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ABSTRACT 

The popularity of application-specific computing 
systems is on the rise and many systems have been 
developed in fields such as multimedia, high-speed 
networks, information systems, signal and image 
processing. Real-time application-specific systems are 
more complex and require more time to develop. In this 
paper, we explore the architecture of a multiprocessor 
mobile system running MPEG4 application. We develop a 
simulation program using VisualSim to evaluate the 
system performance in terms of utilization, delay, and total 
number of transactions processed by the different system 
components for various cache sizes and task rates. 
 
1. INTRODUCTION 

A large number of computing devices are built 
every year for different purposes. Examples include 
cellular phones, video conferencing systems, home security 
systems, digital cameras, and portable media players 
(PMP). Any one of these systems normally executes a 
specific program repeatedly and can therefore be called 
application specific system. Most of these systems are 
normally embedded within larger electronic devices and 
suitable for mobile environment. For time critical 
applications, these systems must react to system changes 
and must compute certain results in real time [1].  
 

Design metrics of application-specific mobile 
systems include performance (such as utilization, delay, 
and transaction), power, cost, time-to-market, and safety 
[1, 2]. Key components for such a system include hardware 
– CPU, memory, bus, cache, and software – operating 
system (OS) and application as shown in Figure 2. The 
application is broken into tasks and given to different 
processors. A processor is designed to perform the specific 
task assigned to it. For example, CPU-1 runs on any open 
OS, has only first level cache (CL1), and performs Task-1. 
On the other hand, CPU-N needs second level cache 
(CL2), third level cache (CL2), and real time operating 

system (RTOS) to perform Task-N.  All CPUs share 
memory through single shared bus. 

 

Figure 1: A shared bus multi-processor architecture 

CPU is always faster than main memory [Figure 2 
(a)]. In this example, CPU wastes at least 3 cycles if it 
needs something from main memory. A small, fast, and 
 

Figure 2. (a) CPU, main memory, and bus; (b) Processor 
cache; (c) Data transfer between CPU and cache and 

between cache and main memory 
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expensive memory, called cache, is used between CPU and 
main memory to improve performance by reducing the 
data access time as shown is Figure 2 (b). Data between 
CPU and cache is transferred as data object and between 
cache and main memory as block as shown in Figure 2 (c). 
In our simulation, we assume a block size to be equal to a 
frame size 
 

It is a difficult challenge to implement an 
application-specific system that fulfills desired 
functionality, and at the same time optimize various design 
metrics. The difficulty is increased by the time-to-market 
pressure. The average time-to-market is only 8 months for 
contemporary application-specific mobile devices. Delayed 
entry to market causes serious negative effect on revenues. 
For example, for a lifetime of 52 weeks, a delay of 4 weeks 
results in a revenue loss of 22% and a delay of 10 weeks 
results in a loss of 50% [1, 3].  
 

Simulation helps avoid delayed entry of products 
to the market and improves efficiency and productivity [4]. 
In this work, we focus on architecture exploration of an 
application-specific mobile system by evaluating the 
system performance via simulation. 
 

This paper is organized as follows: Section 2 
presents the architecture we used for our simulation. In 
Section 3, we explain the application to be supported by 
this proposed architecture. Simulation analysis is done in 
Section 4. In Section 5, we discuss the simulation results. 
Finally, we conclude our work in Section 6. At the end, 
VisualSim simulation block diagram and simulation 
cockpit is attached as Appendix A. 
 
2. ARCHITECTURE 
2.1 Simulated Architecture 

Our focus is on architecture exploration of 
application-specific multiprocessor mobile system by 
evaluating the system performance via simulation. We 
simulate a simplified architecture with two processors as 
shown in Figure 3. This architecture is designed to support 
video communication applications. In this particular case, 
two processors are considered. Digital signal processor 
(DSP) decodes the encoded video streams and application 
processor (AP) plays it back. Both DSP and AP have first 
level caches (CL1). We are interested to investigate the 
impacts of various CL1 sizes on system performance. DSP, 
also, has its local memory that works as a buffer. DSP and 
AP use inter-processor communication (IPC) with a 
register-based messaging unit (MU) and a shared memory 
system. Here, main memory is being shared by DSP and 
AP and they are connected via a shared bus. 

Figure 3: Simulated architecture of application specific 
multiprocessor mobile systems 

 
DSP writes the decoded video streams into the 

main memory and sends a message to AP. AP reads the 
video streams and plays them back. For simplicity, we 
consider DSP dedicated memory and shared main memory 
are unlimited in size. For larger memory, delay associated 
with memory read and write can be ignored [5]. 
 
