A_Source, A_Command,
A_Bytes, A_Address
Snooping protocol connects to coherent buses such as ACE.
Directory based protocol connects to NoC.
TaskGenerator: Generates profile based sequence of
instructions to emulate the software task on the processor.
Ports:
• port- receives data structure with A_Task_Name

containing the name of the task
• port2 – outputs ds with updated instruction field
• debug – Outputs status and debug information
Key Data Structure fields:
A_TaskName, A_Instruction
Key Parameters:
Block_Name, My_Path, mode of operation and
Instruction_Mix_File

Mirabilis Design Inc.
Quick Reference Card

7

RAM: Combines the memory controller and memory array
to model SRAM, DRAM, Flash, and ROM
Ports:
• input, output – Connects to a bus
• input2, output2 – Connects to a bus
• output3- ds with write operation and A_Task_Field is

false is sent here
Key Data Structure fields: A_Source, A_Destination,
A_Command, A_Bytes, A_Bytes_Remaining and
A_Bytes_Sent
Error: Invalid parameters, invalid access time entry.
Memory_Controller: Emulates the memory controller at
cycle accurate level.
Standard: EDEC/JESD Standard
Ports:
• rd_wr_data_fm_bus, rd_wr_data_resp_to_bus - receives

the read request or writes data from the bus port ,sends
the read data out and the acknowledgement out for
write through this port to the bus

• rd_data_fm_mem, rd_wr_data_to_mem - receives the
read data returned from the DRAM block and sends out
the transaction to the DRAM

• ctrl_fm_mem, ctrl_to_mem - sends and receives control
signals such as tRAS, tRP, tRCD to memory or from the
memory

• status - outputs the debugging messages when the
DEBUG parameter is true

Key Data Structure fields:
A_Address_Col, A_Address_Row, A_Bytes_Total,
A_Mem_ID
Key Parameters:
DRAM_Type, Controller_Speed_Mhz, Mfg_Suggest_Timing,
Extra_Timing, Memory_Width_Bytes ,
Command_Buffer_Length, Burst_Length
Error: invalid DRAM type
CycleAccurateDRAM: Captures the functionality and
accurate timing of many variations of DRAM.
Ports:
• port_1, port_2 - receives the read request or write data

from the memory controller and sends out data to
memory controller

• fm_ctrl, to_ctrl - receives the RAS, RP, RCD commands
from the memory controller and sends the RAS, RP, RCD
response commands back to the memory controller

• port_4, port_3 - connected to external logic for reading
data from an address location and making a read request
or write data to an address location

• port - outputs the debug messages
Key Data Structure fields: A_Address_Col, A_Address_Row ,
A_Command, A_Bytes
Dependency: Connected to Memory_Controller

BusArbiter: Provides arbitration for bus and combines with
multiple instances of the BusInterface to create a Shared
Bus topology.
Ports:
• input - Connected to the top port of the BusInterface
• input1, output1 - Defines the custom logic when

Arbitration Mode is set to Custom
Key Data Structure fields:
A_Source, A_Destination, A_Command, A_Task_Flag,
A_Bytes, A_Bytes_Remaining
Key Parameters:
Bus_Speed_Mhz, Bus_Size_Bytes, Width_Bytes,
Arbiter_Mode
Dependency: BusInterface
BusInterface: Connects devices to the bus
Ports:
• input1, output1: Connects to a device/bus - can be

Master or slave
• input2, output2: Connects to a device/bus- can be

master or slave
• child_in, child_out – Provides the connection to other

businterfaces and the BusArbiter.
Key Data Structure fields:
A_Source, A_Hop, A_Destination, A_Bytes,
A_Bytes_Remaining, A_Bytes_Sent, A_Command
Dependency: BusArbiter
Error:
invalid bus name, similar bus port names
DMA:
Ports:
• Req, Dout – Receives transactions, Sends out

transactions,
• Ack, Din – Sends dma requests to the device, Connects to

bus.
• reject – Sends out transactions when the channel buffer

overflows
Key Data Structure fields: (with database dependency)
A_Task_Name, A_Instruction
Key Data Structure fields: (without database)
A_DMA_Command, A_DMA_Destination, A_Priority,
 A_DMA_Bytes, A_DMA_Channel, A_DMA_Burst_Bytes.

