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Abstract

Wireless is becoming a popular way to connect mo�
bile computers to the Internet and other networks� The
bandwidth of wireless links will probably always be lim�
ited due to properties of the physical medium and regula�
tory limits on the use of frequencies for radio communi�
cation� Therefore� it is necessary for network protocols
to utilize the available bandwidth e�ciently�

Headers of IP packets are growing and the bandwidth
required for transmitting headers is increasing� With the
coming of IPv� the address size increases from � to ��
bytes and the basic IP header increases from �� to ��
bytes� Moreover� most mobility schemes tunnel packets
addressed to mobile hosts by adding an extra IP header
or extra routing information� typically increasing the
size of TCP	IPv� headers to �� bytes and TCP	IPv�
headers to ��� bytes�

In this paper� we provide new header compression
schemes for UDP	IP and TCP	IP protocols� We show
how to reduce the size of UDP	IP headers by an order
of magnitude� down to four to 
ve bytes� Our method
works over simplex links� lossy links� multi�access links�
and supports multicast communication� We also show
how to generalize the most commonly used method for
header compression for TCP	IPv�� developed by Van
Jacobson� to IPv� and multiple IP headers� The result�
ing scheme unfortunately reduces TCP throughput over
lossy links due to unfavorable interaction with TCP�s
congestion control mechanisms� However� by adding two
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simple mechanisms the potential gain from header com�
pression can be realized over lossy wireless networks as
well as point�to�point modem links�

� Introduction
An increasing number of end�systems are being con�

nected to the global communication infrastructure over
relatively low�speed wireless links� This trend is largely
driven by users that carry their computers around and
need a convenient way to connect to the Internet or
other networks� In the core of the global communi�
cation infrastructure� optic �bers provide high speeds�
high reliability and low bit�error rates� But an increas�
ing number of �rst and last hops in the network are
using wireless technology with limited bandwidth� inter�
mittent connectivity� and relatively high bit�error rates�
The TCP�IP protocol suite needs to be augmented to
accommodate this type of link and need mechanisms to
utilize them e�ciently�

In the local area� several commercial wireless LAN
technologies o�er wireless communication at speeds of ��
� Mbit�s� Infrared technologies provide similar speeds�
In the wide area� several cellular phone technologies of�
fers data channels with speeds of a few kbit�s� for exam�
ple the European GSM at 	
�� bit�s and CDPD at �	��
kbit�s� Even though there are plans to increase band�
width� in the foreseeable future it is likely that wireless
bandwidth� especially in the wide area and outside pop�
ulation centers� will be a scarce resource due to proper�
ties of the physical medium and regulatory limitations
on the use of radio frequencies�

Mobile users on wireless networks will want the same
services as they already have when using stationary
computers attached to the wired Internet� Therefore it
is important to utilize the limited bandwidth over wire�
less links e�ciently� However� two trends threaten to
decrease the e�ciency of Internet technology over wire�
less links� The �rst is the coming of the next generation
of the Internet Protocol� IPv
� With IPv
 the address



size increases from � bytes to �
 bytes� and the basic
IP header from �� bytes to �� bytes� In addition� var�
ious extension headers can be added to the basic IPv

header to provide extra routing information� authenti�
cation� etc� IPv
 with its large headers is clearly in�
tended for networks where there is plenty of bandwidth
and packets are large so that the header overhead is
negligible�

The second trend is mobility� There are several
schemes for allowing a host to keep its original IP ad�
dress even though it has moved to a di�erent part of the
network� These schemes usually involve a home agent
in the home subnet to capture packets addressed to the
mobile computer and tunnel them to where the mobile
computer happens to be attached�

Tunneling is done by encapsulating the original
packet with an extra IP header� With one level of en�
capsulation the minimal header of a TCP segment is
��� bytes�� In the latest proposal for Mobile IPv
� the
mobile host can inform its correspondents about its cur�
rent location� This allows correspondents to optimize
the route by not visiting the home network� Correspon�
dents add a one�address routing header to the basic IPv

header� adding �� bytes to the header for a total of �
bytes for a TCP segment� This procedure increases the
header size over the �rst hop� where it would other�
wise be 
� bytes� and decreases it over the last hop�
In the latest proposal for mobile IPv
� all headers are
transferred over the wireless links� While the mobil�
ity protocols are essential for convenient attachment of
mobile computers to the Internet� the large headers are
detrimental when bandwidth is limited�

In this paper we show how large headers of �� bytes
or more can be reduced in size to ��� bytes� The e��
ciency of our scheme is based on there being consecutive
headers belonging to the same packet stream that are
identical or changes seldom during the life of the packet
stream� This allows the upstream node to send a short
index identifying a previously sent header stored as state
in the downstream node instead of sending the complete
header� Header compression has several important ben�
e�ts for the user�

�� When packets contain little data the overhead of
large headers can cause unacceptable delays� For
TELNET� a typical packet contains one byte of
data� The minimum IPv
�TCP header is 
� bytes�
adding an encapsulating IP header for mobility in�
creases the header size to ��� bytes� Transmitting
this header over a 	
�� bit�s GSM link takes �
ms resulting in a round�trip time �for the echoed
character� of at least �
 ms� This results in too
long response times� around ��� ms is acceptable�
and the system will appear sluggish� By reducing

�For IPv�� �� bytes for IPv��

the header to ��� bytes the round�trip time over
the GSM link can be reduced to less than �� ms
which allows for queuing and propagation delays in
the rest of the path�

�� The overhead of large headers can be prohibitive
when many small packets are sent over a link with
limited bandwidth� The acceptable end�to�end de�
lay budget when people talk to each other can be
as low as ��� ms� depending on the situation� The
propagation delay �due to the limited speed of light
in a �ber� is ideally about �� ms across USA and
��� ms to the farthest point in a global network�
Since audio can have a relatively low data rate�
around ����� kbit�s� the time required to �ll a
packet with audio samples is signi�cant� To al�
low for queuing delay and end system processing
it is necessary to use small packets that are �lled
quickly if the delay budget is to be met� How�
ever� sending more packets increase header over�
head� Table � shows the bandwidth consumed
by headers for various headers and times between
packets� Optim means an IPv
�UDP header with

Header bw� kbit�s
Pkt interval � ms �� ms �� ms

IPv��UDP �� ��
 ����
IPv
�UDP �� 	�
 �	��
optim ��� ���� ��
tunnel � ���
 ����
routing ���� ���� ���
compr �� byte ��� �� ��


Table �� Required bandwidth for headers� kbit�s

a one�address routing header� used for example in
Mobile IPv
 route optimization� Tunnel means an
IPv
�UDP header encapsulated in an IPv
 header�
used for example in Mobile IPv
� Routing means
an IPv
�UDP header with a four address routing
header� Compr means the compressed version of
IPv
�UDP� optim� tunnel� or routing� For compar�
ison� the bandwidth needed for the actual audio
samples is somewhere between �� kbit�s for GSM
quality to �� kbit�s for CD quality ���� p� ��	�� So
when tunneling for mobility� at least ���� kbit�s is
required for GSM quality with �� ms between pack�
ets� With header compression this can be reduced
to ���
 kbit�s�

�� TCP bulk transfers over the wide area today typ�
ically use ��� byte segments� With tunneling�
the TCP�IPv
 header is ��� bytes� Reducing the
header to � bytes reduces the overhead from �	��
per cent to less than one per cent� thus reducing the



total time required for the transfer� With smaller
segments or larger headers� the bene�t from header
compression is even more pronounced�

An IPv
 node is required to perform path MTU�

discovery when sending datagrams larger than �	

bytes because datagrams are not fragmented by the
network in IPv
� A node could restrict itself to
never send datagrams larger than �	
 bytes� but
it is likely that most transfers will use larger data�
grams� If datagrams are ���� bytes�� header com�
pression reduces header overhead from ��� per cent
to ��� per cent�

�� Because fewer bits per packet are transmitted with
header compression� the packet loss rate over lossy
links is reduced� This results in higher quality of
service for real�time tra�c and higher throughput
for TCP bulk transfers�

The structure of our paper is as follows� After pro�
viding motivation for header compression for IPv
� we
describe our new soft�state�based header compression
algorithm for UDP�IPv
� with its support for simplex
streams� etc� We then show with simulation results that
the traditional scheme for TCP�IP header compression
does not work well over lossy�links such as wireless�
We suggest additional mechanisms for improving per�
formance on a high loss environment� and show their
viability with simulation results� We then report on
the implementation status of our header compression
scheme and conclude with a section on related work and
a summary�

� Header compression
The key observation that allows e�cient header com�

pression is that in a packet stream� most �elds are iden�
tical in headers of consecutive packets� For example�
�gure � show a UDP�IPv
 header with the �elds ex�
pected to stay the same colored grey� As a �rst ap�
proximation� you may think of a packet stream as all
packets sent from a particular source address and port
to a particular destination address and port using the
same transport protocol�

With this de�nition of packet stream� in �gure � ad�
dresses and port numbers will clearly be the same in all
packets belonging to the same stream� The IP version
is 
 for IPv
 and the Next Hdr �eld will have the value
representing UDP� If the Flow Label �eld is nonzero� the
Prio �eld should by speci�cation not change frequently �
If the Flow Label �eld is zero� it is possible for the Prio
�eld to change frequently� but if it does� the de�nition of
what a packet stream is can be changed slightly so that

�An IPv� routing header containing 	� addresses is 
�	 bytes
long�

�The path MTU is the maximum size of packets transmitted
over the path�

�The maximum size of Ethernet frames is ��� bytes�

Payload Length Hop Limit

Source Address

Destination Address

Checksum

Source Port

Length

Flow LabelPrio

Next Hdr

Vers

IPv6 header followed by UDP header (48 bytes)

Destination Port

Figure �� Unchanging �elds of UDP�IPv� packet�

packets with di�erent values of the Prio �eld belong to
di�erent packet streams� The Hop Limit �eld is initial�
ized to a �xed value at the sender and is decremented
by one by each router forwarding the packet� Because
packets usually follow the same path through the net�
work� the value of the �eld will change only when routes
change�

The Payload length and Length �elds give the size of
the packet in bytes� Those �elds are not really needed
since that information can be deduced from the size of
the link�level frame carrying a packet� provided there is
no padding of that frame�

The only remaining �eld is the UDP checksum� It
covers the payload and the pseudo header� the latter
consisting of the Nxt Hdr �eld� the addresses� the port
numbers and the UDP Length� Because the checksum
�eld is computed from the payload� it will change from
packet to packet�

To compress the headers of a packet stream a com�
pressor sends a packet with a full header� essentially
a regular header establishing an association between
the non�changing �elds of the header and a compres�
sion identi
er� CID� a small unique number also carried
by compressed headers� The full header is stored as
compression state by the decompressor� The CIDs in
compressed headers are used to lookup the appropriate
compression state to use for decompression� In a sense�
all �elds in the compression state is replaced by the CID�
Figure � shows full and compressed headers� The size of
a packet might be optimized for the MTU� of the link�
to avoid increasing the packet size for full headers� the
CID is carried in length �elds� Full UDP headers also

�MaximumTransmissionUnit� maximum size of packets trans�
mitted over the link�



Checksum could be computed from payload and values of
decompressed header, but is always included in the 
compressed header as a safety precaution.

