

Modeling of a Power Generation plant

Product

Automation of communication, monitoring and alarm system

Business

The company develops and manufactures energy and digital automation solutions for efficiency and sustainability. It combines energy technologies, real-time automation, software, and services.

Overview

The Drive System automates the management, monitoring, and control of the systems at the power plant. This R&D project aimed at building a fault-tolerant and reliable mechanism for the networking and computing system. The model would test redundancy and conformance to IEC61508.

Customer Team background

Systems engineers with experience in network capacity and industrial automation systems.

Challenges

- Upgrade to integrated system with power management at factories with minimal downtime.
- Migrate and provide 10X higher reliability.
- The quality-of-service was to ensure 99.999% uptime.
- Create an architecture platform to demonstrate and design solutions for multiple customers.
- Decision metrics are the time taken to detect a failure and transition tasks to other resources.

Results

- VisualSim Experimental Platform is the primary engineering architecture trade-off platform.
- Rapid prototyping of the solution for new proposal for automating power plants.
- Eliminate costly Lab setup and prototyping before deployment.

VisualSim solution

- Developed a resource and network model of the entire power plant with parameterized configuration of devices, number of server resources and topology.
- Define traffic from sensors, trigger the diagnostics, and create the software application schedule.
- The model used the VisualSim library.
 - Nodes, Routing Tables, Gateways, Processor, Timed Resource, Quantity Resources
 - o Generated statistics for latency, throughput and, power consumption
- The traffic rates, failure points and number of redundant devices were analyzed.