
Evaluation of Application-Specific Multiprocessor Mobile System

Abu Asaduzzaman & Imad Mahgoub
Department of Computer Science & Engineering

Florida Atlantic University
777 Glades Road, Boca Raton, Florida 33431, USA

Abu/MCLab: (561) 297-2802 & Imad/Office: (561) 297-3458
aasaduzz@fau.edu & imad@cse.fau.edu

Keywords
Application specific systems, MPEG4,

multiprocessors, cache size, performance evaluation

ABSTRACT

The popularity of application-specific computing
systems is on the rise and many systems have been
developed in fields such as multimedia, high-speed
networks, information systems, signal and image
processing. Real-time application-specific systems are
more complex and require more time to develop. In this
paper, we explore the architecture of a multiprocessor
mobile system running MPEG4 application. We develop a
simulation program using VisualSim to evaluate the
system performance in terms of utilization, delay, and total
number of transactions processed by the different system
components for various cache sizes and task rates.

1. INTRODUCTION

A large number of computing devices are built
every year for different purposes. Examples include
cellular phones, video conferencing systems, home security
systems, digital cameras, and portable media players
(PMP). Any one of these systems normally executes a
specific program repeatedly and can therefore be called
application specific system. Most of these systems are
normally embedded within larger electronic devices and
suitable for mobile environment. For time critical
applications, these systems must react to system changes
and must compute certain results in real time [1].

Design metrics of application-specific mobile
systems include performance (such as utilization, delay,
and transaction), power, cost, time-to-market, and safety
[1, 2]. Key components for such a system include hardware
– CPU, memory, bus, cache, and software – operating
system (OS) and application as shown in Figure 2. The
application is broken into tasks and given to different
processors. A processor is designed to perform the specific
task assigned to it. For example, CPU-1 runs on any open
OS, has only first level cache (CL1), and performs Task-1.
On the other hand, CPU-N needs second level cache
(CL2), third level cache (CL2), and real time operating

system (RTOS) to perform Task-N. All CPUs share
memory through single shared bus.

Figure 1: A shared bus multi-processor architecture

CPU is always faster than main memory [Figure 2
(a)]. In this example, CPU wastes at least 3 cycles if it
needs something from main memory. A small, fast, and

Figure 2. (a) CPU, main memory, and bus; (b) Processor
cache; (c) Data transfer between CPU and cache and

between cache and main memory

SPECTS '04 751 ISBN: 1-56555-284-9

mailto:imad@cse.fau.edu
mailto:aasaduzz@fau.edu

expensive memory, called cache, is used between CPU and
main memory to improve performance by reducing the
data access time as shown is Figure 2 (b). Data between
CPU and cache is transferred as data object and between
cache and main memory as block as shown in Figure 2 (c).
In our simulation, we assume a block size to be equal to a
frame size

It is a difficult challenge to implement an
application-specific system that fulfills desired
functionality, and at the same time optimize various design
metrics. The difficulty is increased by the time-to-market
pressure. The average time-to-market is only 8 months for
contemporary application-specific mobile devices. Delayed
entry to market causes serious negative effect on revenues.
For example, for a lifetime of 52 weeks, a delay of 4 weeks
results in a revenue loss of 22% and a delay of 10 weeks
results in a loss of 50% [1, 3].

Simulation helps avoid delayed entry of products
to the market and improves efficiency and productivity [4].
In this work, we focus on architecture exploration of an
application-specific mobile system by evaluating the
system performance via simulation.

This paper is organized as follows: Section 2
presents the architecture we used for our simulation. In
Section 3, we explain the application to be supported by
this proposed architecture. Simulation analysis is done in
Section 4. In Section 5, we discuss the simulation results.
Finally, we conclude our work in Section 6. At the end,
VisualSim simulation block diagram and simulation
cockpit is attached as Appendix A.