Bridge: Connects two buses
Ports:
• port, port2 – Connects to one bus
• port3, port4 – Connects to another bus
• status – receives message about bridge operation
Key Data Structure fields: A_Source, A_Destination
Key Parameters:
Bridge_Speed_in_Mhz, Bridge_Width_in_Bytes,
Overhead_Cycles
AFDXSwitch:
Standard: ARINC Specification 664 Part 7, a profiled version
of an IEEE 802.3 network per parts 1 & 2
Ports: Debug
Key Data Structure fields: Task_Source, Task_Destination,
Task_Type, Task_Size
Dependencies: AFDXNode, AFDXTraffic, and AFDXConfig
blocks
AMBA_AHB: High performance buses for interconnecting
peripheral IP to any independent processor/memory
subsystems within a SoC.
Ports:
Port1,port3,port5,port7- connects to master
Port2,port4,port6,port8- connects to slave
Key Data Structure fields: A_Command, A_Source,
A_Destination, A_Hop, A_Bytes, A_Bytes_Sent,
A_Bytes_Remaining, A_Task_Flag, A_Prefetch, A_Interrupt
AMBA_AXI: Advanced high performance on chip
interconnect protocol to enable data transfer between SoC
devices.
Ports:
• All input ports (left side) are connected to masters
• All output ports (right side) are connected to slaves
• When using AXI bus, make sure to give the value for the

parameter Threshold_Trans_T_Bytes_F as true
• When using AXI bus, generate traffics with an offset
• stats_out – Outputs the statistics
Key Data Structure fields: A_Command, A_Source,
A_Destination, A_Bytes, A_Priority
TileLink: It is a chip-scale cache coherent interconnect
standard. It enables coherent memory access in an SoC
which contains multi core processor, accelerators, DMA
and IO devices.
Ports:
• All Multi ports (left side) are connected to TileLink Client
• All Multi ports (Right side) are connected to TileLink

Manager

• stats_out – Connects to a text display to observe the
statistics of TileLink

• plot – connects to a Time Data Plotter to display activity
diagram

Key Data Structure fields: A_Command, A_Source,
A_Destination, A_Bytes
Key Parameters: Speed, Bus_Width
Dependency: TileLink Client, TileLink Manager
NoC: It is a scalable interconnect for an SoC to enable data
transfer between multiple devices and the memory.
Ports:
• Master NIU: Connects master devices to the router
o Device_In, Device_Out – Receives and Sends

transactions to Device.
o NW_Out, NW_In – Send and receive packets from

router.
• Slave NIU: Connects Slave devices to the router
o Device_In, Device_Out – Receives and Sends

transactions to Device.
o NW_Out, NW_In – Send and receive packets from

router.
• Router: transfer data to other routers or devices.
o Device_Port_In, Device_Port_Out – connects to master

or slave NIU.
o Device2_Port_In, Device2_Port_Out – connects to

master or slave NIU.
o North_In, North_Out, South_In, South_Out, East_In,

East_Out, West_In, West_Out – directional ports to
connect an adjacent router.

• Wire: Connects two router ports.
o Delay_In, Delay_Out – forward the data from input to

output.
Key Data Structure fields: A_Command, A_Destination,
A_Bytes
Key Parameters: Flit_Size_Bytes, Buffer Size, QoS
Dependency: Master NIU, Slave_NIU, Wire, Router
AVB: Designs a completely new AVB-based network to
integrate all the equipment, upgrade existing networks,
and design the electronics that are used in such networks.
Standard: IEEE 802.1BA
• StreamRP-
o TG_in, TG_rtn – Receives traffic, Sends out

transactions
o strm_rtn, strm_out – Receives returned transactions,

Sends out traffic
• AVB_Node

Mirabilis Design Inc.
Quick Reference Card

8

o port_in, port_out – Receives transactions, Sends
transactions

• AVB_Traffic
o net_tg_in, net_tg_out – Receives traffic, Sends out

generated traffic
o data_out – Sends out latency of the transaction

• AVB_Stats
o stats_in – Receives transactions

Dependencies : AVB Traffic, AVB SRP, AVB Node, AVB
Bridge. Network Setup, Config table, AVB Statistics
CAN: Based on the Bosch specification and the
international standard defined in the ISO 11898-1 and
combines both the standards in a single block.
Standard: ISO 11898-1
Ports:
• CAN_Node
o node_in, node_out – Receives messages, sends

messages
o rx,tx – Connects to CAN_Bus wire port

• CAN_Bus
o wire – Helps in connections

Fibre_Channel:
Ports:
• FC_N_Node:
o Device_In, Device_Out – Receives and Sends

transactions to Device
o frm_switch, to_switch – Receives and Sends

transactions to switch
o Debug – Enable debug and connect text display to

capture debug information
• FC_96_Nodes
• FC_Link
• FC_Switch
• FC_Config
• FC_Traffic
o net_tg_in, net_tg_out
o data_out

• ASM_Traffic
o net_tg_in, net_tg_out
o data_out

Dependencies: ConfigTable, DeviceInterface block

PCIe_Bus: Provides a scalable, high-speed, serial I/O bus
that maintains backward compatibility with PCI
applications and drivers.
Ports:
• All input ports (left side) are connected to masters
• All output ports (right side) are connected to slaves

• stats, msg_out – Sends out Statistics (Data Structure)
information, Debugging (String) Information.

