

Modeling and Exploring Complex Applications Page 1 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Application Note:

Modeling and Exploring Software Applications using
VisualSim

Current generation products contain a number of SoC and configurable Platforms. These
products can be easily configured to be used for a wide application space and large profiles of
customers. These platforms must be at lowest cost, meet required performance targets and
generate minimal power consumption. Information about the platform including functionality and
performance must be provided to sales engineers to help in design wins. The competitive
marketplace requires companies to differentiate on product innovation through the use of early
design exploration tools.

These requirements can be addressed through performance analysis and architecture exploration
early in the design cycle and prior to scheduling implementation. VisualSim is the first industry
solution to focus on “Idea to Specification” part of the design solution. Mirabilis Design customers
have been able to reduce product cost and widen the application of existing products. The
average product schedule has been reduced by around 30% resulting in millions of dollars of
additional revenue sooner with greater profit margins. The major areas of focus for Platform-
based design will be:

1. New Design: The design of the new platform requires the architecture to be explored in
terms of lower price, highest performance and minimal power consumption. If early
assumptions prove incorrect during implementation, there will be significant delays in
project schedule. For example, a dual ARM-9 design is constructed and the bus is too
slow or the memory hierarchy needs to be modified, this will cause considerable
slowdown in the video delivery. A recent customer design compared a dual ARM-7 vs.
to an ARM-8 Cortex processor topology. The initial impression was that the dual ARM-7
would be too slow. At the end of a one week analysis using VisualSim, the customer
determined that dual ARM-7 was able to attain the required performance at 1/10 of the
power consumed by the ARM-8 architecture. This saved this European company
considerable cost, both in die space and cooling/thermal expense.

2. Mapping a platform to an Application: Every customer has a unique set of requirements.
The sales engineer must quickly select the right platform based on the requirements.
The engineer can do a simple analysis on a spreadsheet or write extensive C code to
create the new application. Spreadsheets will be highly inaccurate and C-code will take 3
months for even a simple project. A good example is a VisualSim customer that was
using the cell processor platform for a DSP application. The application required
movement of large frames of data. The proposed memory interface was too slow and
had to be replaced with a high-speed serial interface.

3. Adding new applications to an existing platform: System companies would like to add
new applications using software on an existing hardware platform. When a new
application is proposed, they will quickly evaluate if the current platform will support the
added loading. Once they have decided that the application can be written entirely in
software or identified which parts of the application might use a hardware accelerator,
they can start the implementation flow. A VisualSim customer developed an entire
RADAR tracking system in software. When this software was added to an existing
PowerPC-based platform, they found the performance was inadequate. They had to
either partition the new application into hardware acceleration or move to a higher
performance platform. This delayed the project by 6 months and cost over $6 million in
added costs.

Modeling and Exploring Complex Applications Page 2 of 13 08/15/2006

Early design exploration for performance, power and functionality provides a validation of a new
innovative design concept. This can be used to validate the specification. Also the same model
in VisualSim can be used for performance exploration of derivative designs. These VisualSim
models can be used to get early design feedback from customers before scheduling
implementation. This also becomes the proof of concept for new design wins.

Modeling Overview and Abstraction
We are modeling an automobile system that consists of a single ECU platform with a
microprocessor and DSP, and a network connecting all the devices and sensors. On this
platform, we will be experimenting with different sets of applications. The purpose of this
modeling is to conduct architecture exploration to select the right architecture platform and to
optimize the software operation for real-time performance. Figure 1 shows the block diagram of
the system with the starting architecture and a proposed distribution of tasks.

Figure 1 Block Diagram of the Application, Platform and Device Network

Figure 2 shows a model of an automotive application modeled in VisualSim. This model shows a
detailed behavior and user activity.

The model is built in stages. First the software behavior, user activity and Statistics are built up
similar to a UML diagram procedure. The details of the behavior were initially described in
relative events. The behaviors are triggered by a User Activity diagram that is separate from the
behavior flows. The model has multiple software behaviors. This is simulated as a pure
functional execution to make sure that all the connections and the flow are correct. Also, a check
is done for the right outputs and the correct branching.

Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Modeling and Exploring Complex Applications Page 3 of 13 08/15/2006

A middle layer could be used to describe the communication between the software modules.
This could be a CORBA, RMI, Datagram or a direct connection. For the sake of simplicity, this
has not been included in the model. There are blocks in VisualSim that support Serial I/O,
Datagram and CORBA.

Figure 2 Abstract or Transaction-Level Model of the Automotive Application

The Transaction-Level (TLM) definition of the architecture is done using schedulers. A Scheduler
is used to represent the processing resources at this level of abstraction. The ECU platform
architecture consists of two devices- one scheduler to represent the Processor and another for
the DSP. The entire device network is abstracted using a single Scheduler. There are two power
states for each scheduler - Active and Standby. The power is analyzed for this model in parallel
with the performance and functionality.

The cycle-accurate and instruction model is shown in figure 3. This model was constructed by
modifying the TLM or abstract model. There are two items that are different with the Transaction-
Level model- the mapping table content and the architecture setup.

Based on the sizing information provided by the TLM model, the processor and the peripheral
devices are selected. The ECU is now assembled with the refined description of the architecture.
The architecture in the transaction level modeled is now refined to cycle-accurate/instruction-
accurate. This uses the detailed SH4 processor model that was generated using the Processor
Generator Toolkit.

The entire model took 2 days to construct.

Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Modeling and Exploring Complex Applications Page 4 of 13 08/15/2006

Figure 3 Automotive Model using SH4 processor Family

Application
Automotive: DVD Player, Keyless Entry and Interior Lighting

Hardware
SH7750R (SH7750 Series Hardware Manual and Renesas Web Site – Power diagram)
Generic DSP, Shared CPU Bus, External Cache, External DRAM
Sensors (Key, Light, DVD), Device Network
Interrupt Handler

Software
Motion Video task order: Read->Decode->Post Process->Render->Format->Rotate->Display
Keyless Entry task order: FFT->Spread Spectrum-> AES Encrypt-> FIR->Verify
Light task order: (Triggered by Keyless Entry and the Light Sensor) Activate

User Action
Activate Key Transmitter (Random events)
Switch DVD Player on (Single Event)

Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Modeling and Exploring Complex Applications Page 5 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Statistics
Latency (From Key Transmitter to Door OPEN and Light turned on)
Summary: Device Bus, CPU Bus, SH7750R, Cache, Memory, DSP
Power: SH7750R only

Explorations
The VisualSim model will be used to determine the optimal architecture for the current set of
applications and user behavior. A number of characteristics of the model have been
parameterized- Processor and bus Speed, Cache size and bus width. This allows for easy
exploration. The following model attributes can be modified to perform exploration:

1. Architecture connectivity.
a. Place the cache on a separate bus connected by a bridge.
b. Move the DSP to a separate bus with its own dedicated cache.
c. Add a DMA for doing cache access as opposed to a direct memory access.
d. Add another ECU. This is done by Copy-Paste the existing ECU and modifying

the name. This would replicate the entire processing architecture.
e. Extend the TLM model by adding a cache definition

2. Device network Architecture
a. Replace the shared linear bus with a FlexRay network
b. Combine a CAN and a FlexRay with a gateway between them

3. Software Exploration
a. Transforming a mathematical algorithm into a set of function or task for

concurrent operation, increased parallelism or pipelining
b. Optimizing loops based on processor stalls (for data retrieval) and the time of

execution for each task or loop
c. Determine the statistics for execution time- minimum, maximum and standard

deviation
d. Determine the impact of function and data dependency on execution time

4. Hardware-Software Partitioning
a. Modifying the mapping table for different processors, instruction sequence or

processing time; and running simulation can provide valuable data on
parallelism, concurrency, effect of priority, preemption at the RTOS and the
efficiency of different processors.

b. Move some of the Motion Video tasks from the DSP to the SH4 processor.
c. Vary the rate of user operations for the key transmitter.
d. Make the Motion Video to loop through more multiple frames. This is done by

simply changing the Transaction_Source for the DVD user behavior from
Single_Event to Uniform_Distribution.

e. Perform the load balance across multiple schedulers in the TLM model
f. Load balance all the tasks between two ECUs. To load balance simply use the

function in the Expression Language called “getNextResource”. This determines
the processor with the least task activity and maps the task to this processor.