2.2 Processors 

Our architecture consists of two processors. We 
use digital signal processor (DSP) to indicate a 
microprocessor specifically designed to perform digital 
signal processing and application processor (AP) to 
indicate a microprocessor specifically designed to perform 
application processing. 
 
2.3 Caches 
 In our architecture, both DSP and AP processor 
have first level caches (CL1). Cache sizes of 32 KB, 64 
KB, and 128 MB already have been used. We vary CL1 
sizes from 384 KB to 1024 KB to see the overall system 
performance. 
 
2.4 Memory 
 DSP, in our architecture, has a dedicated local 
memory which functions as a buffer. DSP may perform 
read from and write into this local memory. Main memory 
is shared by both DSP and AP. However, DSP only writes 
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into main memory and AP only reads from it. Both 
memory sizes are considered unlimited for the sake of 
simplicity. 
 
2.5 Buses 
 We use a dedicated bus to connect DSP and its 
local memory and a shared bus to connect DSP, main 
memory, and AP. For simplicity, we consider similar 
properties (such as speed and queue size) for both buses. 
 
3. APPLICATIONS 
3.1 Video Communications 

We consider video communication applications 
like video conferencing. At its most basic level, 
compression is performed when an input video stream is 
analyzed and information that is less significant to the 
viewer is discarded. Each event is then assigned a code - 
commonly occurring events are assigned few bits and rare 
events will have more bits. The transmitter encodes and 
transmits the encoded video streams, the receiver decodes 
the encoded video streams and play them back as shown in 
Figure 4.  
 

Figure 4: Video communications 
 

Video compression standards include Motion 
Picture Experts Group 1 (MPEG-1) (up to 1.5 Mbits/sec, 
CD-ROM video applications), MPEG-2 (between 1.5 and 
15 Mbits/sec, digital television applications), MPEG-4 
(multimedia and web applications). We use Common 
Intermediate Format (CIF YUV 4:2:0, 30 fps) in our 
simulation [6]. 
 

We consider MPEG4 application. Specifically, the 
video file is formatted with Common Intermediate Format 
(CIF), YUV 4:2:0, width 352 pixels, height 288 lines, and 
30 frames per wall-clock second. All three pictures types, 
namely intra-coded (I frame), predictive picture (P frame), 
and bi-directionally predictive picture (B frame), are 
considered. For our simulation we use a group of picture 
(GOP) that has 7 picture frames as shown in Figure 5. 
 

Figure 5: Sample MPEG4 picture frames 

I frame (frame 1) is intra coded, that means, it 
does not have any predictive coding. As a result, random 
access is supported for I frame. Frame 4 (P) is predicted 
from 1 (I). Frames 2 (B) and 3 (B) are predicted from 1 
(previous I frame) and frame 4 (next P frame). Frame 4 (P) 
is decoded before 2 (B) and 3 (B). Frame 4 (P) is predicted 
from 1(I) and frame 7 (P) is predicted from 4 (P). Frames 5 
(B) and 6 (B) are predicted from 4 (P) and 7 (P). 
 

P frames can be decoded from previous I (or P) 
frame. Both previous I (or P) and next P frames are needed 
to decode any B frame. It is important that for a GOP the 
encoding, transmission, and decoding order is the same. 
The playback order is in the natural sequence (1, 2, 3, 4,) 
and different from decoding order. 
 

Decoding order of the frames = 1, 4, 2, 3, 7, 5, 6 
 

Playback order = 1, 2, 3, 4, 5, 6, 7 
 
Structure (at the encoder) is usually specified 

using two parameters, M and N. An I frame is decoded 
every N frames and a P frame every M frames, the rest are 
B frames. In the simulation, we select N = 7 and M = 3 (as 
shown in Figure 5) with the consideration that the 
prediction error does not exceed a certain threshold [7]. 
 
3.2 Representative Workload 
 The workload defines all possible scenarios and 
environmental conditions that the system-under-study will 
be operating under [4, 8, 9]. The quality of the workload 
used in the simulation is important for the accuracy and 
completeness of the simulation results. In our simulation, 
we use cache hit ratio and miss ratio to model the system. 
The hit ratio and miss ratio are calculated based on a 
decoded trace file of an MPEG4 application. The decoded 
trace file we generate using the Microsoft MPEG-4 Video 
Reference Software does not have memory references 
available to be used. Hence, for this study, we stay on the 
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conservative side by assuming that the data transfer rate 
between CPU and cache is in frames. As an extension for 
this work, we plan to generate the memory references by 
using the Microsoft MPEG-4 Video Reference Software. 