2. ARCHITECTURE
2.1 Simulated Architecture

Our focus is on architecture exploration of
application-specific multiprocessor mobile system by
evaluating the system performance via simulation. We
simulate a simplified architecture with two processors as
shown in Figure 3. This architecture is designed to support
video communication applications. In this particular case,
two processors are considered. Digital signal processor
(DSP) decodes the encoded video streams and application
processor (AP) plays it back. Both DSP and AP have first
level caches (CL1). We are interested to investigate the
impacts of various CL1 sizes on system performance. DSP,
also, has its local memory that works as a buffer. DSP and
AP use inter-processor communication (IPC) with a
register-based messaging unit (MU) and a shared memory
system. Here, main memory is being shared by DSP and
AP and they are connected via a shared bus.

Figure 3: Simulated architecture of application specific
multiprocessor mobile systems

DSP writes the decoded video streams into the

main memory and sends a message to AP. AP reads the
video streams and plays them back. For simplicity, we
consider DSP dedicated memory and shared main memory
are unlimited in size. For larger memory, delay associated
with memory read and write can be ignored [5].

2.2 Processors

Our architecture consists of two processors. We
use digital signal processor (DSP) to indicate a
microprocessor specifically designed to perform digital
signal processing and application processor (AP) to
indicate a microprocessor specifically designed to perform
application processing.

2.3 Caches
 In our architecture, both DSP and AP processor
have first level caches (CL1). Cache sizes of 32 KB, 64
KB, and 128 MB already have been used. We vary CL1
sizes from 384 KB to 1024 KB to see the overall system
performance.

2.4 Memory
 DSP, in our architecture, has a dedicated local
memory which functions as a buffer. DSP may perform
read from and write into this local memory. Main memory
is shared by both DSP and AP. However, DSP only writes

SPECTS '04 752 ISBN: 1-56555-284-9

into main memory and AP only reads from it. Both
memory sizes are considered unlimited for the sake of
simplicity.

2.5 Buses
 We use a dedicated bus to connect DSP and its
local memory and a shared bus to connect DSP, main
memory, and AP. For simplicity, we consider similar
properties (such as speed and queue size) for both buses.

3. APPLICATIONS
3.1 Video Communications

We consider video communication applications
like video conferencing. At its most basic level,
compression is performed when an input video stream is
analyzed and information that is less significant to the
viewer is discarded. Each event is then assigned a code -
commonly occurring events are assigned few bits and rare
events will have more bits. The transmitter encodes and
transmits the encoded video streams, the receiver decodes
the encoded video streams and play them back as shown in
Figure 4.

Figure 4: Video communications

Video compression standards include Motion
Picture Experts Group 1 (MPEG-1) (up to 1.5 Mbits/sec,
CD-ROM video applications), MPEG-2 (between 1.5 and
15 Mbits/sec, digital television applications), MPEG-4
(multimedia and web applications). We use Common
Intermediate Format (CIF YUV 4:2:0, 30 fps) in our
simulation [6].

We consider MPEG4 application. Specifically, the
video file is formatted with Common Intermediate Format
(CIF), YUV 4:2:0, width 352 pixels, height 288 lines, and
30 frames per wall-clock second. All three pictures types,
namely intra-coded (I frame), predictive picture (P frame),
and bi-directionally predictive picture (B frame), are
considered. For our simulation we use a group of picture
(GOP) that has 7 picture frames as shown in Figure 5.

Figure 5: Sample MPEG4 picture frames

I frame (frame 1) is intra coded, that means, it
does not have any predictive coding. As a result, random
access is supported for I frame. Frame 4 (P) is predicted
from 1 (I). Frames 2 (B) and 3 (B) are predicted from 1
(previous I frame) and frame 4 (next P frame). Frame 4 (P)
is decoded before 2 (B) and 3 (B). Frame 4 (P) is predicted
from 1(I) and frame 7 (P) is predicted from 4 (P). Frames 5
(B) and 6 (B) are predicted from 4 (P) and 7 (P).

