Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

Early power and performance optimization of algorithm implementation on ARM processors

Francesco Regazzoni ALaRI Institute, University of Lugano (CH)

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

Outline

Motivation of the work.

Overview of used tool: Mirabilis VisualSim.

- Case study: AES algorithm.
- First system.
- Second system.
- Conclusions.

ALaRI

Motivations

- Achieving the required throughput at the lowest power consumption is a primary concern in the architecture of mobile handheld devices.
- The selection of the processor and the architecture of the full system must be determined before committing to hardware and software.
- A preliminary investigation of the performance vs. power trade-off can be performed leveraging on macro-architecture exploration.
- Using Mirabilis VisualSim a model of the system that provide such accuracy can be constructed in a few hours.

UniversitàAdvanceddellaLearningSvizzeraand ResearchitalianaInstituteALaRI

VisualSim Overview 1/4

- VisualSim is a graphical and platform-independent architectural analysis and exploration software tool.
- VisualSim can be used in any application that requires the design of hardware and software elements.
- All of the system design aspects are addressed by VisualSim using the building blocks.
- All of the building blocks, simulation platforms, analysis and debugging required to construct a system are provide within a single framework.
- Thus models in all these analysis can be constructed quickly and easily.

VisualSim Overview 2/4

Key features:

- > Design with multiple abstraction levels.
- Integrated multi-simulation engines and JIT data types.
- Extensive libraries of parameterized models.
- Publish to the Web for communication and remote execution.
- Graphical entry and hierarchical modeling.
- Robust visualization and analysis capabilities.
- Import Java/C/C++ and link to Excel & MatLab.
- > Automatic error checking between SmartBlocks models.
- Enable assertions for system-coverage.

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

VisualSim Overview 3/4

Applications

- Design new and custom hardware and software architectures.
- Design sub-systems such as CPU, memory controllers and DMA.
- Sizing CPU speed, Bus width, Cache, Memory & Pipeline stages.
- > Architect embedded software.
- RTOS consideration.
- Design of new wireless and communication protocols.

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

VisualSim Overview 4/4

Analysis

- > Architecture utilization.
- > Application response time.
- Functional correctness of algorithms.
- >Buffer requirements.
- Implementation and design constraints generation.
- Power

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI	

Case Study 1/3

AES (Advanced Encryption Algorithm, FIPS 197):

- Block cipher: block size 128.
- Key size: 128; 192; 256.
- Round operations:
 - Shift row.
 - Mix Column.
 - > Non linear transformation (SBOX).
 - > Add Round key.

The Number of rounds depends on the key length.

|--|

Case Study 2/3

The algorithm runs on ARM processors in different systems.

Different key length are tested.

- Measurements of:
 - > Latency.

Power consumed by the processor

The trade off is analyzed.

Learning and Research Institute ALaRI
--

Case Study 3/3

- The AES code is an open source version taken from the web.
- The code was annotate and compiled with the gcc compiler to obtain the execution trace.
- The trace was used as input for the model of the CPU inside Mirabilis VisualSim.

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

System one (Full system details)

- Dual processor ARM7TDMI.
- AES tasks are loaded on the two CPU.
- Parameters checked:
 - > System utilization.
 - Processor latency.
 - Processor instant power.
 - Battery power.

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI	

System one (Full system in VisualSim)

AFS Dual ARM7 Platform Model. Performance Model Parameters Simulator Engine Sim_Time: 6.0E-04 DE Simulator Scenarios Kev Size Index: 4 Bytes_Sent: 10 Scenario (1): AES Annotated Software Processor_Speed_Mhz: 133.0 HW Architecture State_Plot_Block State_Plot_Block2 Arch_Setup Utilization Instant Power_Manager Dual_ARM_7 Task Setup Input Architectu. Display_Text Battery ARM. Latency Stati.. Instruction_Set RM Instr Set ARM7_INST HW Architecture SW Architecture DS_Expr2 DS_Expr LineReader Task_Rate Read C Code Annotation Data Structures

www.alari.ch

1.0E

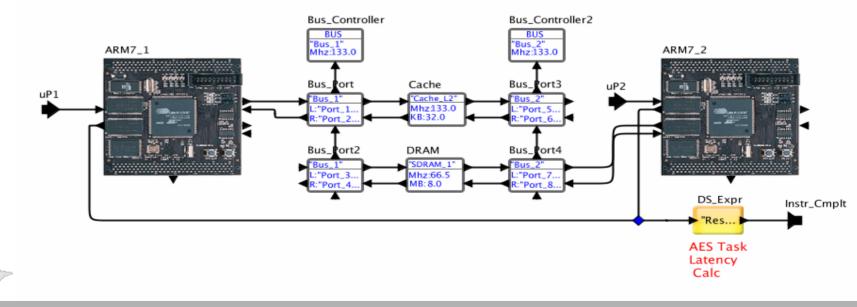
from annotate.txt file and send to Processor.