Grey fields of full header stored as compression state.
Generation field ensures correct matching of compressed
and full headers for decompression.

Destination Port

Hop Limit

Source Address

Destination Address

Checksum

Source Port

Flow LabelPrio

Next Hdr

Vers

CID

Unused

Full UDP header with CID and Generation association

ChecksumCID Generat

Generat

Corresponding compressed UDP header (4 bytes)

Figure �� Full and compressed headers�

contain a generation �eld used for detection of obsolete
compression state �see section ���

All �elds in headers can be classi�ed into one of
the following four categories depending on how they
are expected to change between consecutive headers in
a packet stream� �� provides such classi�cations for
IPv
 basic and extension headers� IPv�� TCP� and UDP
headers�

nochange The �eld is not expected to change� Any
change means that a full header must be sent to
update the compression state�

inferredThe �eld contains a value that can be inferred
from other values� for example the size of the frame
carrying the packet� and thus need not be included
in compressed headers�

delta The �eld may change often but usually the dif�
ference from the �eld in the previous header is
small� so that it is cheaper to send the change from
the previous value rather than the current value�
This type of compression is used for �elds in TCP
headers only�

random The �eld is included as�is in compressed
headers� usually because it changes unpredictably�

Because a full header must be sent whenever there is a
change in nochange �elds� it is essential that packets
are grouped into packet streams such that changes occur
seldomly within each packet stream�

The compression method outlined above would work
very well in the ideal case of a lossless link� In the real
world bit�errors will result in lost packets and the loss
of a full header can cause inconsistent compression state
at compressor and decompressor� resulting in incorrect

decompression� expanding headers to be di�erent than
they were before compressing them� A header compres�
sion method needs mechanisms to avoid incorrect de�
compression due to inconsistent compression state and
it needs to update the compression state if it should
become inconsistent� Our scheme use di�erent mecha�
nisms for UDP and TCP� covered in sections � and ��

If header compression would result in signi�cantly
increased loss rates� the gains from the reduced header
size could be less than the reduced throughput due to
loss� All in all� header compression would then decrease
throughput� In the following� we show how this can be
avoided and the potential gain from header compression
can be realized even over lossy links�

� UDP header compression
For UDP packet streams the compressor will send full

headers periodically to refresh the compression state� If
not refreshed� the compression state is garbage collected
away� This is an application of the soft state principle
introduced by Clark ��� and used for example in the
RSVP ��	� resource reservation setup protocol� and the
PIM �
� multicast routing protocol�

The periodic refreshes of soft state provide the fol�
lowing advantages�

� If the �rst full header is lost� the decompressor can
install proper compression state when a refreshing
header arrives� This is also true when there is a
change in a nochange �eld and the resulting full
header is lost�

� When a decompressor is temporarily disconnected
from the compressor� a common situation for wire�
less� it can install proper compression state when
the connection is resumed and a refresh header ar�
rives�



� In multicast groups� periodic refreshes allow new
receivers to install compression state without ex�
plicit communication with the compressor�

� The scheme can be used over simplex links as no
upstream messages are necessary�

��� Header Generations

We do not use incremental encoding of any header
�elds that can be present in the header of a UDP packet�
This means that loss of a compressed header will not in�
validate the compression state� It is only loss of a full
header that would change the compression state that
can result in inconsistent compression state and incor�
rect decompression�

To avoid such incorrect decompression� each version
of the compression state is associated with a generation�
represented by a small number� carried by full head�
ers that install or refresh that compression state and
in headers that were compressed using it� Whenever
the compression state changes� the generation number
is incremented� This allows a decompressor to detect
when its compression state is out of date by comparing
its generation to the generation in compressed headers�
When the compression state is out of date� the decom�
pressor may drop or store packets until a full header
installs proper compression state�

��� Compression Slow�Start

To avoid long periods of packet discard when full
headers are lost� the refresh interval should be short�
To get high compression rates� however� the refresh in�
terval should be long� We use a new mechanism we call
compression slow�start to achieve both these goals� The
compressor starts with a very short interval between full
headers� one packet with a compressed header� when
compression begins and when a header changes� The
refresh interval is then exponentially increased in size
with each refresh until the steady state refresh period
is reached� Figure � illustrates the slow�start mecha�

Change Full headers

Figure �� Compression slow�start after header change� All
refresh headers carry the same generation number�

nism� tall lines represents packets with full headers and
short lines packets with compressed headers� If the �rst
packet is lost� the compression state will be synchro�
nized by the third packet and only a single packet with

a compressed header must be discarded or stored tem�
porarily� If the �rst three packets are lost� two addi�
tional packets must be discarded or stored� etc� We see
that when the full header that updates the compres�
sion state after a change is lost in an error burst of x
packets� at most x � � packets are discarded or stored
temporarily due to obsolete compression state�

With the slow�start mechanism� choosing the inter�
val between header refreshes becomes a tradeo� between
the desired compression rate and how long it is accept�
able to wait before packets start coming through after
joining a multicast group or coming out from a radio
shadow� We propose a time limit of at most � seconds
between full headers and a maximum number of ��

compressed headers between full headers� These limits
are approximately equal when packets are �� ms apart�

��� Soft�state
We are able to get soft state by trading o� some

header compression� A hard�state based scheme does
not send refresh messages and so will get more compres�
sion� The amount of compression lost in our soft state
approach� however� is minimal� Figure � shows the
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Figure �� Average header size� H � ��� C � ��

average header size when full headers of size H are sent
every xth packet� and the others have compressed head�
ers of size C� For comparison� the diagram also shows
the size of the compressed header� The values used for
H and C are typical for UDP�IPv
� It is clear from
�gure � that if the header refresh frequency is increased
past the knee of the curve� the size of the average header
is very close to the size of the compressed header� For
example� if we decide to send ��
 compressed headers
for every full header� roughly corresponding to a full
header every �ve seconds when there are �� ms between
packets� the average header is ��� bits larger than the
compressed header�

Figure � shows the bandwidth e�ciency� i�e�� the frac�
tion of the consumed bandwidth used for actual data�
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The bandwidth e�ciency when all headers are com�
pressed is shown for comparison� The size of the data�
D� is �
 bytes� which corresponds to �� ms of GSM
encoded audio samples�

Figures � and � show that� when operating to the
right of the knee of the curve� the size of the com�
pressed header is more important than how often the
occasional full header is sent due to soft state refreshes
or changes in the header� The cost is slightly higher
than for handshake�based schemes� but we think that
is justi�ed by the ability of our scheme to compress on
simplex links and compress multicast packets on multi�
access links�

��� Error�free compression state

Header compression may cause the error model for
packet streams to change� Without header compression�
a bit�error damages only the packet containing the bit�
error� When header compression is used and bit�errors
occur in a full header� a single error could cause loss of
subsequent packets� This is because the bit�error might
be stored as compression state and when subsequent
headers are expanded using that compression state they
will contain the same bit�error�

If the link�level framing protocol uses a strong check�
sum� this will never happen because frames with bit�
errors will be discarded before reaching the decompres�
sor� However� some framing protocols� for example
SLIP ��
�� lack strong checksums� PPP���� has a strong
checksum if HDLC�like framing ��� is used� but that is
not required�

IPv
 must not be operated over links that can deliver
a signi�cant fraction of corrupted packets� This means
that when IPv
 is run over a lossy wireless link the link
layer must have a strong checksum or error correction�
Thus� the rest of this discussion about how to protect
against bit�errors in the compression state is not ap�
plicable to IPv
� These mechanisms are justi�ed only

when used for protocols where a signi�cant fraction of
corrupted packets can be delivered to the compressor�

It is su�cient for compression state to be installed
properly in the decompressor if one full header is trans�
mitted undamaged over the link� What is needed is
a way to detect bit�errors in full headers� The com�
pressor extends the UDP checksum to cover the whole
full header rather than just the pseudo�header since
the pseudo�header doesn�t cover all the �elds in the IP
header� The decompressor then performs the check�
sum before storing a header as compression state� In
this manner erroneous compression state will not be in�
stalled in the decompressor and no headers will be ex�
panded to contain bit�errors� The decompressor restores
the original UDP checksum before passing the packet up
to IP�

Once the compression state is installed� there will be
no extra packet losses with UDP header compression� If
the decompressor temporarily stores packets for which
it does not have proper compression state and expands
their headers when a matching full header arrives� there
will be no packet loss related to header compression�
The stored packets will be delayed� however� and hard
real�time applications may not be able to utilize them�
although adaptive applications might�

��� Reduced packet loss rate

Header compression reduces the number of bits that
are transmitted over a link� So for a given bit�error rate
the number of transmitted packets containing bit�errors
is reduced by header compression� This implies that
header compression will improve the quality of service
over wireless links with high bit�error rates� especially
when packets are small� so that the header is a signi��
cant fraction of the whole packet�
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Figure 
 shows the packet loss rate as a function of



the bit�error rate of the media with and without header
compression� The packet loss rates for compressed pack�
ets assume that the compression state has been success�
fully installed� Compressed headers� C� are � bytes� full
and regular headers� H� are � bytes �IPv
�UDP�� D is
the size of the payload�

Thus� our header compression scheme for UDP�IP in
addition to decreasing the required header bandwidth�
also reduces the rate of packet loss� The packet loss
rate is decreased in direct proportion to the decrease in
packet size due to header compression� For the �
 byte
payload� the packet loss rate is decreased by ��� and
for the ��� byte payload by ���� With tunneling� the
packet loss rate decreases by 
� and ���� respectively�

If bit�errors occur in bursts whose length is of the
same order as the packet size� there will be little or
no improvement in the packet loss frequency because of
header compression� The numbers above assume uni�
formly distributed bit�errors�

� TCP header compression
The currently used header compression method for

TCP�IPv� is by Jacobson ����� and is known as VJ
header compression� Jacobson carefully analyzes how
the various �elds in the TCP header change between
consecutive packets in a TCP connection� Utilizing
this knowledge� his method can reduce the size of a
TCP�IPv� header to ��
 bytes�

It is straightforward to extend VJ header compres�
sion to TCP�IPv
� It is important to do this since not
only are the base headers in IPv
 larger than IPv�� mul�
tiple headers needed to support Mobile IPv
����� i�e��
routing headers with �
 byte addresses tunneled to the
mobile host� will produce a large overhead on wireless
networks�

��� Compression of TCP header

TCP header (20 bytes)

H Len

Acknowledgment Number

Sequence Number

Source Port

Reserved P SUA R F Window Size

Destination Port

Urgent PointerTCP Checksum

Figure �� TCP header� Grey �elds usually do not change�

Most �elds in the TCP header are transmitted as the
di�erence from the previous header� The changes are
usually by small positive numbers and the di�erence can
be represented using fewer bits than the absolute value�
Di�erences of ����� are represented by one byte and

PIC S A W U

Figure � Flag byte of compressed TCP header�

di�erences of � or ��
�
���� are represented by three
bytes�

A �ag byte� see �gure � encodes the �elds that have
changed� Thus no values need to be transmitted for
�elds that do not change� The S� A� and W bits of
the �ag byte corresponds to the Sequence Number� Ac�
knowledgment Number� and Window Size �elds of the
TCP header� The I bit is associated with an identi�ca�
tion �eld in the IPv� header� encoded in the same way
as the previously mentioned �elds� The U and P bits
in the �ag byte are copies of the U and P �ags in the
TCP header� The Urgent Pointer �eld is transmitted
only when the U bit is set� Finally� the C bit allows the
�bit CID to be compressed away when several consecu�
tive packets belong to the same TCP connection� If the
C bit is zero� the CID is the same as on the previous
packet� The TCP checksum is transmitted unmodi�ed�

VJ header compression recognizes two special cases
that are very common for the data stream of bulk data
transfers and interactive remote login sessions� respec�
tively� Using special encodings of the �ag byte� the re�
sulting compressed header is then four bytes� one byte
for the �ag byte� one byte of the CID� and the two byte
TCP checksum�

��� Updating TCP compression state

VJ header compression uses a di�erential encoding
technique called delta encoding which means that dif�
ferences in the �elds are sent rather than the �elds
themselves� Using delta encoding implies that the com�
pression state stored in the decompressor changes for
each header� When a header is lost� the compression
state of the decompressor is not incremented properly
and the compressor and decompressor will have incon�
sistent state� This is di�erent from UDP where loss of
compressed headers do not make the state inconsistent�
Inconsistent compression state for TCP�IP streams will
result in a situation where sequence numbers and�or
acknowledgment numbers of decompressed headers are
o� by some number k� typically the size of the missing
segment� The TCP receiver �sender� will compute the
TCP checksum which reliably detects such errors and
the segment �acknowledgment� will be discarded by the
TCP receiver �sender��

TCP receivers do not send acknowledgments for dis�
carded segments� and TCP senders do not use discarded
acknowledgments� so the TCP sender will eventually get
a timeout signal and retransmit� The compressor peeks
into TCP segments and acknowledgments and detects



when TCP retransmits� and then sends a full header�
The full header updates the compression state at the
decompressor and subsequent headers are decompressed
correctly�

��� Simulated scenarios

S B M

MBS

10 ms

34 Mbit/s

10 ms

14.4 kbit/s

100 ms
34 Mbit/s 2 Mbit/s

10 ms

Modem topology

WLAN topology

Figure 	� Modem and Wireless LAN WLAN� topologies�
S� Stationary computer� B� Base station or modem server�
M� Mobile� Header compression over the bottleneck link if
done�� TCP connections between S and M� Right link is
lossy�

To investigate the e�ects of header compression in
various scenarios we have used the LBNL Network Sim�
ulator ����� a network simulator based on the REAL
simulator ����� A number of TCP variants are avail�
able� including TCPs that support selective acknowl�
edgments� and it is possible to set up various network
topologies� We have extended the simulator to allow
emulation of VJ header compression� and in this paper
we show simulations over the two topologies in �gure 	�
The Modem topology is meant to mirror a path includ�
ing a low�delay wireless link with ���� kbit�s capacity�
It represents a path including a GSM or CDPD link�
The WLAN topology is meant to mirror a long distance
path where the �rst �or last� hop is over a � Mbit�s
wireless local area network�

In our simulations� the probability that a transmitted
bit is damaged is uniform and independent� This im�
plies that the times between bit�errors are exponentially
distributed�

��� VJ header compression over low�
bandwidth links

VJ header compression works well over connections
where the delay�bandwidth product is small� and con�
sequently the sending window is small� as evident from
�gures �� and ��� The �gures show throughput over the
Modem topology� TCP segments have a payload of ���
bytes and have an extra IPv
 header for tunnelling IP
datagrams from a Home Agent to a mobile host as de�
scribed in the current Mobile IPv
 draft ����� resulting
in a total header of ��� bytes� Compressed headers are
assumed to be � bytes on average� a slightly pessimistic
value for data transfers�

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350 400 450 500

D
e
l
i
v
e
r
e
d
 
s
e
g
m
e
n
t
s

Time (seconds)

"VJ-header-compression"
"without-header-compression"

Figure ��� Number of ��� byte segments delivered across
Modem topology with bit�error rate �� �����

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400 450 500

D
e
l
i
v
e
r
e
d
 
s
e
g
m
e
n
t
s

Time (seconds)

"VJ-header-compression"
"without-header-compression"

Figure ��� Number of ��� byte segments delivered across
Modem topology with bit�error rate �� �����



The curves show performance with and without
header compression� for bit�error rates of ������ ��gure
��� and � � ���� ��gure ���� With the lower bit�error
rate� header compression provides higher throughput
corresponding to the reduced packet size� about �
��
With higher bit�error rates� throughput is better with
header compression than without� VJ header compres�
sion was developed to be used over low�speed links� and
even with relatively high bit�error rates� it performs well
over such links�

In Figure �� the curve for header compression has
several dips� with big dips around ��� and �
� sec�
onds� These are the result of packet losses� With every
loss� acknowledgments stop coming back and the TCP
sender will take a timeout before the retransmit which
repairs the compression state� There is no similar dip
in the curve for no header compression� This is because
TCP�s fast retransmit algorithm is usually able to repair
a single lost segment without having to wait for a time�
out signal� The fast retransmit algorithm occurs when
the TCP sender deduces from a small number of du�
plicate acknowledgments �usually three� that a segment
has been lost� and so retransmits the missing segment�
Which segment is missing can be deduced from the du�
plicate acknowledgments�

Fast retransmit does not work with VJ header com�
pression� A lost data segment causes mismatching com�
pression state between compressor and decompressor�
and subsequent data segments will be discarded by the
TCP receiver� No acknowledgments will be sent until a
retransmission updates the compression state�

In Figure ��� the curve for header compression has
a large dip at ��� seconds� This is because the con�
gestion control mechanisms of TCP are triggered by re�
peated losses and TCP reduces its sending rate� With�
out header compression� fast retransmit is able to repair
lost segments and there are no noticeable dips�

��� VJ header compression over medium�
bandwidth links

With the coming of IPv
 and Mobile IP there is a
need to conserve bandwidth even over medium�speed
links� with bit�rates of a few Mbit�s� Moreover� many
TCP connections will be across large geographic dis�
tances� for example between Europe and USA� and these
paths can have signi�cant delays due to propagation�
queueing� and processing delays in routers� Figure ��
shows the e�ects of VJ header compression on a bulk
transfer in the WLAN scenario with a moderate bit�
error rate on the wireless link� The throughput with
header compression drops signi�cantly� from 
�� kbit�s
to ��� kbit�s or about ����

One reason for the reduced throughput is that the
delay�bandwidth product is much larger in this sce�
nario� The sending window needs to be at least ��
kbytes to �ll the link� With header compression� every
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Figure ��� Delivered ��� byte segments across WLAN
topology with bit�error rate �� �����

lost segment results in losing a timeout interval�s worth
of segments due to inconsistent compression state� A
timeout has to occur before retransmission and update
of the compression state� and the timeout interval is at
least equivalent to a round�trip�s worth of data� i�e�� at
least �� kbyte� With high bit�error rates� this e�ect
alone can severely reduce throughput�

Bit�error rate ���� ���� ����

Without Hdr Comp
Segments btw loss avg� ����� ���� ���
Loss rate ������� ������ �����

With Hdr Comp
Segments btw loss avg� ����� ���� ���
Loss rate incl window� ����� ���� ���

Figure ��� E�ects of Header Compression on loss rate�

The table in �gure �� show some calculations of the
e�ects of packet loss in the WLAN topology when the
sending window is assumed to be constant at �� kbytes�
The segment size is ��� bytes and header compression is
assumed to reduce the header to � bytes� The �� kbyte
window is equivalent to 	 segments� Without header
compression� the fast repair mechanism is assumed to be
able to repair a loss without triggering a timeout� With
header compression� the timeout period is assumed to
be exactly equivalent to the round�trip time of ��� ms�
which is very optimistic�

Another reason for the reduced throughput of �gure
�� is the congestion control mechanisms of TCP� TCP
assumes that every lost segment is due to congestion
and reduces its sending window for each loss� The send�
ing window determines the amount of data that can be



transmitted per round�trip time� so this reduces TCP�s
sending rate� When the congestion signal is a retrans�
mission timeout� the window is reduced more than what
it would be after a fast retransmit� Since header com�
pression disables fast retransmit� the window after a loss
will be smaller with header compression than without�

It is clear that repeated loss of whole sending win�
dows combined with additional backo� from the con�
gestion control mechanisms of TCP can result in bad
performance over lossy links when traditional header
compression is being used�

��� Ideal� lossless TCP header compression
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We saw in section ��� that the packet loss rate is
reduced when headers are smaller� This means that
header compression can result in higher throughput be�
cause TCP�s sending window can grow larger between
losses� If the compression state can be repaired quickly�
header compression will increase throughput for TCP
transfers� as illustrated in Figure ��� The �gure plots
number of delivered segments for two TCP transfers
where the better one experiences �� less packet loss
due to a reduction in header size from ��� bytes to
� bytes� The increase in throughput is about ���
Thus� lossless header compression� i�e�� header compres�
sion where no extra packet loss occurs due to header
compression� increases TCP throughput over lossy links
signi�cantly�

��	 Low�loss TCP header compression and
the twice algorithm

TCP header compression reduces throughput over
lossy links because the compression state is not updated
properly when packets are lost� This disables acknowl�
edgments� and bandwidth is wasted when segments that
were unharmed are retransmitted after a timeout� In
this section we describe mechanisms that speed up up�
dating of the compression state� Achieving totally loss�

less header compression may not be feasible� However�
we will show that two simple mechanisms achieve low�
loss header compression with comparable performance
for bulk data transfers�

A decompressor can detect when its compression
state is inconsistent by using the TCP checksum� If
it fails� the compression state is deemed inconsistent� A
repair can then be attempted by making an educated
guess on the properties of the loss� The decompressor
assumes that the inconsistency is due to a single lost
segment� It then attempts to decompress the received
compressed header again on the assumption that the
lost segment would have incremented the compression
state in the same way as the current segment� In this
manner the delta of the current segment is applied twice
to the compression state� If the checksum succeeds� the
segment is delivered to IP and the compression state is
consistent again�

Figure �
 shows success rates for this simple mech�
anism� called the twice algorithm� The rates were ob�
tained by analyzing packet traces from FTP sessions
downloading a �� Mbyte �le to a machine at Lule�a Uni�
versity� The Long trace is from an ftp site at MIT� the
Medium trace from a site in Finland� and the Short and
LAN traces from a local ftp site� and a machine on the
same Ethernet� respectively� Figure �� lists information
about the traces�

Trace RTT �ms �hops transfer time
Long ��� � ��� �� �
 min
Medium �� � �� 
 � min
Short � � � � � min
LAN � � � � �� sec

Figure ��� Trace information�

The traces contain a number of TCP connections� in�
cluding the control connection of FTP� The data and ac�
knowledgment streams are listed separately� Each seg�
ment in the compressed traces was examined and for
each segment� it was noted whether the twice algorithm
would be able to repair the compression state if that
segment was lost�

The twice algorithm performs very well for data
streams� with success rates close to ���� for the
Medium and Short traces� The Long trace is slightly
worse because congestion losses and retransmissions
cause varying increments in compressed headers� For
the LAN trace� the hard disc was the bottleneck of the
transfer� �	� byte disc blocks were fragmented into
�ve ��
� byte segments� ��
� being the MTU of the
Ethernet� and a remaining segment of 	� bytes� This
explains the 