P frames can be decoded from previous I (or P)
frame. Both previous I (or P) and next P frames are needed
to decode any B frame. It is important that for a GOP the
encoding, transmission, and decoding order is the same.
The playback order is in the natural sequence (1, 2, 3, 4,)
and different from decoding order.

Decoding order of the frames = 1, 4, 2, 3, 7, 5, 6

Playback order = 1, 2, 3, 4, 5, 6, 7

Structure (at the encoder) is usually specified

using two parameters, M and N. An I frame is decoded
every N frames and a P frame every M frames, the rest are
B frames. In the simulation, we select N = 7 and M = 3 (as
shown in Figure 5) with the consideration that the
prediction error does not exceed a certain threshold [7].

3.2 Representative Workload
 The workload defines all possible scenarios and
environmental conditions that the system-under-study will
be operating under [4, 8, 9]. The quality of the workload
used in the simulation is important for the accuracy and
completeness of the simulation results. In our simulation,
we use cache hit ratio and miss ratio to model the system.
The hit ratio and miss ratio are calculated based on a
decoded trace file of an MPEG4 application. The decoded
trace file we generate using the Microsoft MPEG-4 Video
Reference Software does not have memory references
available to be used. Hence, for this study, we stay on the

SPECTS '04 753 ISBN: 1-56555-284-9

conservative side by assuming that the data transfer rate
between CPU and cache is in frames. As an extension for
this work, we plan to generate the memory references by
using the Microsoft MPEG-4 Video Reference Software.

For DSP, the hit ratio and miss ratio are calculated

based on the cache sizes and the MPEG4 decoding
algorithm. Cache size is finite and fixed for a specific
architecture. Frame size is also finite and fixed for a
specific algorithm. When DSP decodes a P frame, it looks
for I frame into the cache. If cache has that I frame then it
is considered a hit. If cache is big enough to fit 2 frames at
the same time, then it will always be a hit to decode a P
frame. To decode a B frame is different. In the case of a B
frame, if cache can fit only two frames, then there will be
at least one miss. But if cache is big enough to fit 3 or
more frames, then B frame can be decoded from cache.
Also, it is assumed that the reference information in both P
and B frames result in negligible misses.

The AP cache is assumed to use a pre-fetching
scheme that in the event of a miss will pre-fetch the
maximum number of frames that the cache can fit. So, if
the AP cache size is N, then there is one miss per N frames
and the hit ratio is (N-1)/N and the miss ratio is 1/N.

Total number of bytes (B) in a MPEG4 CIF YUV
4:2:0 encoded file is N*3*width*height/2. Here N is the
total number of frames. So, for CIF YUV 4:2:0 352 pixels
by 288 lines encoded video stream,

Frame Size = 3*352*288/2 bytes � 152 KB

Hits and misses are shown in Table 1 – 6.

Table 1: DSP cache hit/miss for cache size of 384 KB.
Cache can hold 2 frames at most (384/152 � 2).

Frame seq. number 1 4 2 3 7 5 6
Decoding order I P B B P B B
Hit or Miss (H/M) M H M M H M M

So, DSP cache hit ratio = 2/7 � 28.0% and miss
ratio = 5/7 � 72.0%

Table 2: AP cache hit/miss for cache size of 512 KB.
Cache can hold (384/152 � 2) i.e., 2 frames at most.

Frame seq. number 1 2 3 4 5 6 7
Playback order I B B P B B P
Hit or Miss (H/M) M H M H M H …

For large number of frames, 1 miss per 2 frames.
So, hit ratio = 1/2 = 50.0% and miss ratio = 1/2 = 50.0%

Table 3: DSP cache hit/miss for cache size of 512 KB.
Cache can hold 3 frames at most (512/152 � 3).