source: www.arm.com

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI		

System one (ARM7TDMI in VisualSim)

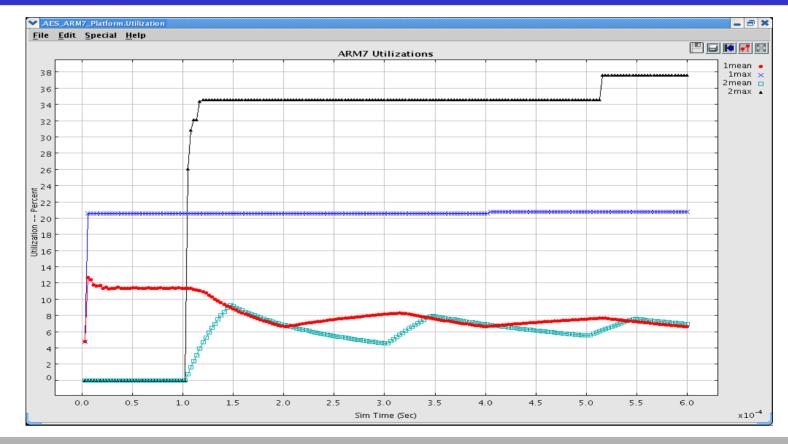
Dual ARM7 + L2 Cache + SDRAM


Detailed processor portion of model.

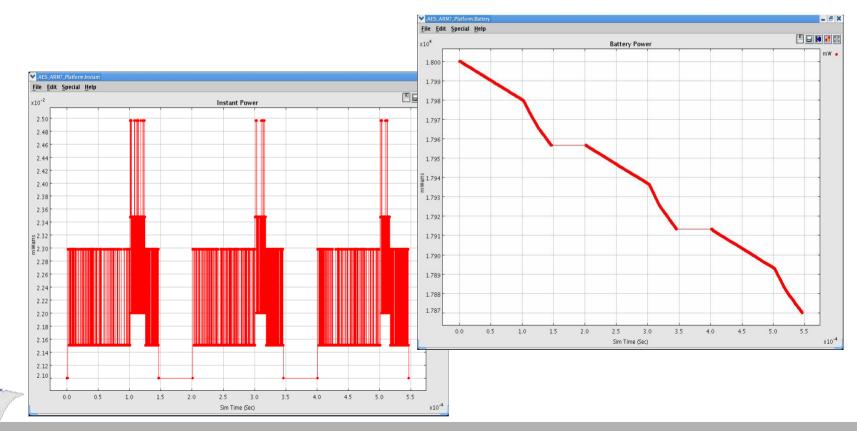
Parameters.

www.alari.ch

- Processor_Speed_Mhz: Processor_Speed_Mhz
- I_Cache_KB: "16"
- D_Cache_KB: "8"
- Bus_Speed_Mhz: Processor_Speed_Mhz
- Cache_Speed_Mhz: Processor_Speed_Mhz
- Cache_Size_KB: 32
- RAM_Speed_Mhz: Processor_Speed_Mhz / 2.0
- RAM_Size_MB: 8
- RAM_Access_Time: "Read 8.0,Prefetch 8.0,Refresh 8.0,Write 7.5"



source: www.arm.com


Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI	

System one (Processors Utilization)

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI	

System one (battery and instant power)

Learning and Research Institute ALaRI
--

System two (Full system details)

Single processor ARM-8Cortex.

All AES tasks are loaded on the same CPU.

Parameters checked:

- > System utilization.
- Processor latency.
- Processor instant power.
- **>** Battery power.

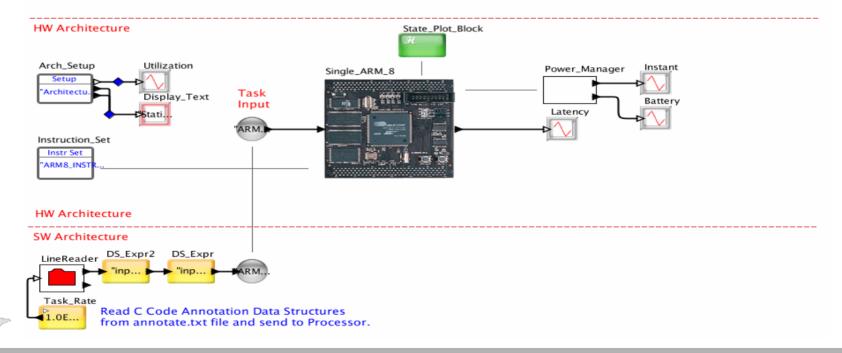
Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI			

System two (Full system in VisualSim)

AES ARM8 Platform Model.