��� success rate for the data segment
stream� since the twice algorithm fails � times for every




 segments�

Trace Data stream Ack stream
Long �� ����
Medium 	�
 	��
Short 		�� �	��
LAN 

�� ����

Figure �
� Success rates �� for twice algorithm�

For acknowledgment streams� the success rates are
much lower except for the Medium trace� The culprit is
the delayed acknowledgement mechanism of TCP where
the TCP receiver holds on to an ack� usually ��� ms��
before transmitting it� If additional segments arrive
during this time the ack will include those too� For
the Long and Short traces� ����� and 	�� of all ac�
knowledgments had deltas of one or two times the seg�
ment size� respectively� The obvious optimization of
the twice algorithm� to try multiples of the segment size�
would also then reach high success rates for these traces�
The combination of varying segment sizes and the de�
layed ack mechanism explains the low success rate for
the LAN trace� deltas were usually some low multiple
of ��
� plus possibly 	�� The most common deltas
were �	�� and ���� The straightforward optimization
mentioned above would increase the success rate for the
LAN trace to ����

When the twice algorithm fails to repair the com�
pression state for an acknowledgment stream� a whole
window of data will be lost and the TCP sender will
receive a timeout signal and do a slow start� Thus� the
low success rate for acknowledgment streams call for
additional machinery to speed up the repair�

Over a wireless link or LAN� it is highly likely that
the two packet streams constituting a TCP connection
pass through the same nodes on each side� There will
then be a compressor�decompressor pair on each side� A
request for sending a full header can thus be passed from
decompressor to compressor by setting a �ag in the TCP
stream going in the opposite direction� This requires
communication between compressor and decompressor
at both nodes�

When the data segment stream is broken� acknowl�
edgements stop coming back and there is no full header
for inserting a header request� So this mechanism will
not work for data segment streams� One way to resolve
this would be to have the decompressor create and for�
ward a segment containing a single byte that the TCP
receiver has already seen� This will cause the TCP re�
ceiver to send a duplicate acknowledgment in which the
header request can be inserted�

�TCP spec allows ��� ms�

RECEIVER

Acks

data stream

TCP 
full header
Asks for 

old segment

duplicate ack

CompressorDecompressor

Compressor Decompressor

Asks for
header request

Broken

Figure ��� Header request mechanism�

To further improve the situation� the segments re�
ceived while the data stream is broken could be stored
and decompressed later when a retransmission provides
the missing segments� Adding these two mechanisms�
header compression should be practically lossless� How�
ever� the twice algorithm performs well on data streams�
so it is doubtful whether the extra machinery can be jus�
ti�ed� For acknowledgment streams� the request�repair
mechanism works well�

Having implemented the twice algorithm and the full
header request mechanism in the simulator� we ran the
ideal lossless header compression algorithm and the low�
loss header compression algorithms against each other�
Figure � shows a typical result� The two header com�
pression curves grow with similar rates� and they are
both signi�cantly better than the curve without header
compression� Sometimes low�loss header compression is
actually ahead of the ideal lossless header compression�
this is because random e�ects make them experience
slightly di�erent packet losses�
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��
 Performance versus bit�error rate

We ran a series of simulations on the WLAN topol�
ogy where the bit�error rate varied from ���� �on av�
erage� one segment in � is lost� to ���� �on average�
one segment in ��� ��� is lost�� Figure �	 shows the



results for various header compression algorithms� For
reference� the performance without header compression
is also shown�
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Figure �	� Delivered ��� byte segments over WLAN topol�
ogy in ��� seconds for di�erent header compression algo�
rithms and di�erent bit�error rates�

We see that the low�loss header compression algo�
rithms perform well for all bit�error rates� They beat
VJ header compression when the bit�error rate is low�
and are better than no header compression when the
bit�error rate is high� In particular� for bit�error rates
around �� ����� low�loss header compression performs
signi�cantly better than both of VJ header compression
and no header compression�

The curves for the twice algorithm and the twice al�
gorithm plus header request are so similar that they can�
not be distinguished� which implies that the header re�
quest mechanism is not needed when the bit�error prob�
ability is uniform and independent� Moreover� the curve
for ideal lossless header compression is almost indistin�
guishable from the low�loss curves� This suggests that
it is not possible to improve the low�loss mechanisms
signi�cantly�

� Related work and discussion
The �rst work on header compression by Jacobson

resulted in the now familiar VJ header compression
method ����� widely used in the Internet today� VJ
header compression can compress TCP�IPv� headers
only� UDP headers are not compressed by his method�
Most real�time tra�c in the Internet today uses UDP�
so there is a need for compression mechanisms for UDP�

Mathur et al ���� has de�ned a header compression
method for IPX� that can be adapted to UDP� In their
scheme� compressor and decompressor perform a hand�
shake after each full header� Thus� the scheme in ����
cannot be used over simplex links� and the ack implosion
problem makes it hard to adapt for multicast communi�
cation� The cost of our scheme compared to handshake�

based schemes is slightly higher in terms of bandwidth�
but the ability to use it for multicast and over simplex
links justi�es this cost�

With the coming of IPv
 and Mobile IP� there is a
need to preserve bandwidth over medium�speed lossy
links� For bulk transfers� VJ header compression per�
forms badly over such links� and using it actually re�
duces throughput� Although the link is less utilized and
more users can be served when there is less overhead�
most users will not accept decreased performance� We
have shown that with extra mechanisms for quick re�
pair of compression state� header compression can in�
crease TCP throughput signi�cantly over lossy links�
This is largely due to the reduced packet loss rate that
allows TCP to increase its sending window more be�
tween losses�

A number of researchers have worked with increasing
TCP throughput over lossy wireless links� One exam�
ple is the Berkeley snoop protocol ���� which augments
TCP by inserting a booster protocol �	� over the wire�
less link� The booster protocol stores segments tem�
porarily� snoops into segments and acknowledgments to
detect what segments are lost� and performs local re�
transmissions over the wireless link� This helps increase
the performance of TCP because the congestion control
mechanisms of TCP are less likely to be triggered and
the sending window can open up more than with a stan�
dard TCP� The performance of such boosters would be
severely reduced if traditional VJ header compression
was used because there would be no acknowledgments
after a loss�

With low�loss header compression� the throughput
with booster protocols should increase� The lower
packet loss rate is bene�cial because fewer segments
need to be retransmitted� and if the booster manages to
�ll the link to capacity� the reduced header size promises
a performance increase of around ��� for IPv
 and Mo�
bile IP headers� Moreover� booster protocols such as in
��� can bene�t from the decompressor�s detailed knowl�
edge of when packet losses has occurred� It would make
sense to have the decompressor inform the booster pro�
tocol of when losses occur� and have the booster tell the
compressor when to send a full header�

The twice algorithm seemed to perform badly for the
LAN trace� with success rates of 

� for the data stream
and ��� for the acknowledgment stream� The bottle�
neck� however� was the disc� TCP ran out of data and
had to send a smaller segment at the end of each disc
block� It is unlikely that this situation will occur on a
medium�speed wireless LAN� where the bottleneck of a
data transfer is more likely to be in the network than
the hard disc�

We have used uniformlydistributed bit�error frequen�
cies in our simulations� This implies that most packet
losses are for single packets� It is not clear that this is



a good model for a wireless LAN� Two recent studies
of the AT�T WaveLAN ��� ��� have come to slightly
di�erent conclusions� ���� found that withing a room�
packet losses does not occur in groups and are uniformly
distributed� For longer distances between rooms packet
loss occur in groups of ��� packets�� The other study ���
also found that within a room� losses are uniform and
for single packets� This was also true between rooms�
Moreover� this latter study found a much lower corre�
lation between distance and loss rate than the previous
study�

If it is true that most packet losses occur in groups
of one to three packets� the twice mechanism should be
extended to be able to repair one to three lost pack�
ets� The compressor can keep track of the consecutive
changes to the TCP header and send an occasional full
header to ensure that the TCP checksum will detect all
inconsistent decompression resulting from such loss�

If packet losses occur in long groups� the twice algo�
rithm will fail and the compression state is not repaired�
However� the header request mechanism and sending an
empty data segment to ensure that the TCP receiver
sends an acknowledgment should improve the situation
considerably� Temporary storing data segments that
cannot be decompressed for later decompression may
or may not be justi�ed� this is a topic for further study�

� Implementation status
We have a prototype implementation where UDP is

used as the link layer� A modi�ed tcpdump allows us to
capture real packet traces and feed them into the pro�
totype for compression and decompression� Processing
times for the prototype are listed in �gure ��� Times
were measured using gettimeofday�� on a SUN Sparc�
�� Little time has been spent optimizing the code of
the prototype� it is likely that the reported times can
be improved�

Header Compressor Decompressor
avg extremes avg extremes

regular �� ��� �� � 
� 
full �� ��� �� �
 ��� ��
compr �� ��� �	 �� ��� �	

Figure ��� Processing times� microseconds�

The reason for the large variation in the processing
times for compression is that the compressor must �nd
the appropriate compression state before compressing�
The implementation performs a linear search over the
compression state of active CIDs� and the processing
time includes this linear search�

�In this study� ��� byte packets were used�

Header compression processing time is low compared
to header transmission time� For example� on a � Mbit�s
link it takes ��� �s to transmit one bit� Total process�
ing time for a compressed header is �� � �� � 
� �s�
which is equivalent to ���� bytes� Since a TCP�IPv

header is reduced by about �� bytes with header com�
pression� compressed segments will be delivered sooner
with header compression than without�

We are currently implementing IPv
 header compres�
sion in the NetBSD kernel� and are planning a Streams
module for Sun Microsystems� Inc�� Solaris operating
system� A current Internet Draft �� speci�es the de�
tails of IPv
 header compression�

� Conclusion
The large headers of IPv
 and Mobile IP threaten

to reduce the applicability of Internet technology over
low� and medium�speed links� Some delay sensitive ap�
plications need to use small packets� for instance remote
login and real�time audio applications� and the overhead
of large headers on small packets can be prohibitive�

A natural way to alleviate the problem is to com�
press headers� We have shown how to compress UDP�IP
headers� resulting in improved bandwidth e�ciency and
reduced packet loss rates over lossy wireless links� Our
method� based on soft state and periodic header re�
freshes� can be used over simplex links and for multicast
communication� A new mechanism� Compression Slow�
Start� allows quick installation of compression state and
high compression rates�

Since header compression reduces the packet loss
rate� using header compression for TCP improves
throughput over lossy wireless links� With longer times
between packet losses� the TCP sending window can
open up more because the congestion control mecha�
nisms are not invoked as often� However� the compres�
sion state used by the decompressor must be repaired
quickly after a loss� and we present two mechanisms
for quick repair of compression state� One mechanism
extrapolates what the compression state is likely to be
after a loss is detected� Analysis of packet traces show
that this method is very e�cient� The other mechanism
requests a header refresh by utilizing the TCP stream
going in the opposite direction�

Simulations show that the resulting low�loss header
compression method is better than VJ header compres�
sion and better than not doing header compression at
all� for bit�error rates from ���� to ����� Low�loss
header compression is a win� for delay�sensitive applica�
tions as well as bulk data transfers�
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