5. Component selection
a. The SH4 can either have a single internal data cache or a data cache +

scratchpad RAM. Add another cache to the SH4 processor and the FPU blocks.
Make the Cache_Miss for the D-Cache to point to this RAM. The I_Cache Miss
will point to the external Cache.

b. Replace SH4 with ARM9 to compare performance difference between the two
architectures. This requires a change in the Mapping table, change the names of
the instructions in the execution sequence and a new instruction set.

c. The abstract TLM model can be extended to include the effect of cache access.
This is done by connecting a Mapper block to the output of the Scheduler and
referencing another Scheduler to represent the memory.

Modeling and Exploring Complex Applications Page 6 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Model Details:
For a detailed discussion on creating an architecture model in VisualSim, review the Mirabilis
Design Application Note: Designing Processor Platform Using the Architecture Modeling Toolkit.
This document will focus on the modeling of a select components, software and user behavior.
For more details on each generator or the available statistics, refer to the Architecture Toolkit
documentation.

Processor:

The Processor Generator block of VisualSim was used to describe the generic DSP and the
SH7750R processor. The Floating Point Unit (FPU) in the SH4 was made a separate Processor
block that was connected to the Pipeline of the SH4 processor block. The processor was defined
using the following information:

1. List of Execution Units by processor
Processor

 SH4_List IU BPU VPU ; /* All EU listed. Branch and Load-Store Combined */
 IU INT_1 ; /* Integer Unit */
 BPU INT_2 ; /* Branch and Load-Store Unit */
 VPU FP_1 ; /* Floating-Point Unit; Used for routing only */

 Floating-Point Unit
 VPU FP_1 ; /* Single EU. Same as above */
 DSP
 DSP FP_1 ; /* One EU in the DSP. Assumes sequential execution */

2. Instruction set separated by processor and by Execution Unit
Floating Point and DSP alone shown here. Notice the range of cycles for some tasks. This
information is used when modeling the number of cycles consumed.
SH4 FP_1

begin FP_1 ; /* Group */
 FADD 3 4 ; /* Range indicates multiple cycles */
 FCMP 2 4 ;
 FDIV 12 13 ;
 FLOAT 3 4 ;
 FMAC 3 4 ;
 FMUL 3 4 ;
 FSQRT 11 12 ;
 FSUB 3 4 ;
 FTRC 3 4 ;
 DFADD 7 9 ;
 DFCMP 3 5 ;
 DFCNVDS 4 5 ;
 DFCNVSD 3 5 ;
 DFDIV 24 26 ;
 DFLOAT 3 5 ;
 DFMUL 7 9 ;
 DFSQRT 23 25 ;
 DFSUB 7 9 ;
 DFTRC 4 5 ;
 FTRV 7 ;
 GFMOV 1 2 ;
 GFIPR 4 5 ;
 GFRCHG 1 4 ;
 GFTRV 5 8 ;

Modeling and Exploring Complex Applications Page 7 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

end FP_1 ;
DSP FP_1

begin FP_1 ; /* Group */
 FFT 2000 ;
 DECODE 1500 ;
 ROTATE 600 ;
 RENDER 250 ;
 PP 425 ;
 FORMAT 225 ;
end FP_1 ;

3. 4-Stage Pipeline for the SH4 with a call to another pipeline for the FPU
/* First row contains Column Names. */
Stage_Name Execution_Location Action Condition ;
1_PREFETCH I_1 instr none ;
1_PREFETCH D_1 read none ;
2_DECODE I_1 wait none ;
2_REG_READ D_1 wait none ;
3_EXECUTE SH4_List exec none ;
3_EXECUTE CoProc task VPU ; /* Call to External FPU */
4_MA SH4_List wait none ;
4_MA CoProc wait none ;
5_WB D_1 write none ;