 
For DSP, the hit ratio and miss ratio are calculated 

based on the cache sizes and the MPEG4 decoding 
algorithm. Cache size is finite and fixed for a specific 
architecture. Frame size is also finite and fixed for a 
specific algorithm. When DSP decodes a P frame, it looks 
for I frame into the cache. If cache has that I frame then it 
is considered a hit. If cache is big enough to fit 2 frames at 
the same time, then it will always be a hit to decode a P 
frame. To decode a B frame is different. In the case of a B 
frame, if cache can fit only two frames, then there will be 
at least one miss. But if cache is big enough to fit 3 or 
more frames, then B frame can be decoded from cache. 
Also, it is assumed that the reference information in both P 
and B frames result in negligible misses. 
 

The AP cache is assumed to use a pre-fetching 
scheme that in the event of a miss will pre-fetch the 
maximum number of frames that the cache can fit. So, if 
the AP cache size is N, then there is one miss per N frames 
and the hit ratio is (N-1)/N and the miss ratio is 1/N. 
 

Total number of bytes (B) in a MPEG4 CIF YUV 
4:2:0 encoded file is N*3*width*height/2. Here N is the 
total number of frames. So, for CIF YUV 4:2:0 352 pixels 
by 288 lines encoded video stream, 
 

Frame Size = 3*352*288/2 bytes � 152 KB  

Hits and misses are shown in Table 1 – 6. 
 
Table 1: DSP cache hit/miss for cache size of 384 KB. 
Cache can hold 2 frames at most (384/152 � 2). 

Frame seq. number 1 4 2 3 7 5 6 
Decoding order I P B B P B B 
Hit or Miss (H/M) M H M M H M M 

So, DSP cache hit ratio = 2/7 � 28.0% and miss 
ratio = 5/7 � 72.0% 

Table 2: AP cache hit/miss for cache size of 512 KB. 
Cache can hold (384/152 � 2) i.e., 2 frames at most. 

Frame seq. number 1 2 3 4 5 6 7 
Playback order I B B P B B P 
Hit or Miss (H/M) M H M H M H … 

For large number of frames, 1 miss per 2 frames. 
So, hit ratio = 1/2 = 50.0% and miss ratio = 1/2 = 50.0% 

 
Table 3: DSP cache hit/miss for cache size of 512 KB. 
Cache can hold 3 frames at most (512/152 � 3). 

Frame seq. number 1 4 2 3 7 5 6 
Decoding order I P B B P B B 
Hit or Miss (h/m) M H H H H H H 

So, DSP cache hit ratio = 6/7 � 86.0% and miss 
ratio = 1/7 � 14.0% 

Table 4: AP cache hit/miss for cache size of 512 KB. 
Cache can hold 3 frames at most (512/152 � 3). 

Frame seq. number 1 2 3 4 5 6 7 
Playback order I B B P B B P 
Hit (h) or Miss (m) M H H M H H … 

For large number of frames, 1 miss per 3 frames. 
So, hit ratio = 2/3 � 67.0% and miss ratio = 1/3 � 33.0% 

Table 5: DSP cache hit/miss for cache size of 1024 KB. 
Cache can hold 6 frames at most (1024/152 � 6). 

Frame seq. number 1 4 2 3 7 5 6 
Decoding order I P B B P B B 
Hit or Miss (h/m) M H H H H H H 

So, DSP cache hit ratio = 6/7 � 86.0% and miss 
ratio = 1/7 � 14.0% 

Table 6: AP cache hit/miss for cache size of 1024 KB. 
Cache can hold 6 frames at most (1024/152 � 6). 

Frame seq. number 1 2 3 4 5 6 7 
Playback order I B B P B B P 
Hit (h) or Miss (m) M H H H H H … 

For large number of frames, 1 miss per 6 frames. 
So, hit ratio = 5/6 � 84.0% and miss ratio = 1/6 � 16.0% 

Table 7 summarizes the hit ratio and miss ratio of 
different CL1 sizes for both DSP and AP.  
 
Table 7: Hit ratio and miss ratio for DSP and AP caches.  
 

Cache 
size 

(KB) 

Max. Frames
the cache 
can hold 

DSP
Hit     Miss 
(%)     (%) 

AP
Hit   Miss 
(%)     (%) 

384 2 28 72 50 50 
512 3 86 14 67 33 

1024 6 86 14 84 16 
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As shown in Table 7, DSP does not take 
significant advantage of increasing cache size from 512 
KB to 1024 KB, so the hit ratio and miss ratio remain 
unchanged. But AP cache hit ratio increases from 67 to 84. 
This is because to decode a B frame, DSP may need access 
to at most 2 other frames (previous I (or P) frame and next 
P frame). So having more than 3 frames into the cache 
does not improve hit ratio over having exactly 3 frames 
into the cache. 
 