Frame seq. number 1 4 2 3 7 5 6
Decoding order I P B B P B B
Hit or Miss (h/m) M H H H H H H

So, DSP cache hit ratio = 6/7 � 86.0% and miss
ratio = 1/7 � 14.0%

Table 4: AP cache hit/miss for cache size of 512 KB.
Cache can hold 3 frames at most (512/152 � 3).

Frame seq. number 1 2 3 4 5 6 7
Playback order I B B P B B P
Hit (h) or Miss (m) M H H M H H …

For large number of frames, 1 miss per 3 frames.
So, hit ratio = 2/3 � 67.0% and miss ratio = 1/3 � 33.0%

Table 5: DSP cache hit/miss for cache size of 1024 KB.
Cache can hold 6 frames at most (1024/152 � 6).

Frame seq. number 1 4 2 3 7 5 6
Decoding order I P B B P B B
Hit or Miss (h/m) M H H H H H H

So, DSP cache hit ratio = 6/7 � 86.0% and miss
ratio = 1/7 � 14.0%

Table 6: AP cache hit/miss for cache size of 1024 KB.
Cache can hold 6 frames at most (1024/152 � 6).

Frame seq. number 1 2 3 4 5 6 7
Playback order I B B P B B P
Hit (h) or Miss (m) M H H H H H …

For large number of frames, 1 miss per 6 frames.
So, hit ratio = 5/6 � 84.0% and miss ratio = 1/6 � 16.0%

Table 7 summarizes the hit ratio and miss ratio of
different CL1 sizes for both DSP and AP.

Table 7: Hit ratio and miss ratio for DSP and AP caches.

Cache
size

(KB)

Max. Frames
the cache
can hold

DSP
Hit Miss
(%) (%)

AP
Hit Miss
(%) (%)

384 2 28 72 50 50
512 3 86 14 67 33

1024 6 86 14 84 16

SPECTS '04 754 ISBN: 1-56555-284-9

As shown in Table 7, DSP does not take
significant advantage of increasing cache size from 512
KB to 1024 KB, so the hit ratio and miss ratio remain
unchanged. But AP cache hit ratio increases from 67 to 84.
This is because to decode a B frame, DSP may need access
to at most 2 other frames (previous I (or P) frame and next
P frame). So having more than 3 frames into the cache
does not improve hit ratio over having exactly 3 frames
into the cache.

4. SIMULATION
4.1 Assumptions
 The following assumptions are made for the
simulation model.

1. Even though AP runs under general purpose
operating system, it is capable of handling the
traffic in sync with DSP (runs under real-time
operating system).

2. Sizes of both DSP local memory (buffer) and
shared main memory are unlimited. That means,
there is no delay involved with the actions of
reading from buffer, writing into main memory,
and reading from main memory.

3. Data transfer between CPU and cache is in frames
and cache block size is equal to a frame size.

4. DSP and AP use IPC/MU to communicate with
each other without any delay.

5. CIF YUV 4:2:0 formatted (352 pixels by 288
lines, 30 fps) video stream file has been used as a
representative MPEG4 application.

4.2 Performance Metrics

We measure the following three performance
metrics – utilization, mean delay, and transactions.

Utilization: The CPU utilization is defined as the

ratio of the time that CPU spent computing to the time that
CPU spent transferring bits and performing un-tarring and
tarring functions [1, 4]. The CPU utilization ranges from
0% to 100%, in real system from 40% (lightly loaded) to
90% (heavily loaded). As a rule of thumb, a utilization of
50% is considered acceptable [10].

Mean delay: Mean delay is the average delay of
all the tasks. Delay (or latency) is the time between the
start of execution of a task and the end. Delay is measured
in terms of simulation time units [1, 4, 10].

Transactions: Total number of transactions

processed is the total number of tasks performed (entered
and existed) by a component [1, 4].

4.3 Input Parameters
We vary the following parameters as input to the

simulation model – cache size and task rate.