4. FPU pipeline
/* First row contains Column Names. */
Stage_Name Execution_Location Action Condition ;
1_EXECUTE VPU exec none ; /* From SH4 */
2_MA VPU wait none ; /* To SH4 */

5. Separate DSP modeled with its own pipeline, resources and instruction set. The DSP

was modeled as a generic component that requires sizing.
/* First row contains Column Names. */
Stage_Name Execution_Location Action Condition ;
1_PREFETCH D_1 read none ;
2_REG_READ D_1 wait none ;
3_EXECUTE DSP exec none ;
4_MA DSP wait none ;

6. Resources and Speed definition
SH4:

/* First row contains Column Names. */
Parameter_Name Parameter_Value ;
Processor_Instruction_Set: SH_InstrSet ;
Number_of_Registers: 16 ;
Processor_Speed_Mhz: 240.0 ;
Context_Switch_Cycles: 100 ; /* This is a hard to find value and was

calculated using the Cache response
value */

Instruction_Queue_Length: 6 ;
Number_of_Pipeline_Stages: 5 ;
Number_of_INT_Execution_Units: 1 ;
Number_of_FP_Execution_Units: 0 ;

DSP

Modeling and Exploring Complex Applications Page 8 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

/* First row contains Column Names. */
Parameter_Name Parameter_Value ;
Processor_Instruction_Set: FP_DSP_InstrSet ;
Number_of_Registers: 2 ;
Processor_Speed_Mhz: 200.0 ;
Context_Switch_Cycles: 100 ;
Instruction_Queue_Length: 3 ;
Number_of_Pipeline_Stages: 4 ;
Number_of_INT_Execution_Units: 0 ;
Number_of_FP_Execution_Units: 1 ;

7. Cache Definition in the processor
SH4
Number_of_Cache_Execution_Units: 2 ; /* Separate cache for Instr and Data */
I_1: {Cache_Speed_Mhz=240.0, Size_KBytes=8.0, Words_per_Cache_Line=16,
Cache_Miss_Name=Cache}
D_1: {Cache_Speed_Mhz=240.0, Size_KBytes=16.0, Words_per_Cache_Line=8,
Cache_Miss_Name=Cache}

DSP
Number_of_Cache_Execution_Units: 1 /* 1 internal cache */ ;
D_1: {Cache_Speed_Mhz=200.0, Size_KBytes=16.0, Words_per_Cache_Line=32,
Cache_Miss_Name=DRAM} /* Next level of memory is SDRAM and not external Cache */

Architecture

The architecture was split into two parts- the Electronic Platform Architecture and the Device
Network. The device network was abstracted to a simpler shared bus network. The devices are
connected to it. The external remote transmitters trigger the devices, which causes transfers on
the Bus. Each sensor arbitrates on the Bus for bandwidth. The outputs from all the Sensors are
sent to the Sensor Interrupt port (Bottom-Left) on the Bus. This is a hardware trigger that causes
a software behavior to fire. This triggers an input Virtual Flow in the Behavior section. This is
identical to a hardware interrupt causing a sequence of instructions to execute. In a real system
this bus network would have been a more complex structure such as a CAN or a FlexRay
network. There are standard VisualSim library elements to define these networks. The Platform
Architecture consists of a shared bus with a SH4, DSP, Cache, DRAM and a Display I/O
connected to it. The Cache and DRAM are defined by modifying the parameters of the generator
in the VisualSim library.

Routing

Each architecture element could have multiple connections to the Bus and to communicate with
network resources. A Routing Table entry is provided to define the specific path from each
source to destination. This table needs to be updated only for those communications that will
occur. All other can be ignored.