4. SIMULATION 
4.1 Assumptions 
 The following assumptions are made for the 
simulation model. 
 

1. Even though AP runs under general purpose 
operating system, it is capable of handling the 
traffic in sync with DSP (runs under real-time 
operating system). 

2. Sizes of both DSP local memory (buffer) and 
shared main memory are unlimited. That means, 
there is no delay involved with the actions of 
reading from buffer, writing into main memory, 
and reading from main memory. 

3. Data transfer between CPU and cache is in frames 
and cache block size is equal to a frame size.  

4. DSP and AP use IPC/MU to communicate with 
each other without any delay. 

5. CIF YUV 4:2:0 formatted (352 pixels by 288 
lines, 30 fps) video stream file has been used as a 
representative MPEG4 application. 

 
4.2 Performance Metrics 

We measure the following three performance 
metrics – utilization, mean delay, and transactions. 

 
Utilization: The CPU utilization is defined as the 

ratio of the time that CPU spent computing to the time that 
CPU spent transferring bits and performing un-tarring and 
tarring functions [1, 4]. The CPU utilization ranges from 
0% to 100%, in real system from 40% (lightly loaded) to 
90% (heavily loaded). As a rule of thumb, a utilization of 
50% is considered acceptable [10]. 
 

Mean delay: Mean delay is the average delay of 
all the tasks. Delay (or latency) is the time between the 
start of execution of a task and the end. Delay is measured 
in terms of simulation time units [1, 4, 10]. 

 
Transactions: Total number of transactions 

processed is the total number of tasks performed (entered 
and existed) by a component [1, 4]. 
 

4.3 Input Parameters 
We vary the following parameters as input to the 

simulation model – cache size and task rate.  
 
Task rate is the total number of tasks completed 

per simulation time unit. Task time is the time that one task 
needs to be processed. Considering 30 frames per wall-
clock second playback speed, one frame should take 1/30 
wall-clock second. Table 8 lists all the parameters used in 
the simulation. 
 
Table 8: System parameters 
 

Number of processors 2 
Simulation time 10000.0 simulation time units 
Task time 10.0 simulation time units 
Task rate Task time * (1.0 to 0.2) 
CPU time Task time * 0.6 
Memory time Task time * 0.4 
Bus time Memory time * 0.4 
Cache time Memory time * 0.6 
Cache sizes 384 to 1024 KB 
Cache hit ratio 28% to 86% 
Bus queue length 300 
Block size = frame size 152 KB 

To increase comparison visibility, we make the 
assumption that 10.0 simulation time units = 1/30 wall-
clock seconds. Task time has been distributed among CPU 
time, (main) memory time, bus time, and cache time 
proportionally as listed in Table 8 [4]. 
 
4.4 Simulation Model 
 We use VisualSim, a simulation tool from 
Mirabilis Design, Inc., to simulate our architecture. 
Detailed simulation block diagram and simulation cockpit 
are shown in Appendix A. 
 

Block diagram is drawn for system components 
(such as DSP, AP, cache, bus, and memory) using 
VisualSim blocks. We use parameters for blocks as shown 
in Table 2. Proper connections are made to simulate the 
architecture. Random numbers are generated to represent 
tasks. A generated number is filtered based on the hit ratio 
to simulate the workload. As an example, say hit ratio is 
80% and randomly generated number is between 1 and 
100. If the random number is between 1 and 80, it 
represents a hit; otherwise it is a miss. VisualSim 
simulation cockpit provides functionalities to run the 
model and to collect simulation results. 
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5. RESULTS AND DISCUSSION 
In this research work, we investigate the impacts 

of various CL1 sizes and task rates on system performance 
in terms of utilization, mean delay, and total number of 
transactions processed. We use MPEG4 CIF YUV 4:2:0 
(352 pixels by 288 lines) formatted video stream file at 30 
fps. We vary cache size from 384 KB to 512 KB and from 
512 KB to 1024 KB, task rate from 1 task per 10 
simulation time units to 1 task per 4 simulation time units, 
DSP cache hit ratio from 28% to 86%, and AP cache hit 
ratio from 50% to 84%. Total simulation time is 10000.0 
simulation time units and bus queue length is 300. 

5.1 Cache size variation 
We keep the system with bus queue size of 300 

and task rate of 1 task per 10 simulation time units. We 
change the cache sizes to see the impacts on utilization, 
mean delay, and total number of transactions processed for 
bus, memory, DSP, and AP. 
 