Task rate is the total number of tasks completed

per simulation time unit. Task time is the time that one task
needs to be processed. Considering 30 frames per wall-
clock second playback speed, one frame should take 1/30
wall-clock second. Table 8 lists all the parameters used in
the simulation.

Table 8: System parameters

Number of processors 2
Simulation time 10000.0 simulation time units
Task time 10.0 simulation time units
Task rate Task time * (1.0 to 0.2)
CPU time Task time * 0.6
Memory time Task time * 0.4
Bus time Memory time * 0.4
Cache time Memory time * 0.6
Cache sizes 384 to 1024 KB
Cache hit ratio 28% to 86%
Bus queue length 300
Block size = frame size 152 KB

To increase comparison visibility, we make the
assumption that 10.0 simulation time units = 1/30 wall-
clock seconds. Task time has been distributed among CPU
time, (main) memory time, bus time, and cache time
proportionally as listed in Table 8 [4].

4.4 Simulation Model
 We use VisualSim, a simulation tool from
Mirabilis Design, Inc., to simulate our architecture.
Detailed simulation block diagram and simulation cockpit
are shown in Appendix A.

Block diagram is drawn for system components
(such as DSP, AP, cache, bus, and memory) using
VisualSim blocks. We use parameters for blocks as shown
in Table 2. Proper connections are made to simulate the
architecture. Random numbers are generated to represent
tasks. A generated number is filtered based on the hit ratio
to simulate the workload. As an example, say hit ratio is
80% and randomly generated number is between 1 and
100. If the random number is between 1 and 80, it
represents a hit; otherwise it is a miss. VisualSim
simulation cockpit provides functionalities to run the
model and to collect simulation results.

SPECTS '04 755 ISBN: 1-56555-284-9

5. RESULTS AND DISCUSSION
In this research work, we investigate the impacts

of various CL1 sizes and task rates on system performance
in terms of utilization, mean delay, and total number of
transactions processed. We use MPEG4 CIF YUV 4:2:0
(352 pixels by 288 lines) formatted video stream file at 30
fps. We vary cache size from 384 KB to 512 KB and from
512 KB to 1024 KB, task rate from 1 task per 10
simulation time units to 1 task per 4 simulation time units,
DSP cache hit ratio from 28% to 86%, and AP cache hit
ratio from 50% to 84%. Total simulation time is 10000.0
simulation time units and bus queue length is 300.

5.1 Cache size variation
We keep the system with bus queue size of 300

and task rate of 1 task per 10 simulation time units. We
change the cache sizes to see the impacts on utilization,
mean delay, and total number of transactions processed for
bus, memory, DSP, and AP.

First, we consider cache size versus utilization as
shown in Figure 6. For cache size of 384 KB, we see that
only two frames can be kept into the cache at a certain
point of time. We know B frames are predicted based on
both previous I (or P) frame and next P frame. As a result
there would be more cache misses. When cache size was
increased to 512 KB, three frames fitted into the caches at
the same time and the miss rate was reduced significantly.
Then we increase cache size to 1024 KB. It is noticeable
that utilization of bus, memory, and AP dropped
considerably. But DSP utilization did not change
significantly. This is because, even though DSP cache can
have 6 frames at the same time, it can use at most three.

Cache size (KB)
Figure 6. Utilization (%) versus Cache Size with task rate

0.1 simulation time units

Then we run our simulation with increased task
rate. Figure 7 shows the results for 1 task per 6 simulation
time units. Results for cache size of 384 KB is not shown,
because DSP utilization goes beyond 100% that is not
possible. As a result simulation fails. For cache size of 512
KB, both utilizations become extremely high. At this task
rate, if cache size is increased to 1024 KB, AP utilization
reduces significantly, but DSP utilization remains

unchanged due to the fact that DSP does not take
advantage of having more than 3 frames into the cache at
the same time.

