

Using a Medium-Lift Launch Vehicle for a Moon Orbiter

Product

Chandrayaan 1

Business

Indian Space Research Organization develops and delivers application specific satellite products and tools for broadcasts, communications, weather forecasts, disaster management tools etc.

Project Overview

System modeling project evaluated system reliability, failure analysis, performance estimation of the flight control and avionics, and bottleneck detection in message handling between software tasks.

Team background

System engineers, Hardware and Software designers, and FPGA teams.

Challenges

- Moon Lander must use existing technology with minimal upgrade and new algorithms.
- Short project schedule, \$76M budget and limited physical testing.
- The response time for an event-activated task must be less than 20ms.
- Power consumed by the entire spacecraft must be less than 80% of the battery capacity.
- Maintain performance-level during failure of hardware, network and data error.
- To determine the system responses for 115 combinations of failures.

Results

- Integrated model of both existing and new technology in VisualSim.
- Designed moon orbiter electronics to meet reliability, performance and power requirements.
- Detected multiple points of possible failures and were fixed.
- Identification of instruments and flight controls that failed to meet the timing deadlines.
- Using VisualSim simulation model to size the computer, 1553B Bus and redundancy design.

VisualSim solution

- Using the VisualSim library of Computer, Resource, 1553B and C-API.
- Model constructed in about 6 weeks and simulated for multiple days of orbiting.
- Reports on latency, Quality-of-Service, buffer occupancy, and data loss were generated.
- Visualsim fault analysis included loss of hardware, network link damage, and loss of handshakes between software and incorrect data values from sensors and other nodes.