First, we consider cache size versus utilization as 
shown in Figure 6. For cache size of 384 KB, we see that 
only two frames can be kept into the cache at a certain 
point of time. We know B frames are predicted based on 
both previous I (or P) frame and next P frame. As a result 
there would be more cache misses. When cache size was 
increased to 512 KB, three frames fitted into the caches at 
the same time and the miss rate was reduced significantly. 
Then we increase cache size to 1024 KB. It is noticeable 
that utilization of bus, memory, and AP dropped 
considerably. But DSP utilization did not change 
significantly. This is because, even though DSP cache can 
have 6 frames at the same time, it can use at most three.  
 

Cache size (KB) 
Figure 6. Utilization (%) versus Cache Size with task rate 

0.1 simulation time units 
 

Then we run our simulation with increased task 
rate. Figure 7 shows the results for 1 task per 6 simulation 
time units. Results for cache size of 384 KB is not shown, 
because DSP utilization goes beyond 100% that is not 
possible. As a result simulation fails. For cache size of 512 
KB, both utilizations become extremely high. At this task 
rate, if cache size is increased to 1024 KB, AP utilization 
reduces significantly, but DSP utilization remains 

unchanged due to the fact that DSP does not take 
advantage of having more than 3 frames into the cache at 
the same time. 
 

Cache size (KB) 
Figure 7. Utilization (%) versus Cache Size with task rate 

0.2 simulation time units 
 

Second, we consider cache size versus mean delay 
(simulation time units) as shown in Figure 8. For DSP and 
AP delay is significant for cache size of 384 KB. As cache 
sizes increase, delay decreases. In our simulation, bus and 
memory delay did not change, since each has a constant 
transaction processing speed. 
 

Cache size (KB) 
Figure 8. Mean-delay versus Cache Size (KB) 

 
Finally, we investigate the impact of various 

cache sizes on the total number of transactions processed 
(Figure 9). We measure transaction as the total number of 
tasks entered into plus tasks exited from the component 
during the whole period of simulation period [4]. For DSP 
and AP, the total number of transactions processed remains 
unchanged with the variation of cache sizes. Total number 
of transactions processed by DSP = Total number of 
transactions processed by AP = 2 * total number of tasks 
generated.  

Cache size (KB) 
Figure 9. Transactions (tasks entered and exited) versus 

Cache Size 
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On the other hand, for bus and memory, cache 
size has significant effect on the total number of 
transactions processed. As shown in Figure 9, the total 
number of transactions processed decrease with increase of 
cache size for bus and memory. 
 

From Figures 6, 8, and 9, we observe that for 
cache size of 384 KB, DSP and AP utilization and delay 
and bus and memory transactions are very high. On the 
other hand, for cache size of 1 MB, DSP and AP utilization 
and delay and bus and memory transactions are very low. 
So for our architecture cache size of 512 KB is optimal. 
According to Figure 7, when task rate increases utilization 
also increases. After certain point, utilization goes close to 
100%. Increased cache size from 512 KB to 1024 KB 
reduces utilization for AP but not for DSP. 
 
5.2 Task rate variation 

We keep the system with cache size of 512 for 
both DSP and AP and bus queue length 300. 
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Figure 10. Utilization Vs Task Rate 

We increase task rate from 1 task per 10 simulation time 
units to 1 task per 4 simulation time units. When task rate 
is increased, utilization increases. At task rate of 1 task per 
5 simulation time units (0.2), AP utilization is almost 99% 
as shown in Figure 10. Further increase in task rate causes 
the system to break down. AP cannot process the tasks, so 
task queue starts dropping the tasks. A bigger cache size 
(for example, from 512 KB to 1024 KB) and/or a bigger 
bus queue length (for example, 300 to 500) should reduce 
the utilization for AP. DSP utilization increases with 
increased task rate but stay the same when cache size 
increases from 512 KB to 1024 KB. 
 
6. CONCLUSION 

In this paper, we explore the architecture of a 
multiprocessor mobile system running MPEG4 application. 
We develop a simulation program using VisualSim to 
evaluate the system performance in terms of utilization, 

delay, and total number of transactions processed by the 
different system components for various cache sizes and 
task rates. The simulation program  helps optimize the 
cache size for a given task rate. 

 
Including a second level cache will certainly 

improve the system performance, something that we will 
investigate in the future. Also, asan extension of this work, 
using the Microsoft MPEG-4 Video Reference Software, 
we plan to generate memory reference traces to drive the 
simulation program. 
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Appendix A: VisualSim simulation block diagram and simulation cockpit 
Simulation tool used is VisualSim from Mirabilis Design, Inc. [http://www.mirabilisdesign.com/].   
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