Key Parameters: Number_of_Lanes, Max_Payload_Size,
Max_Payload_Req_Size
UCIe: It is a die to die interconnect to integrate various
chiplets. It provides high bandwidth with low power and
low latency data transfer between chiplets.
Ports:
• multi-ports (input and output) connected to a chiplet.
• Debug_port – sends debug messages about UCIe

processing.
Key Data Structure fields: A_Command, A_Source,
A_Destination, A_Bytes
Key Parameters: Max_Link_Speed_GTps,
Max_Read_Req_Size_Bytes, Buffer_Size_Bytes
PCI_RAD: It is an arbitration based bus which is used for
interconnecting peripheral chips to any independent
processor/memory subsystems
Key features:
(a)Implements arbitration algorithm according to which
masters are given access to the bus
(b)Terminate/Wait: It is possible to terminate the current
access by a master or make that master wait for a specified
cycles
(e)Provides block debug feature

TimeTriggeredEthernet: Provides the capability for
deterministic, synchronous, and congestion-free
communication, unaffected by any asynchronous Ethernet
traffic load.
Standard: IEEE 802.3
Ports:
• TTE_Traffic
o net_tg_in, net_tg_out – Receives and sends

transactions
o data_out – Outputs the traffic streams

• TTE_Node
o port_in, port_out – Input and output interfaces to the

upper layers of the protocol stack
• TTE_Stats
o stats_in – Input from the Node or TrafficGenerator
o Error: Multiple RiO_Node, Serial switch blocks with

similar name, error due to missing architecture setup
TSN: Implements IEEE standard called IEEE 802.1Q Time
Sensitive Networking
TSN is a set of standards defined by Time-Sensitive
Networking task group of the IEEE 802.1 working group,

the standards which define mechanisms for the time-
sensitive transmission of data over Ethernet network.
Has multiple gateways through which sensors, Ethernet
traffic etc. are connected
Key features:
(a)IEEE 802.1Qbv
(b)IEEE 802.1Qbu
(c)IEEE 802.3br
(d)IEEE 802.1Qca
(e)IEEE 802.1Qcc
(f)IEEE 802.1Qci
(g)IEEE 802.1Qch
(h)IEEE 802.1AS

Networking:
Ports:
• Ethernet_Traffic
o net_tg_in, net_tg_out - Returns the AVB stream status

to the block, all the stream traffic will be output at this
port

o data_out - outputs the traffic streams that treat this
block as the Listener

• Layer_Protocol
o ds_up_input, ds_up_output - Input port for connection

from upper Layer_Protocol, Output port for
connection from this block to the upper
Layer_Protocol

o ds_dn_input, ds_dn_output - Input port for connection
from upper Layer_Protocol, Output port for
connection to lower Layer_Protocol or Node.

o up_ext_output, dn_ext_output - Output port for
external processing in the Up direction, Output port for
external processing in the Down direction.

• Layer_Complete
o input - Input port to Layer_Complete from

Protocol_Layer block.
• Layer_Table
o No ports

• NODE
o route_input, route_output – Receives and sends

packets
o node_input, node_output – Receives and sends

packets
• NODE_Master
o request_input - updating the referenced routing table

in terms of recalculating the routing table, adding a

node (existing), adding a link, removing a node, or
removing a link.

o stats_input, stats_output - Generates statistics reports
for the referenced routing table, driven by the type of
'stats_input'

• Routing_Table
o No ports

• Multicast
o fr_layer, to_layer - From the Application layer, To the

Application layer
o fr_Node, to_Node – From the Node block, To the Node

block
• Switch_Four_X_One
o zero_input - input port Zero for data tokens
o one_input - input port One for data tokens
o two_input - input port Two for data tokens
o three_input - input port Three for data tokens
o control - Input port for control tokens, which selects

the output based on the matching with the relative
switch address.

o no_output - If the control port value is out of the
Switch_Address range, then the incoming token is
placed on this port.

o switch_output - If the control port value is out of the
Switch_Address range, then the incoming token is
placed on this port.

	Scope

