
6/3/2008

Distributed System
Exploration

Mirabilis Design Inc.

6/3/2008 Mirabilis Design© Inc. Confidential Slide 2

Design Analysis 2:
Distributed System

System details
• Multi-independent processing computers
• Software tasks distributed across these computers
• Connectivity across multiple shared networks

Analysis
• Optimal Routing Table configuration
• Capacity planning
• Software tasks and thread distribution
• Resource allocation

6/3/2008 Mirabilis Design© Inc. Confidential Slide 3

Example 2: Distributed System
Logical Task Flow

T1 T4

T3

T2
M1 M2

M3
M4

Initial Assignment
List of Tasks: T1, T2, T3, T4
T1, T2 -> ECU_1
T3 -> ECU_2
T4 -> ECU_3
Messages: M1, M2, M3, M4

6/3/2008 Mirabilis Design© Inc. Confidential Slide 4

Example 2: Distributed System
uP-Computer/Bus Physical Mapping

CAN_1

ECU_1 ECU_2

Bridge_1

Bridge_2

Bridge_4

ECU_3

CAN_2

CAN_4

CAN_3

Message Assignment
•Messages: M1, M2, M3, M4
• Internal to ECU, if Source ECU == Destination ECU
•CAN_N bus segments selection based on Source:Destination of Task,
•Routing is selected for shortest hops
•Dynamic allocation based on topology selection
•An ECU is the equivalent of a core, processor or computer.

6/3/2008 Mirabilis Design© Inc. Confidential Slide 5

End-to-End Latency

• T1 writes latest S1(time) when task executes.
• M1 reads T1(time) via Middleware Buffer when it periodically executes, sends

packet through Bus structure.
• T2 reads M1(time) from buffer when it fires via Middleware Buffer, and if the last

node, outputs end-to-end latency.

T1 T2
M1

S SS S

Wr WrRdRd

Signals

S S

WrRd

6/3/2008 Mirabilis Design© Inc. Confidential Slide 6

6/3/2008 Mirabilis Design© Inc. Confidential Slide 7

Signal Table

Note: Destinations can be Tasks, or Messages

6/3/2008 Mirabilis Design© Inc. Confidential Slide 8

Task/Message Table

Note: Read_Buffer, Write_Buffer columns can designate Tasks or Messages

6/3/2008 Mirabilis Design© Inc. Confidential Slide 9

Routing Table

Note: Simple Source, Destination, Hop format

6/3/2008 Mirabilis Design© Inc. Confidential Slide 10

Discovery Process
Discover Logical Path: M1 Source: T1 Destination: T2
Discover Physical Path: M1 Source: ECU_1 Destination: ECU_1

First Hop Array:
{"NONE"}

No Further Processing Required...

Discover Logical Path: M2 Source: T2 Destination: T4
Discover Physical Path: M2 Source: ECU_1 Destination: ECU_3

First Hop Array:
{"CAN_1"}

Second Hop Array:
{"CAN_2", "CAN_4"}

Third Hop Array:
{"CAN_3"}

Fourth Hop Array:
{"NONE"}

Final Hop Array:
{{"CAN_1", "CAN_2", "CAN_3"}
, {"CAN_1", "CAN_4", "CAN_3"}
}

Discover Logical Path: M3 Source: T1 Destination: T3
Discover Physical Path: M3 Source: ECU_1 Destination: ECU_2

First Hop Array:
{"CAN_1"}

No Further Processing Required...

Final Hop Array:
{{"CAN_1"}
}

Discover Logical Path: M4 Source: T2 Destination: T3
Discover Physical Path: M4 Source: ECU_1 Destination: ECU_2

First Hop Array:
{"CAN_1"}

No Further Processing Required...

Final Hop Array:
{{"CAN_1"}
}

6/3/2008 Mirabilis Design© Inc. Confidential Slide 11

End-to-End Delay
End-to-End Delay is composed of the following
elements:
• Task – Signal or Message (Signal) Middleware Buffer,

Periodic Task time, ECU Execution time
• Message – Task Middleware Buffer, Periodic Message time,

Bus(n) Transfer time
ECU Execution time:
• Time due to arbitration/queueing, due to processing

Bus Transfer time:
• Time due to arbitration/queueing, due to transfer for each

Bus segment in a path.

Note: Receive Interrupt, or Polling can be added

6/3/2008 Mirabilis Design© Inc. Confidential Slide 12

End-to-End Delay Equation

iorityHighertodueBlockingTimeXmitMessageiMsg
MessageofDelaySamplingiMsg

iorityHighertodueBlockingTimeExecTaskiTask
SoftwarenApplicatioofDelaySamplingiTask

where

iMsgiMsgiTaskiTaskLatency

Xmit

Sample

Exec

Sample

XmitSampleExecSample

Pr______)1(
___)1(

Pr______)(
____)(

)1()1()()(

+Σ=+
=+

+=
=

+++++=

6/3/2008 Mirabilis Design© Inc. Confidential Slide 13

End-to-End Delay Histogram

6/3/2008 Mirabilis Design© Inc. Confidential Slide 14

Task, Message Execution

6/3/2008 Mirabilis Design© Inc. Confidential Slide 15

Model Assumptions
Each Task will execute periodically for a specified time on an
ECU, read from Middleware Buffers, or write a Signals from a
prior Task from Middleware Buffers, desinated in a Table.
• Columns: Read_Buffer Write_Buffer

Each Message will execute periodically for a specified time,
read from Middleware Buffers and send via Buses to a distant
Middleware Buffer.
• Same Columns: Read_Buffer Write_Buffer

If a Task accepts two Middleware Buffers, each will be retained
in an array to maintain proper end-to-end latency, or follow-on
processing.

6/3/2008 Mirabilis Design© Inc. Confidential Slide 16

Model Assumptions (cont)
Deployment of Tasks to ECUs and Messages to Buses
• Discovery process is flexible enough to allow the specification of the

mapping of tasks (t1, t2, t3, t4) to ECUs and the automatic
determination of the mapping of messages (m1, m2, m3, m4) to
buses.

• User can map Tasks to ECUs in a table format.
After Task completes, it will pass the transmit message, or
receive message, through bus segments to continue the
process, unless destination is “NONE”.
Model will select M1, M2, M3… paths during initialization of
model and insert the shortest path into database memory for

each Task.

6/3/2008 Mirabilis Design© Inc. Confidential Slide 17

Model Advantages
A Table-Driven model should scale simply by modifying the table
entries.
A Table-Driven model should allow entry of physical mapping, or
routing, from existing sources, some pre-processing to get into source,
destination, hop format.
User can allocate Signals, Messages, Tasks, to perform What-If
scenarios.
• A single Script-based block can support 32 independent periodic

signals, tasks, or messages currently, and Mirabilis can provide 64
or 128 per block.

• One Table might be created and allocated to different tables in a
model.

Additional Task logic could be added, either in script form, block style,
or C code.
Data structure fields can capture the internal flow with variable length
arrays containing physical names in one array and timestamps in a
double array.

	Distributed System Exploration
	Distributed System
	Logical Task Flow
	uP-Computer/Bus Physical Mapping
	End-to-End Latency
	Signal Table
	Task/Message Table
	Routing Table
	Discovery Process
	End-to-End Delay
	End-to-End Delay Equation
	End-to-End Delay Histogram
	Task, Message Execution
	Model Assumptions
	Model Assumptions (cont)
	Model Advantages