/* First row contains Column Names. */
Source_Node Destination_Node Hop Source_Port ;
CoProc Cache CoProc_Port bus_out ;
CoProc DRAM CoProc_Port bus_out ;
SH7750R Cache Proc_Port bus_out ;
SH7750R DRAM Proc_Port bus_out ;
DSP_Unit DRAM DSP_Port bus_out ;

Modeling and Exploring Complex Applications Page 9 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Cache CoProc Cache_Port output ;
Cache SH7750R Cache_Port output ;
DRAM CoProc SDRAM_Port output ;
DRAM SH7750R SDRAM_Port output ;
DRAM DSP_Unit SDRAM_Port output ;
Cache DRAM Cache_Port output ;
DRAM Cache SDRAM_Port output ;
light Sensor_Input Light_Port to_bus ;
Key_Entry Sensor_Input Key_Port to_bus ;
Sensor_Input light Input_Port to_bus ;
Sensor_Input Key_Entry Input_Port to_bus ;

Application Behavior

The behavior can consist of existing or new applications. The blocks in the Behavior flow
represent a single task in the application. For existing application, the source code could be
compiled and used as an instruction sequence. In the case of a new application, a pseudo code
can be constructed and used as an instruction sequence. In both these cases, the list of
sequences will be executed on the processor to get the exact performance.

For new application with limited information, VisualSim provides a unique methodology to model
the tasks for performance analysis. First the user breaks the application down into a sequence of
tasks. Each task in this case is associated with number of time units or cycle count. The flow
diagram will contain dependencies on a prior task, data availability or triggers (interrupts). The
flows define the tasks that are executed in parallel i.e., execute in synchronous time.

The above dependency graph and parallel execution can also be modeling to optimize existing
software functions or pseudo code. The instruction sequence generated form the software
execution is broken into sequence of tasks. Once the dependency and flows are charted on the
Block Diagram Editor, the user can edit the diagram to move tasks to a more parallel flow. The
mapping can also be varied by performing concurrent scheduling and retargeting at a different
platform.

Each task in the flow is described using the Software Mapper block. This block gets the timing,
priority, target processor and instruction sequence information from a Mapper Database. The
database references a text file that contains the information. Refer to the section on mapping to
understand the template for this file.

In the model in Figure 3, there are three applications- Motion Video, Keyless entry and Light. The
Motion Video and Keyless entry are triggered by a user operation. The Light is activated by the
door opening (end of the keyless entry flow) and the light sensor data being available. These two
triggers are the dependencies in the Light flow and triggers the Light function to execute. Each
blue block in the flow for the Behavior represents one task. The DVD or Motion Video flow is
independent of the Keyless entry and light. This uses custom DSP functions and most of the
tasks are executed on the DSP.

The mathematics associated with each tasks can be described using the SmartMachine scripting
language, C/C++ code or using the Expression blocks. The Statement blocks in the behavior
flows are the mathematics for the tasks.

For new algorithms or applications, a standard technique is used in VisualSim to determine the
activity time or clock cycles. This is the most important of the software exploration process. The
initial estimate will be based on the number of instructions and data size required to address the
task algorithm and a band range around it. For example, the # of loops will be a function of the

Modeling and Exploring Complex Applications Page 10 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

data size and the number of frames to be processed. So, if the estimate is 4 cycles per loop,
then the range can be 2-8 cycles. We can further refine this by stating that 50% of the time it is in
this range and 25% of a tail on each side of this range contains one additional cycle. For every
data input, the loop is computed dynamically and the cycle count is provided to the Scheduler to
processor.

Mapping

A mapping table is provided to the model using the Database block. The mapping table along
with the associated list of instructions is show.
Task_Name Task_ID Destination Instruction ;
SST 2 Renesas_Arch.SH7750R {"ADD"} ;
AES 3 Renesas_Arch.SH7750R {"MOV","XOR","MOV","SHLR","SHLR","XOR"} ;
Verify 4 Renesas_Arch.SH7750R {"FADD"} ;
FFT 1 Renesas_Arch.DSP_Unit {"FFT"} ;
Light 5 Renesas_Arch.SH7750R {"ADD,MOV,SHLL"} ;
Read 6 Renesas_Arch.SH7750R {"MOV"} ;
Decode 7 Renesas_Arch.DSP_Unit {"DECODE"} ;
PortProc 8 Renesas_Arch.DSP_Unit {"POSTPROC"} ;
Render 9 Renesas_Arch.DSP_Unit {"RENDER"} ;
Format 10 Renesas_Arch.DSP_Unit {"FORMAT"} ;
Rotate 11 Renesas_Arch.DSP_Unit {"ROTATE"} ;
FIR 12 Renesas_Arch.SH7750R {"ADD","SUB","BF","ADD","SUB","DIV","*BF","MUL"}