Cache size (KB)
Figure 7. Utilization (%) versus Cache Size with task rate

0.2 simulation time units

Second, we consider cache size versus mean delay
(simulation time units) as shown in Figure 8. For DSP and
AP delay is significant for cache size of 384 KB. As cache
sizes increase, delay decreases. In our simulation, bus and
memory delay did not change, since each has a constant
transaction processing speed.

Cache size (KB)
Figure 8. Mean-delay versus Cache Size (KB)

Finally, we investigate the impact of various

cache sizes on the total number of transactions processed
(Figure 9). We measure transaction as the total number of
tasks entered into plus tasks exited from the component
during the whole period of simulation period [4]. For DSP
and AP, the total number of transactions processed remains
unchanged with the variation of cache sizes. Total number
of transactions processed by DSP = Total number of
transactions processed by AP = 2 * total number of tasks
generated.

Cache size (KB)
Figure 9. Transactions (tasks entered and exited) versus

Cache Size

SPECTS '04 756 ISBN: 1-56555-284-9

On the other hand, for bus and memory, cache
size has significant effect on the total number of
transactions processed. As shown in Figure 9, the total
number of transactions processed decrease with increase of
cache size for bus and memory.

From Figures 6, 8, and 9, we observe that for
cache size of 384 KB, DSP and AP utilization and delay
and bus and memory transactions are very high. On the
other hand, for cache size of 1 MB, DSP and AP utilization
and delay and bus and memory transactions are very low.
So for our architecture cache size of 512 KB is optimal.
According to Figure 7, when task rate increases utilization
also increases. After certain point, utilization goes close to
100%. Increased cache size from 512 KB to 1024 KB
reduces utilization for AP but not for DSP.

5.2 Task rate variation

We keep the system with cache size of 512 for
both DSP and AP and bus queue length 300.

0
20
40
60

80
100
120

0 0.1 0.2 0.3

Task Rate (tasts per unit
time)

U
ti

liz
at

io
n

(%
)

AP-512

DSP-512

AP-1024

DSP-1024

Figure 10. Utilization Vs Task Rate

We increase task rate from 1 task per 10 simulation time
units to 1 task per 4 simulation time units. When task rate
is increased, utilization increases. At task rate of 1 task per
5 simulation time units (0.2), AP utilization is almost 99%
as shown in Figure 10. Further increase in task rate causes
the system to break down. AP cannot process the tasks, so
task queue starts dropping the tasks. A bigger cache size
(for example, from 512 KB to 1024 KB) and/or a bigger
bus queue length (for example, 300 to 500) should reduce
the utilization for AP. DSP utilization increases with
increased task rate but stay the same when cache size
increases from 512 KB to 1024 KB.

6. CONCLUSION

In this paper, we explore the architecture of a
multiprocessor mobile system running MPEG4 application.
We develop a simulation program using VisualSim to
evaluate the system performance in terms of utilization,

delay, and total number of transactions processed by the
different system components for various cache sizes and
task rates. The simulation program helps optimize the
cache size for a given task rate.

Including a second level cache will certainly

improve the system performance, something that we will
investigate in the future. Also, asan extension of this work,
using the Microsoft MPEG-4 Video Reference Software,
we plan to generate memory reference traces to drive the
simulation program.

7. REFERENCES
[1] F. Vahid and T. Givargis, Embedded System Design –

A Unified Hardware/Software Introduction,
John Wiley & Sons, New York, NY, 2002

[2] A.S. Tanenbaum, Structured Computer Organization,
Prentice Hall PTR, Upper Saddle River, NJ, 4th

edition, 1999
[3] D. Chiou, P. Jain, L. Rudolph, and S. Devadas,

“Application-Specific Memory Management for
Embedded Systems Using Software-Controlled
Caches”, ACM 1-58113-188-7/00/0006, DAC 2000,
Los Angeles, CA, USA