Scenarios

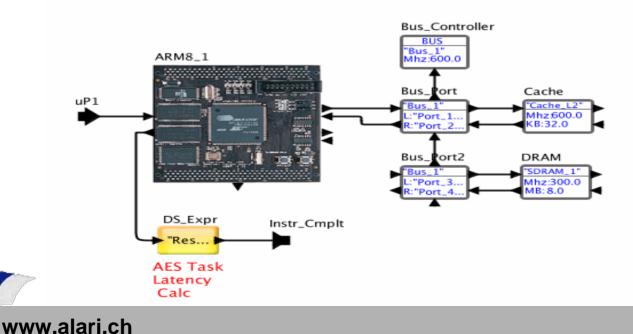
Scenario (1) : AES Annotated Software


Performance Model Parameters

- Sim Time: 3.0E-04
- Sim_Time: 5.0E=0
 Key_Size_Index: 4
- Bytes_Sent: 10
- Processor_Speed_Mhz: 600.0

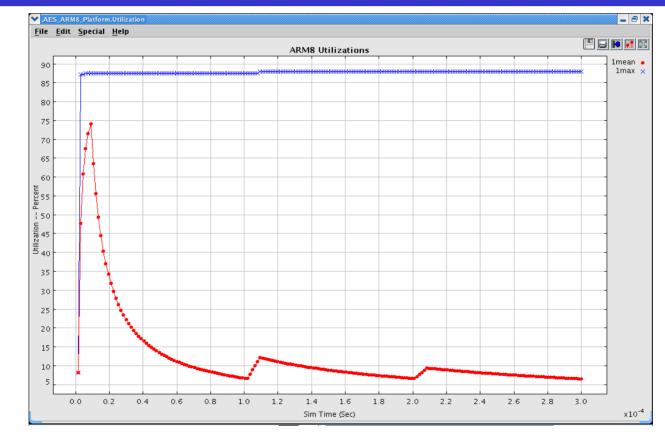
Simulator Engine

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI	

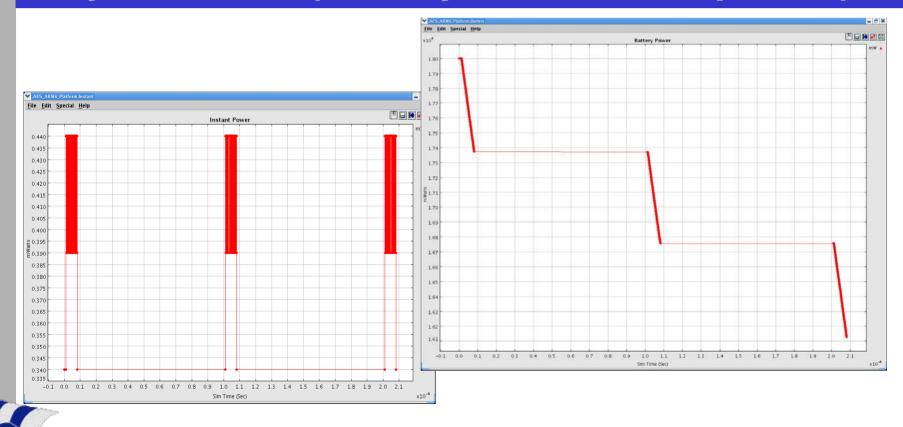

System two (ARM8-Cortex in VisualSim)

ARM8 + L2 Cache + SDRAM

Detailed processor portion of model.


Parameters.

- Processor_Speed_Mhz: Processor_Speed_Mhz
- I Cache KB: "16"
- D_Cache_KB: "8"
- Bus_Speed_Mhz: Processor_Speed_Mhz
- Cache_Speed_Mhz: Processor_Speed_Mhz
- Cache_Size_KB: 32
- RAM_Speed_Mhz: Processor_Speed_Mhz / 2.0
- RAM_Size_MB: 8
- RAM_Access_Time: "Read 3.0, Prefetch 3.0, Refresh 3.0, Write 2.5"



System two (Processor Utilization)

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI	

System two (battery and instant power)

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

System Comparison

ARM8-Cortex/ARM7TDMI power consumption:

≻9.5

ARM8-Cortex/ARM7TDMI speed:

≻2

ARM8-Cortex is faster

Two ARM7TDMI consume less power

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI
---	--

Conclusions

- Performance/Power Trade off is of crucial importance in embedded systems design.
- The presented case study demonstrates that using Mirabilis VisualSim was possible to:
 - Model the full system in few hours (the full experiment was realized in less then 10 hours).
 - Analyze the latency and the power consumed by the full system ad its main components.
 - Explore very quickly different implementation and platform.

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

Questions?

Università della Svizzera italiana	Advanced Learning and Research Institute ALaRI

Thank you for attention. (regazzoni@alari.ch)

Please fell free to come to Mirabilis Design (booth F-51) for a demo