The mapping is scheduled using the destination in the Column 3. The execution destination can
be made dynamic for optimal load balancing by using the RegEx function “getNextResource”.
The parameters for this function are the list of possible targets. The table has been currently
setup to target the SH4 and the DSP processors. Add another SH4 or ARM9 to the architecture
and then update this table for the mapping. The instruction in the sequence would have a
different name from the ones for the SH4 when targeting to the ARM9. This is easily created by
performing a “Find and Replace” operation.

User Trigger or Traffic

This is used to trigger the behavior flows. This describes the user actions such as click on the
key transmitter or inserting a DVD into the player and click on “GO”. This is constructed using the
Transaction Generators in VisualSim.

Power Exploration
The Power Manager is the Red block in the model. The Power information was captured for only
the SH4 processor. The rest of the devices in the architecture were omitted for the purpose of
this power study. The other architecture components can be added to the list by entering the
power levels for each component in a separate row. The power information for the SH7750R is
described as follows in the block:
Architecture_Block Standby Active Wait Idle Cycles ;
Renesas_Arch_SH4-7750R 15.0 195.0 39.0 30.0 1 ; /* mWatts */
Power_Manager_Speed: 240 MHz

Analysis and Statistics
In this model, we have generated the summary for the Architecture components such as the Bus,
SH4, DSP, Cache and memory. This was done by connecting a Text Viewer to the output of the

Modeling and Exploring Complex Applications Page 11 of 13 08/15/2006

Architecture Setup block. The latency was calculated for the Keyless action only. This was taken
as the time from the user action to the OPEN command. The Statistics at the bottom right of the
model was triggered using Virtual Connection from the input to the Light action. The Light action
starts immediately after the Keyless entry tasks were completed. The last statistics generated is
the Instantaneous power for the SH4 and the energy discharge rate. This was done by
connecting XY Viewers to the output of the Power Manager block.

A few of the statistics are displayed below:

Figure 4 Timing Diagram of the SH4 Processor Resources

Figure 5 SH4 and Co-Processor utilization

Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Modeling and Exploring Complex Applications Page 12 of 13 08/15/2006

Figure 6 System-Level Instantaneous Power Consumption

Figure 7 Response for from Transmitter to Door Opening

Benefits
The advantages of using VisualSim to address the above issues and also doing it early in the
design cycle is-
1. Customer can minimize the number of platforms being maintained. They can try out different

combinations of use-cases with each platform during development. Hence they can
characterize the platforms by applications with associated performance metrics.

2. Comprehensive testing without having to build each application. There are a number of
applications, use cases and operating conditions that each platform will be used in. It is
impossible to create software for each application, develop a prototype for each case, create
an operating environment for each condition and test all possible conditions. The risk of lower
quality or not operating with the stated performance will be a huge impact on the business,
revenue and profits.

3. Demonstrate the product functionality and performance to customers without building
prototypes. Each customer will require a different platform variation and different

Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

Modeling and Exploring Complex Applications Page 13 of 13 08/15/2006
Mirabilis Design Inc.; www.mirabilisdesign.com; info@mirabilisdesign.com

combination of applications to run on their product. The platform can be used to quickly
create a combination of a platform and a set of application models. The simulation can
demonstrate the functionality and performance. All of this can be accomplished in a few
hours and without requiring that the software be available.

	Modeling Overview and Abstraction
	Explorations
	Model Details:
	Processor:
	Architecture
	Routing
	Application Behavior
	Mapping
	User Trigger or Traffic

	Power Exploration
	Analysis and Statistics
	Benefits