[4] VisualSim: Mirabilis Design, Inc.
http://www.mirabilisdesign.com/

[5] G. Brar, S. Kundu, P. Worah, S. Biswas, A.
Mukhopadhyay, and A. Basu, “OaSis: An Application
Specific Operating System for an Embedded
Environment”, Department of Computer Science and
Engineering and Department of Mathematics, IIT
Kharagpur, India
http://www.mla.iitkgp.ernet.in/papers/oasis.pdf

[6] R. Schaphorst, Videoconferencing and Videotelephony
– Techonology and Standards, Artech House,
Norwood, MA, 2nd edition, 1999

[7] S.R. Ely, "MPEG video coding - A simple
introduction", EBU Technical Review Winter 1995

[8] A. Maxiaguine, S. Kunzli, and L. Thiele, "Workload
Characterization Model for Tasks with Variable
Execution Demand", Project supported in part by
KTI/CTI, Computer Engineering and Networks
Laboratory, Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland

[9] A. Avritzer, J. Kondek, D. Liu, and E.J. Weyuker,
"Software Performance Testing Based on Workload
Characterization", WOSP ’02, July 24-26, 2002 Rome,
Italy, AT&T Labs, ACM ISBN 1-1-58113-563-7
02/07, 2002

[10] A. Silberschatz, P. Galvin, and G. Gagne, Operating
System Concepts, Sixth Edition, John Wiley & Sons,
Inc. ISBN 0-471-25060-0

SPECTS '04 757 ISBN: 1-56555-284-9

http://www.mla.iitkgp.ernet.in/papers/oasis.pdf
http://www.mirabilisdesign.com/

Appendix A: VisualSim simulation block diagram and simulation cockpit
Simulation tool used is VisualSim from Mirabilis Design, Inc. [http://www.mirabilisdesign.com/].

Figure A. VisualSim Block Dia
and Workload. Architecture: E
describes the actions performed

traverse the system such as n
Execution. Connection can be ma

mapping from hardware to softwa
In Figure B, output of shared bu

Figure B. VisualSim Simulation
(block diagram) and to collect si

without modifying the block

Architecture

Behaviorn

SPECTS '04
Virtual
Executio
gram. The system to be evaluated can be d
lements such as CPU, cache, bus, memory, and
 on the system. Examples include network traf
etwork traffic. Mapping between behavior and a
de using dedicated and/or Virtual Connections.
re to ASIC by just changing a parameter. The ou
s (T6_Bus) is shown in the right-top window an

shown in the right-bottom window.

 Cockpit. The Simulation Cockpit provides func
mulation results (right window). Parameters can
 diagram. The final results can be saved into a f

Workload

758
Virtual
Connection
escribed in three parts – Architecture, Behavior,
RTOS are specified here. Behavior: This
fic shaping. Workload: Transactions that
rchitecture is performed using Virtual

 The virtual execution capability makes re-
tput of a block can be displayed or plotted.
d the output of DSP memory (M_dsp) is

tionalities (left window) to run the model
 be changed before running the simulation
ile and/or printed for further analysis.

ISBN: 1-56555-284-9

http://www.mirabilisdesign.com/

	TITLE PAGE
	SPECTS Table of Contents
	ACROBAT HELP
	Evaluation of Application-Specific Multiprocessor Mobile System
	Keywords
	ABSTRACT
	1. INTRODUCTION
	2. ARCHITECTURE
	2.1 Simulated Architecture
	2.2 Processors
	2.3 Caches
	2.4 Memory
	2.5 Buses

	3. APPLICATIONS
	3.1 Video Communications
	3.2 Representative Workload

	4. SIMULATION
	4.1 Assumptions
	4.2 Performance Metrics
	4.3 Input Parameters

	5. RESULTS AND DISCUSSION
	5.1 Cache size variation
	5.2 Task rate variation

	6. CONCLUSION
	7. REFERENCES
	Appendix A: VisualSim simulation block diagram and simulation cockpit

